
Rosario Martinez-Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1345960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On z-coherence of beams radiated by Schell-model sources with Gaussian profile. Optics Letters, 2022, 47, 2258.	1.7	3
2	A class of vectorial pseudo-Schell model sources with structured coherence and polarization. Optics and Laser Technology, 2022, 152, 108079.	2.2	4
3	Tailoring on-axis spectral density with circularly coherent light beams. Optics Letters, 2022, 47, 2394.	1.7	5
4	Christoffel–Darboux sources. Optics Letters, 2021, 46, 973.	1.7	3
5	A New Type of Shape-Invariant Beams with Structured Coherence: Laguerre-Christoffel-Darboux Beams. Photonics, 2021, 8, 134.	0.9	7
6	Reproducing Kernel Hilbert spaces for wave optics: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 737.	0.8	10
7	Efficient calculation of highly focused electromagnetic Schell-model beams. Optics Express, 2021, 29, 26220.	1.7	5
8	Experimental estimation of the longitudinal component of a highly focused electromagnetic field. Scientific Reports, 2021, 11, 17992.	1.6	9
9	Modal Analysis of Pseudo-Schell Model Sources. Photonics, 2021, 8, 449.	0.9	5
10	Propagation features of a class of beams radiated from pseudo-Schell model vectorial sources. EPJ Web of Conferences, 2021, 255, 12012.	0.1	1
11	On polarization characteristics of highly focused fields concentrated along the axis. EPJ Web of Conferences, 2021, 255, 12010.	0.1	Ο
12	Synthesis and characterization of non-uniformly totally polarized light beams: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 591.	0.8	16
13	Besinc Pseudo-Schell Model Sources with Circular Coherence. Applied Sciences (Switzerland), 2019, 9, 2716.	1.3	9
14	Parametrical characterization of the induced electric field in materials. Journal of Electromagnetic Waves and Applications, 2019, 33, 1574-1580.	1.0	0
15	Partially-coherent spirally-polarized gradual-edge imaging. Optics and Lasers in Engineering, 2019, 112, 53-58.	2.0	4
16	Pseudo-Schell model sources. Optics Express, 2019, 27, 3963.	1.7	33
17	Modeling axial irradiance distortion in holographic optical needles produced with high numerical aperture lenses. OSA Continuum, 2019, 2, 1539.	1.8	4
18	On the behavior of vector light needles using modulation functions with topological charge. , 2019, ,		0

#	Article	IF	CITATIONS
19	Weighted average of the Gouy phase shift for paraxial surface plasmon polaritons packets in lossy media. , 2019, , .		0
20	Paraxial propagation and kurtosis of fields generated by pseudo-Schell vortex sources. , 2019, , .		0
21	A proposal for parametrical characterization of induced electric fields in materials. , 2019, , .		Ο
22	Synthesis of light needles with tunable length and nearly constant irradiance. Scientific Reports, 2018, 8, 2657.	1.6	15
23	Considerations on the design of diffractive optical needles. , 2018, , .		0
24	Effect of linear polarizers on the behavior of partially coherent and partially polarized highly focused fields. Optics Letters, 2018, 43, 3445.	1.7	5
25	Goos–Hächen and Imbert–Fedorov shifts: relation with the irradiance moments of a beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 286.	0.8	1
26	Partially coherent sources with radial coherence. Optics Letters, 2018, 43, 2376.	1.7	32
27	Polarisers in the focal domain: Theoretical model and experimental validation. Scientific Reports, 2017, 7, 42122.	1.6	8
28	Effect of linear polarizers on highly focused spirally polarized fields. Optics and Lasers in Engineering, 2017, 98, 176-180.	2.0	3
29	Optical encryption in the axial domain using beams with arbitrary polarization. Optics and Lasers in Engineering, 2017, 89, 145-149.	2.0	11
30	Polarization measurements in the focal area. , 2017, , .		0
31	Flat top surface plasmon polariton beams. Optics Letters, 2017, 42, 4143.	1.7	5
32	Synthesis of circularly coherent sources. Optics Letters, 2017, 42, 4115.	1.7	25
33	Partially coherent sources with circular coherence. Optics Letters, 2017, 42, 1512.	1.7	55
34	Partially Coherent Linearly Polarized Sources with Inhomogeneous Azimuth. , 2017, , .		0
35	On the behavior of linear polarizers on highly focused radially polarized beams. , 2017, , .		0
36	Goos-HÃ ¤ chen shift of Cosine-Gaussian Schell-model beams with rectangular symmetry. , 2017, , .		0

#	Article	IF	CITATIONS
37	Partially polarized pseudo-Schell model sources. , 2017, , .		1
38	Spatial characterization of superposition of coaxial vortex beams. , 2016, , .		1
39	Bright focal spot with tunable polarization and shape: A proposal. , 2016, , .		0
40	Vortex pseudo Schell-model source: A proposal. , 2016, , .		1
41	Basis for paraxial surface-plasmon-polariton packets. Physical Review A, 2016, 94, .	1.0	4
42	Non-uniform polarized beams: Applications to optical encryption. , 2016, , .		0
43	Optical encryption in the longitudinal domain of focused fields. Optics Express, 2016, 24, 6793.	1.7	24
44	Parametric characterization of surface plasmon polaritons at a lossy interface. Optics Express, 2015, 23, 28574.	1.7	10
45	Optical encryption using photon-counting polarimetric imaging. Optics Express, 2015, 23, 655.	1.7	78
46	Polarization evolution of radially polarized partially coherent vortex fields: role of Gouy phase of Laguerre–Gauss beams. Optics Express, 2015, 23, 5043.	1.7	10
47	Synthesis of highly focused fields with circular polarization at any transverse plane. Optics Express, 2014, 22, 6859.	1.7	36
48	Experimental implementation of tightly focused beams with unpolarized transversal component at any plane. Optics Express, 2014, 22, 32419.	1.7	8
49	Design of highly focused fields that remain unpolarized on axis. Optics Letters, 2014, 39, 6025.	1.7	7
50	Behavior of propagating and evanescent components in azimuthally polarized non-paraxial fields. Applied Physics B: Lasers and Optics, 2013, 112, 123-131.	1.1	2
51	Overall characterization of the polarization structure of radially polarized partially coherent vortex beams. , 2013, , .		Ο
52	Realizable highly focused beams with arbitrary polarization. , 2013, , .		0
53	Reconfigurable beams with arbitrary polarization and shape distributions at a given plane. Optics Express, 2013, 21, 5432.	1.7	60
54	Obtaining circularly polarized highly focused fields: a proposal. , 2013, , .		0

#	Article	IF	CITATIONS
55	Weighted average of the Gouy phase shift and their relation with the irradiance moments of a beam. , 2013, , .		0
56	On the physical realizability of highly focused electromagnetic field distributions. Optics Letters, 2013, 38, 2065.	1.7	22
57	On the propagating and evanescent waves associated to azimuthally-polarized nonparaxial fields. Proceedings of SPIE, 2012, , .	0.8	Ο
58	Generation of arbitrary spatially variant polarized fields using computer generated holograms. Proceedings of SPIE, 2012, , .	0.8	1
59	A digital holography technique for generating beams with arbitrary polarization and shape. , 2012, , .		3
60	On the longitudinal component of paraxial fields. European Journal of Physics, 2012, 33, 1235-1247.	0.3	18
61	Propagation and parametric characterization of the polarization structure of paraxial radially and azimuthally polarized beams. Optics and Laser Technology, 2012, 44, 482-485.	2.2	5
62	Polarization description of light fields in terms of meridional and azimuthal vectorial features. Optics and Laser Technology, 2012, 44, 1796-1799.	2.2	1
63	Transverse and longitudinal components of the propagating and evanescent waves associated to radially polarized nonparaxial fields. Applied Physics B: Lasers and Optics, 2012, 106, 151-159.	1.1	8
64	Intrinsic axes of partially coherent light beams and their invariance through rotationally symmetric ABCD optical systems. Applied Physics B: Lasers and Optics, 2011, 105, 399-403.	1.1	0
65	Generalized (two-point) stokes-parameters representation in terms of the radial and azimuthal field components. Optics and Laser Technology, 2011, 43, 1116-1118.	2.2	5
66	Overall spatial characterization of nonparaxial radially polarized beams propagating from the focal plane of a high-focusing optical system. Journal of Optics (United Kingdom), 2011, 13, 085702.	1.0	2
67	Overall shaping of light beams by means of spiral phase elements. , 2010, , .		Ο
68	On the definition of beam width of highly-focused radially-polarized light fields. , 2010, , .		1
69	On the longitudinal polarization of non-paraxial electromagnetic fields. Applied Physics B: Lasers and Optics, 2010, 99, 579-584.	1.1	7
70	Relation between asymmetrical orbital angular momentum andÂirradiance-profile rotation for partially coherent beams. Applied Physics B: Lasers and Optics, 2010, 101, 343-346.	1.1	2
71	Stokes-parameters representation in terms of the radial and azimuthal field components: A proposal. Optics and Laser Technology, 2010, 42, 1099-1102.	2.2	9
72	On the propagation of random electromagnetic fields with position-independent stochastic behavior. Optics Communications, 2010, 283, 4467-4469.	1.0	3

#	Article	IF	CITATIONS
73	Angular momentum decomposition of nonparaxial light beams. Optics Express, 2010, 18, 7965.	1.7	13
74	Beam width of highly-focused radially-polarized fields. Optics Express, 2010, 18, 20817.	1.7	8
75	Overall second-order parametric characterization of light beams propagating through spiral phase elements. Optics Communications, 2009, 282, 473-477.	1.0	11
76	Genuine cross-spectral densities and pseudo-modal expansions. Optics Letters, 2009, 34, 1399.	1.7	115
77	Elementary-field expansions of genuine cross-spectral density matrices. Optics Letters, 2009, 34, 2303.	1.7	26
78	Maximizing Young's fringe visibility under unitary transformations for mean-square coherent light. Optics Express, 2009, 17, 603.	1.7	10
79	Cross-correlation between spiral modesâ€~and its influence on the overall spatial characteristics of partially coherent beams. Optics Express, 2009, 17, 19857.	1.7	7
80	Non-Paraxial Electromagnetic Beams. Springer Series in Optical Sciences, 2009, , 127-179.	0.5	0
81	Characterization of Partially Polarized Light Fields. Springer Series in Optical Sciences, 2009, , .	0.5	38
82	Representations of the Polarization of Beamlike Fields. Springer Series in Optical Sciences, 2009, , 1-35.	0.5	0
83	Polarization and Coherence of Random Electromagnetic Fields. Springer Series in Optical Sciences, 2009, , 93-126.	0.5	Ο
84	Second-Order Overall Characterization of Non-uniformly Polarized Light Beams. Springer Series in Optical Sciences, 2009, , 37-92.	0.5	0
85	Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams. Optics Communications, 2008, 281, 1976-1980.	1.0	36
86	Beam quality changes of radially and azimuthally polarized fields propagating through quartic phase plates. Optics Communications, 2008, 281, 756-759.	1.0	7
87	On the vectorial structure of non-paraxial radially polarized light fields. Optics Communications, 2008, 281, 3046-3050.	1.0	11
88	On the vectorial fields with position-independent stochastic behavior. Optics Letters, 2008, 33, 195.	1.7	8
89	Equivalence between optimum Young's fringe visibility and position-independent stochastic behavior of electromagnetic fields. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1902.	0.8	4
90	Evanescent field of vectorial highly non-paraxial beams. Optics Express, 2008, 16, 2845.	1.7	16

#	Article	IF	CITATIONS
91	Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane. Optics Express, 2008, 16, 9021.	1.7	35
92	Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields. Optics Letters, 2007, 32, 1471.	1.7	39
93	Relation between degrees of coherence for electromagnetic fields. Optics Letters, 2007, 32, 1504.	1.7	31
94	Electromagnetic fields that remain totally polarized under propagation. Optics Communications, 2007, 279, 20-22.	1.0	10
95	Invariant parameters for characterizing nonuniformly partially polarized beams. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 103, 886-889.	0.2	2
96	Structure of the transverse profile of Gaussian-model non-paraxial electromagnetic beams. Journal of Optics, 2006, 8, 524-530.	1.5	7
97	On the control of the spatial orientation of the transverse profile of a light beam. Optics Express, 2006, 14, 1086.	1.7	7
98	On the spatial orientation of the transverse irradiance profile of partially coherent beams. Optics Express, 2006, 14, 3294.	1.7	10
99	Characterization of non-uniformly totally polarized beams. , 2006, 6101, 336.		0
100	On the characterization of the rotation of the irradiance profile of partially coherent beams. , 2006, ,		1
101	Overall parameters for the characterization of non-uniformly totally polarized beams. Optics Communications, 2006, 265, 6-10.	1.0	22
102	On the polarization of non-paraxial transverse fields. Optics Communications, 2006, 267, 20-23.	1.0	3
103	Reply to Comment on â€~Structure of the transverse profile of Gaussian-model non-paraxial electromagnetic beams'. Journal of Optics, 2006, 8, 1025-1026.	1.5	0
104	Beam-quality optimization of partially polarized fields. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1442.	0.8	2
105	Non-paraxial transverse vector fields closest to non-polarized beams. Journal of Optics, 2004, 6, S64-S66.	1.5	1
106	Parametric characterization of the spatial structure of partially coherent and partially polarized beams. Journal of Optics, 2004, 6, S67-S71.	1.5	10
107	Spatial width and power-content ratio of hard-edge diffracted beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 388.	0.8	12
108	Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 577.	0.8	3

#	Article	IF	CITATIONS
109	General classification of partially polarized partially coherent beams. , 2003, 4932, 637.		0
110	Vectorial structure of electromagnetic beams: closet field to a polarized Gaussian beam. , 2003, 4829, 1084.		0
111	Quality improvement of partially coherent and partially polarized beams propagating through anisotropic pure phase plates. , 2003, 4829, 1082.		0
112	Parametric characterization of the spatial structure of non-uniformly polarized laser beams. Progress in Quantum Electronics, 2002, 26, 65-130.	3.5	71
113	Quality improvement of partially polarized beams. Applied Optics, 2001, 40, 6098.	2.1	7
114	Vectorial structure of nonparaxial electromagnetic beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1678.	0.8	88
115	Time-resolved spatial profile of TEA CO_2 laser pulses: influence of the gas mixture and intracavity apertures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1734.	0.8	1
116	Beam propagation through uniaxial anisotropic media: global changes in the spatial profile. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 2009.	0.8	16
117	Time-resolved spatial structure of TEA CO2 laser pulses. Optical and Quantum Electronics, 2000, 32, 17-30.	1.5	5
118	On the measurement of the generalized degree of polarization. Optical and Quantum Electronics, 2000, 32, 1333-1342.	1.5	8
119	Degree of polarization of non-uniformly partially polarized beams: a proposal. Optical and Quantum Electronics, 1999, 31, 223-226.	1.5	29
120	Beam quality of partially polarized beams propagating through lenslike birefringent elements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 2666.	0.8	10
121	Parametric characterization of non-uniformly polarized beams. Optics Communications, 1998, 149, 230-234.	1.0	49
122	Time-varying beam quality factor and mode evolution in TEA CO/sub 2/ laser pulses. IEEE Journal of Quantum Electronics, 1998, 34, 1835-1838.	1.0	15
123	Truncation error of the Laguerre-Gauss expansion of axially symmetric beams in terms of second-order intensity moments. Journal of Optics, 1998, 7, 1231-1236.	0.5	2
124	Spatial characterization of general partially polarized beams. Optics Letters, 1997, 22, 206.	1.7	37
125	On the beam propagation through active media. Optical and Quantum Electronics, 1997, 29, 899-906.	1.5	0
126	Spatial characterization of the transversal structure of rotationally symmetric pulsed beams. Optical and Quantum Electronics, 1997, 29, 923-931.	1.5	1

#	Article	IF	CITATIONS
127	On the paramtric characterization of the transversal spatial structure of laser pulses. Optics Communications, 1997, 139, 299-305.	1.0	18
128	On the fourth-order spatial characterization of laser beams: new invariant parameter through ABCD systems. Optics Communications, 1997, 140, 57-60.	1.0	12
129	Propagation of laser beam parameters through pure phase transmittances. Optics Communications, 1996, 129, 161-166.	1.0	1
130	Parametric characterization of Gaussian beams propagating through active media. Optical and Quantum Electronics, 1996, 28, 1021.	1.5	8
131	Beam quality changes produced by quartic phase transmittances. Optical and Quantum Electronics, 1995, 27, 173-183.	1.5	11
132	On the propagation of the kurtosis parameter of general beams. Optics Communications, 1995, 115, 225-232.	1.0	94
133	Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures. Optics Letters, 1995, 20, 124.	1.7	75
134	Parametric characterization of the phase at the far field. Optics Letters, 1995, 20, 651.	1.7	8
135	Time-resolved spatial parametric characterization of pulsed light beams. Optics Letters, 1995, 20, 660.	1.7	28
136	Beam-quality changes generated by thermally-induced spherical aberration in laser cavities. IEEE Journal of Quantum Electronics, 1995, 31, 2173-2176.	1.0	25
137	Sharpness changes of gaussian beams induced by spherically aberrated lenses. Optics Communications, 1994, 107, 179-183.	1.0	49
138	Quality changes of gaussian beams propagating through axicons. Optics Communications, 1994, 105, 289-291.	1.0	3
139	Quality improvement of symmetric-intensity beams propagating through pure phase plates. Optics Communications, 1993, 95, 18-20.	1.0	13
140	On the different definitions of laser beam moments. Optical and Quantum Electronics, 1993, 25, 423-428.	1.5	32
141	Beam quality changes in Hermite–Gauss mode fields propagating through Gaussian apertures. Applied Optics, 1993, 32, 1084.	2.1	5
142	Second-order spatial characterization of hard-edge diffracted beams. Optics Letters, 1993, 18, 1669.	1.7	117
143	<title>Parametric characterization of depleted-center-intensity beams</title> . , 1993, , .		1
144	<title>Quality changes of beams propagating through super-Gaussian apertures</title> . , 1993, , .		5

<title>Quality changes of beams propagating through super-Gaussian apertures</title>., 1993,,. 144

#	Article	IF	CITATIONS
145	Beam Quality Dependence on the Coherence Length of Gaussian Schell-model fields Propagating Through ABCD Optical Systems. Journal of Modern Optics, 1992, 39, 625-635.	0.6	28
146	Linear Gaussian intensity distributions synthesized by reflection on elliptic cylinders: a proposal. Applied Optics, 1992, 31, 2970.	2.1	1
147	Beam quality changes of Gaussian Schell-model fields propagating through Gaussian apertures. Applied Optics, 1992, 31, 4330.	2.1	17
148	Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distortions. Optics Letters, 1992, 17, 1650.	1.7	37
149	Diffractional and coherence effects in linear moiré displacement sensors. Sensors and Actuators A: Physical, 1992, 32, 588-590.	2.0	0
150	Expansion of the cross-spectral density function of general fields and its application to beam characterization. Optics Communications, 1992, 94, 197-202.	1.0	28
151	Rotation of partially coherent beams propagating through free space. Optical and Quantum Electronics, 1992, 24, S873-S880.	1.5	27
152	Beam quality in monomode diode lasers. Optical and Quantum Electronics, 1992, 24, S881-S887.	1.5	9
153	Third- and fourth-order parametric characterization of partially coherent beams propagating throughABCD optical systems. Optical and Quantum Electronics, 1992, 24, S1021-S1026.	1.5	60
154	Parametric characterization of general partially coherent beams propagating through ABCD optical systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1991, 8, 1094.	0.8	170
155	<title>Propagation invariance of laser beam parameters through optical systems</title> . , 1991, , .		0
156	<title>Spatial characterization of high-power multimode laser beams</title> . , 1991, 1397, 631.		1
157	<title>Laser beam propagation through inhomogeneous amplifying media</title> . , 1991, 1397, 619.		0
158	<title>Beam quality in laser amplifiers</title> ., 1991, , .		0
159	Beam characterization through active media. Optics Communications, 1991, 85, 162-166.	1.0	32
160	Optimization of the geometry of a single-pass amplifier. Applied Optics, 1990, 29, 3878.	2.1	0
161	Characterization of polychromatic planar sources that generate the same power spectrum. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1990, 7, 940.	0.8	4
162	Random Phase Inhomogeneities In Fabry-Perot Resonators. Proceedings of SPIE, 1989, 1132, 10.	0.8	0

#	Article	IF	CITATIONS
163	Bistable fiber-optics interferometric sensor: a proposal. Applied Optics, 1988, 27, 811.	2.1	5
164	Uniqueness Features In Sampled Complex-Valued Object Reconstruction From Discrete Intensity Data. Optical Engineering, 1988, 27, .	0.5	0
165	Optical bistability: towards all-optical devices. Physica Scripta, 1987, 36, 312-318.	1.2	7
166	Radiometric definitions from second-order coherence characteristics of planar sources. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1986, 3, 1055.	0.8	10
167	Coherently Illuminated Object Amplitudes that Generate the Same Intensity at the Output of Band-limited Optical Systems. Optica Acta, 1986, 33, 347-354.	0.7	2
168	Purely absorptive bistability in double-ring cavities. Physical Review A, 1986, 33, 1836-1841.	1.0	4
169	Expansions of general stationary stochastic optical fields: General formalism. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1985, 85, 182-192.	0.2	1
170	Second-order characterization of sources from intensity data at the output of band-limited optical systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1985, 2, 2001.	0.8	0
171	Transmitted amplitude by a Fabry-Perot interferometer with random surface defects. Applied Optics, 1985, 24, 315.	2.1	7
172	Parametric dependence of the transmitted intensity in optical bistable Fabry-Perot devices. Applied Optics, 1985, 24, 2092.	2.1	6
173	Relation between Object Transmittances That Generate the Same Intensity Data. Optica Acta, 1984, 31, 775-783.	0.7	1
174	Obtaining Any Given Intensity at Discrete Close Points at the Output of Band-limited Optical Systems. Optica Acta, 1984, 31, 467-470.	0.7	1
175	Radiometric definitions for partially coherent sources. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1984, 1, 556.	0.8	32
176	Fourth-order characterization of planar sources from intensity-correlation data at the output plane of a system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1984, 1, 1154.	0.8	0
177	Uniqueness in the Inverse Problem for Homogeneous Sources. Optica Acta, 1984, 31, 917-922.	0.7	1
178	Expansions of the Coherence Matrix of a Partially Polarized, Quasi-monochromatic Source. Optica Acta, 1982, 29, 1255-1269.	0.7	1
179	Relation between planar sources that generate the same intensity distribution at the output plane. Journal of the Optical Society of America, 1982, 72, 131.	1.2	10
180	Relation among planar sources that generate the same radiant intensity at the output of a general optical system. Journal of the Optical Society of America, 1982, 72, 765.	1.2	14

#	Article	IF	CITATIONS
181	On the characterization of cross-spectrally pure fields. Optics Communications, 1982, 41, 423-426.	1.0	1
182	Characterization and reconstruction of planar sources that generate identical intensity distributions in the Fraunhofer zone. Optics Letters, 1981, 6, 607.	1.7	8
183	Object Reconstruction for Partially Polarized Quasi-monochromatic Illumination. Optica Acta, 1981, 28, 1151-1162.	0.7	0
184	Relation between the expansions of the correlation function at the object and image planes for partially coherent illumination. Optics Communications, 1981, 37, 234-238.	1.0	9
185	Object reconstruction for the "Fourier Transform―optical system: Uniqueness and characterization of data. Optics Communications, 1981, 36, 261-264.	1.0	6
186	Relation between the Object and Its Image for Partially Coherent and Quasi-monochromatic Illumination. Optica Acta, 1981, 28, 65-76.	0.7	8
187	Object reconstruction in a spatially partially coherent imaging system. Optics Letters, 1980, 5, 502.	1.7	4