Naoki Mimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1345773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous production of glyceric acid and lactic acid by catalytic oxidation of glycerol over an Au–Pt/Al2O3 bimetallic catalyst using a liquid-phase flow reactor. Catalysis Today, 2021, 375, 191-196.	4.4	14
2	Magnesium Oxide atalyzed Conversion of Chitin to Lactic Acid. ChemistryOpen, 2021, 10, 308-315.	1.9	3
3	Effect of Catalyst Support on Aromatic Monomer Production from Lignocellulosic Biomass Over Pt-Based Catalysts. Waste and Biomass Valorization, 2021, 12, 6081-6089.	3.4	2
4	Effect of Metal Catalysts on Bond Cleavage Reactions of Lignin Model Compounds in Supercritical Water. Waste and Biomass Valorization, 2020, 11, 669-674.	3.4	9
5	Kinetic analyses of intramolecular dehydration of hexitols in high-temperature water. Carbohydrate Research, 2020, 487, 107880.	2.3	3
6	Efficient Conversion of Glycerol into High Valueâ€Added Chemicals by Partial Oxidation. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1365-1370.	1.9	3
7	Direct conversion of lignocellulosic biomass into aromatic monomers over supported metal catalysts in supercritical water. Molecular Catalysis, 2019, 477, 110557.	2.0	8
8	Cascade Utilization of Biomass: Strategy for Conversion of Cellulose, Hemicellulose, and Lignin into Useful Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 10445-10451.	6.7	43
9	Aromatic Monomer Production from Lignin Depolymerization Predicted from Bond Cleavage Data for Lignin Model Compounds. Journal of the Japan Petroleum Institute, 2019, 62, 228-233.	0.6	3
10	Continuous Catalytic Oxidation of Glycerol to Carboxylic Acids Using Nanosized Gold/Alumina Catalysts and a Liquid-Phase Flow Reactor. ACS Omega, 2018, 3, 13862-13868.	3.5	15
11	5â€Hydroxymethylfurfural Production from Glucose, Fructose, Cellulose, or Cellulose–based Waste Material by Using a Calcium Phosphate Catalyst and Water as a Green Solvent. ChemistrySelect, 2017, 2, 1305-1310.	1.5	20
12	Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water. Scientific Reports, 2017, 7, 46172.	3.3	40
13	Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water. Physical Chemistry Chemical Physics, 2017, 19, 2714-2722.	2.8	27
14	Conversion of Cellulose to Lactic Acid by Using ZrO2–Al2O3 Catalysts. Catalysts, 2017, 7, 221.	3.5	25
15	One-pot Conversion from Lignocellulosic Biomass to Isosorbide. Journal of the Japan Petroleum Institute, 2016, 59, 155-159.	0.6	9
16	Catalytic production of sugar alcohols from lignocellulosic biomass. Catalysis Today, 2016, 265, 199-202.	4.4	57
17	One-pot conversion of cellulose to isosorbide using supported metal catalysts and ion-exchange resin. Catalysis Communications, 2015, 67, 59-63.	3.3	33
18	Microscope Analysis of Au–Pd/TiO2 Glycerol Oxidation Catalysts Prepared by Deposition–Precipitation Method. Catalysis Letters, 2014, 144, 2167-2175.	2.6	21

NAOKI MIMURA

#	Article	IF	CITATIONS
19	Intramolecular dehydration of mannitol in high-temperature liquid water without acid catalysts. RSC Advances, 2014, 4, 45575-45578.	3.6	23
20	Liquid phase oxidation of glycerol in batch and flow-type reactors with oxygen over Au–Pd nanoparticles stabilized in anion-exchange resin. RSC Advances, 2014, 4, 33416-33423.	3.6	25
21	Supercritical water gasification of ethanol production waste over graphite supported ruthenium catalyst. Journal of Molecular Catalysis A, 2014, 388-389, 148-153.	4.8	12
22	Direct production of sugar alcohols from wood chips using supported platinum catalysts in water. Catalysis Communications, 2014, 54, 22-26.	3.3	40
23	Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 2011, 13, 1960.	9.0	468
24	Production of Propylene from Ethanol Over ZSM-5 Zeolites. Catalysis Letters, 2009, 131, 364-369.	2.6	113
25	Effect of addition of alkali metal salts in hydrothermal synthesis and post heat-treatment on porosity of SBA-15. Journal of Porous Materials, 2009, 16, 135-140.	2.6	4
26	Surface-Initiated Gas-Phase Epoxidation of Propylene with Molecular Oxygen by Silica-Supported Molybdenum Oxide: Effects of Addition of C3H8 or NO and Reactor Design. Catalysis Letters, 2008, 121, 33-38.	2.6	13
27	Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Applied Surface Science, 2008, 254, 7604-7607.	6.1	39
28	Preparation and catalysis of nano-sized eetal (Pd,Pt) catalysts deposited on Ti-containing zeolite materials by a photo-assisted deposition (PAD) method. Studies in Surface Science and Catalysis, 2007, , 1319-1324.	1.5	4
29	Efficient Catalytic Application of Nano-Sized Pt and Pd Metals Synthesized Using a Photo-Assisted Deposition on Single-Site Photocatalyst. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 840-844.	0.4	Ο
30	Application of Ti-containing mesoporous silica (single-site photocatalyst) and photo-assisted deposition (PAD) method for preparation of nano-sized Pt metal catalyst. Studies in Surface Science and Catalysis, 2007, 165, 777-780.	1.5	1
31	Catalysis of nanosized Pd metal catalyst deposited on Ti-containing zeolite by a photo-assisted deposition (PAD) method. Pure and Applied Chemistry, 2007, 79, 2095-2100.	1.9	16
32	Production of Propylene Oxide by Homogeneous Chain Reaction Initiated by Supported Ti-oxide and Mo-oxide Radical Generators. Studies in Surface Science and Catalysis, 2007, , 389-392.	1.5	2
33	Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide. Applied Catalysis A: General, 2007, 316, 142-151.	4.3	56
34	In Situ UVâ^'vis and EPR Study on the Formation of Hydroperoxide Species during Direct Gas Phase Propylene Epoxidation over Au/Ti-SiO2Catalyst. Journal of Physical Chemistry B, 2006, 110, 22995-22999.	2.6	140
35	Oxidative Dehydrogenation of Ethane over Cr/ZSM-5 Catalysts Using CO2as an Oxidant. Journal of Physical Chemistry B, 2006, 110, 21764-21770.	2.6	134
36	Production of Propene Oxide by a Homogeneous Chain Reaction Initiated by Surface Radical Generation. E-Journal of Surface Science and Nanotechnology, 2006, 4, 74-77.	0.4	3

NAOKI MIMURA

#	Article	IF	CITATIONS
37	Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen. Applied Catalysis A: General, 2006, 309, 91-105.	4.3	38
38	Gas-phase radical generation by Ti oxide clusters supported on silica: application to the direct epoxidation of propylene to propylene oxide using molecular oxygen as an oxidant. Catalysis Letters, 2006, 110, 47-51.	2.6	23
39	Direct epoxidation of propylene by molecular oxygen over Pd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system. Applied Catalysis B: Environmental, 2005, 58, 51-59.	20.2	21
40	Effect of Ti-modified mesoporous materials on the direct epoxidation of propylene by molecular oxygen. Catalysis Today, 2004, 91-92, 39-42.	4.4	10
41	Dehydrogenation and Isomerization of Butane over Cr Catalysts Supported on H-SSZ-35 Type Zeolites ChemInform, 2004, 35, no.	0.0	Ο
42	Hydrogen Production from Steam Reforming of Hydrocarbons over Alkaline-Earth Metal-Modified Fe- or Ni-Based Catalysts. Energy & Fuels, 2004, 18, 122-126.	5.1	56
43	Dehydrogenation and Isomerization of Butane over Cr Catalysts Supported on H-SSZ-35 Type Zeolites. Bulletin of the Chemical Society of Japan, 2004, 77, 381-386.	3.2	5
44	Selective Oxidation of Propylene to Propylene Oxide by Molecular Oxygen over Ti-Al-HMS Catalysts. Catalysis Letters, 2003, 89, 49-53.	2.6	18
45	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 80, 39-44.	0.6	10
46	Epoxidation of propylene with molecular oxygen/methanol over a catalyst system containing palladium and Ti-modified MCM-22 without hydrogen. Journal of Catalysis, 2003, 220, 513-518.	6.2	23
47	Dehydrogenation of ethylbenzene in the presence of CO2 over an alumina-supported iron oxide catalyst. Applied Catalysis A: General, 2003, 239, 71-77.	4.3	49
48	Selective oxidation of propylene to acetone by molecular oxygen over M/2H5â^'[PMo10V2O40]/HMS (M=Cu2+, Co2+, Ni2+). Catalysis Communications, 2003, 4, 281-285.	3.3	27
49	Direct vapor phase oxidation of propylene by molecular oxygen over MCM-41 or MCM-22 based catalysts. Catalysis Communications, 2003, 4, 385-391.	3.3	14
50	Development of High Throughput Screening Method of Ni-supported Catalysts for the Decomposition of Methane to Hydrogen and Carbon. Journal of the Japan Petroleum Institute, 2003, 46, 133-137.	0.6	1
51	Methane Decomposition over Iron-based Catalysts in the Presence of O ₂ and CO ₂ . Journal of the Japan Petroleum Institute, 2003, 46, 196-202.	0.6	16
52	High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 as an oxidant. Catalysis Communications, 2002, 3, 257-262.	3.3	128
53	Title is missing!. Catalysis Letters, 2002, 78, 125-128.	2.6	42
54	Hydrogen production by conversion of methane over nickel-supported USY-type zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2002, 77, 109-115.	0.6	31

#	Article	IF	CITATIONS
55	Dehydrogenation and Isomerization of n-Butane or Isobutane Over Cr Catalysts Supported on Zeolites. Catalysis Letters, 2002, 84, 273-279.	2.6	8

- Effects of the Promoter into the Fe2O3/Al2O3 Catalyst on the Styrene Formation from the Dehydrogenation of Ethylbenzene in the Presence of CO2.. Sekiyu Gakkaishi (Journal of the Japan) Tj ETQq0 0 0 rgBT.‡Overlo¢k 10 Tf 50 56

57	Dehydrogenation of ethylbenzene to styrene in the presence of CO2. Applied Organometallic Chemistry, 2000, 14, 773-777.	3.5	18
58	Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catalysis Today, 2000, 55, 173-178.	4.4	119
59	Preparation of zeolite catalysts for dehydrogenation and isomerization of n-butane. Studies in Surface Science and Catalysis, 2000, , 637-645.	1.5	0
60	Title is missing!. Catalysis Letters, 1999, 58, 59-62.	2.6	71
61	Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catalysis Today, 1998, 45, 61-64.	4.4	147
62	Synthesis of methoxysilanes by the reaction of metallic silicon with methanol using copper(II) acetate as the catalyst. Catalysis Letters, 1995, 33, 421-427.	2.6	10