Sebastian Ehlert

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1345708/sebastian-ehlert-publications-by-year.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76,395 69 276 284 h-index g-index citations papers 92,830 312 9.1 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
284	The long-awaited synthesis and self-assembly of a small rigid -symmetric trilactam <i>Chemical Communications</i> , 2022 ,	5.8	1
283	The State of Fortran. Computing in Science and Engineering, 2022, 1-1	1.5	0
282	Benchmark Study on the Calculation of Sn NMR Chemical Shifts <i>Inorganic Chemistry</i> , 2022 , 61, 3903-39	1 <i>3</i> .1	1
281	Dispersion corrected rSCAN based global hybrid functionals: rSCANh, rSCAN0, and rSCAN50 <i>Journal of Chemical Physics</i> , 2022 , 156, 134105	3.9	4
280	Hydrogen atom transfer rates from Tp-containing metal-hydrides to trityl radicals. <i>Canadian Journal of Chemistry</i> , 2021 , 99, 216-220	0.9	1
279	Ligand Protonation at Carbon, not Nitrogen, during H Production with Amine-Rich Iron Electrocatalysts. <i>Inorganic Chemistry</i> , 2021 , 60, 17407-17413	5.1	О
278	Nanoscale Etonjugated ladders. <i>Nature Communications</i> , 2021 , 12, 6614	17.4	2
277	Computer-aided simulation of infrared spectra of ethanol conformations in gas, liquid and in CCl solution. <i>Journal of Computational Chemistry</i> , 2021 ,	3.5	4
276	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and interoperability among computational chemistry programs. <i>Journal of Chemical Physics</i> , 2021 , 155, 204801	3.9	3
275	HFIP-Assisted Single C-F Bond Activation of Trifluoromethyl Ketones using Visible-Light Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8
274	Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO in the Presence of Silylhalides. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25771-25775	16.4	2
273	Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules. <i>Journal of Organic Chemistry</i> , 2021 , 86, 15522-15531	4.2	3
272	Boron-Catalyzed Hydroarylation of 1,3-Dienes with Arylamines. <i>Organic Letters</i> , 2021 , 23, 8952-8957	6.2	3
271	Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. <i>Angewandte Chemie</i> , 2021 , 133, 10775-10784	3.6	1
270	Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10680-10689	16.4	9
269	Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4039-4054	2.8	32
268	Perspective on Simplified Quantum Chemistry Methods for Excited States and Response Properties. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 3841-3851	2.8	5

(2021-2021)

267	Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. <i>Angewandte Chemie</i> , 2021 , 133, 13252-13257	3.6	2
266	Titanocene-Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14339-14344	16.4	4
265	Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1508-1518	3 .5	4
264	Titanocene-Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. <i>Angewandte Chemie</i> , 2021 , 133, 14460-14465	3.6	1
263	Comment on "The Nature of Chalcogen-Bonding-Type Tellurium-Nitrogen Interactions": Fixing the Description of Finite-Temperature Effects Restores the Agreement Between Experiment and Theory. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13144-13149	16.4	4
262	Efficient Quantum-Chemical Calculations of Acid Dissociation Constants from Free-Energy Relationships. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5681-5692	2.8	5
261	LiAlH4-catalyzed Imine Hydrogenation with Dihydrogen: New DFT Mechanistic Insights. <i>ChemCatChem</i> , 2021 , 13, 3401-3404	5.2	2
260	Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 4250-4261	6.4	31
259	From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1735-1751	3.5	7
258	Facile Synthesis of Cyanide and Isocyanides from CO. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16965-16969	16.4	4
257	Frustrated Lewis-Pair Neighbors at the Xanthene Framework: Epimerization at Phosphorus and Cooperative Formation of Macrocyclic Adduct Structures. <i>Chemistry - A European Journal</i> , 2021 , 27, 1210	74:8 121	14
256	Revisiting conformations of methyl lactate in water and methanol. <i>Journal of Chemical Physics</i> , 2021 , 155, 024507	3.9	6
255	[Cl@SiH]: Parent Siladodecahedrane with Endohedral Chloride Ion. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10865-10871	16.4	4
254	A Primary Acyl Phosphine Stabilized by a Phosphonium Ylide. <i>Angewandte Chemie</i> , 2021 , 133, 18695-186	5 <u>9.</u> Ø	1
253	A Primary Acyl Phosphine Stabilized by a Phosphonium Ylide. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18547-18551	16.4	2
252	Extended tight-binding quantum chemistry methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021 , 11, e1493	7.9	149
251	Mechanistic Insights for Dimethyl Sulfoxide Catalyzed Aromatic Chlorination Reactions. <i>ChemCatChem</i> , 2021 , 13, 207-211	5.2	2
250	Quantification of Noncovalent Interactions in Azide-Pnictogen, -Chalcogen, and -Halogen Contacts. Chemistry - A European Journal, 2021 , 27, 4627-4639	4.8	11

249	Sensory Perception of Non-Deuterated and Deuterated Organic Compounds. <i>Chemistry - A European Journal</i> , 2021 , 27, 1046-1056	4.8	1
248	Theoretical study on conformational energies of transition metal complexes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 287-299	3.6	24
247	Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom-Economy by Titanocene(III) Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5482-	5488 ⁴	8
246	Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom-Economy by Titanocene(III) Catalysis. <i>Angewandte Chemie</i> , 2021 , 133, 5542-5548	3.6	5
245	Comprehensive Benchmark Study on the Calculation of Si NMR Chemical Shifts. <i>Inorganic Chemistry</i> , 2021 , 60, 272-285	5.1	9
244	Calculation of absolute molecular entropies and heat capacities made simple. <i>Chemical Science</i> , 2021 , 12, 6551-6568	9.4	17
243	Benchmarking London dispersion corrected density functional theory for noncovalent ion-linteractions. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 11635-11648	3.6	7
242	Lithium Dicyclohexylamide in Transition-Metal-Free Fischer-Tropsch Chemistry. <i>Journal of the American Chemical Society</i> , 2021 , 143, 634-638	16.4	22
241	The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions. <i>Chemical Science</i> , 2021 , 12, 12419-12428	9.4	O
240	Mechanistic Insights for Nitromethane Activation into Reactive Nitrogenating Reagents. <i>ChemCatChem</i> , 2021 , 13, 2132-2137	5.2	2
239	Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. <i>Chemistry - A European Journal</i> , 2021 , 27, 5292-5297	4.8	13
238	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 1701-1714	6.4	20
237	rSCAN-3c: A "Swiss army knife" composite electronic-structure method. <i>Journal of Chemical Physics</i> , 2021 , 154, 064103	3.9	65
236	rSCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. <i>Journal of Chemical Physics</i> , 2021 , 154, 061101	3.9	22
235	Mechanistic Insights for Acid-catalyzed Rearrangement of Quinoxalin-2-one with Diamine and Enamine. <i>ChemCatChem</i> , 2021 , 13, 1503-1508	5.2	2
234	High-Throughput Non-targeted Chemical Structure Identification Using Gas-Phase Infrared Spectra. <i>Analytical Chemistry</i> , 2021 , 93, 10688-10696	7.8	
233	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. <i>Journal of Chemical Physics</i> , 2021 , 155, 084801	3.9	115
232	PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet-Triplet Gaps with Chemical Accuracy from Open-Shell Kohn-Sham Reaction-Field Calculations. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8470-8480	6.4	7

(2020-2021)

231	Calculation of improved enthalpy and entropy of vaporization by a modified partition function in quantum cluster equilibrium theory. <i>Journal of Chemical Physics</i> , 2021 , 155, 104101	3.9	1
230	Reactions of a Dilithiomethane with CO and N O: An Avenue to an Anionic Ketene and a Hexafunctionalized Benzene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25281-25285	16.4	4
229	Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 6134-6151	6.4	19
228	Steric Influence on Reactions of Benzyl Potassium Species with CO. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 3640-3644	4.5	1
227	All-Atom Quantum Mechanical Calculation of the Second-Harmonic Generation of Fluorescent Proteins. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9684-9690	6.4	2
226	Hydrogenation of Secondary Amides using Phosphane Oxide and Frustrated Lewis Pair Catalysis. <i>Chemistry - A European Journal</i> , 2021 , 27, 14179-14183	4.8	5
225	Quantum Chemical Calculation and Evaluation of Partition Coefficients for Classical and Emerging Environmentally Relevant Organic Compounds <i>Environmental Science & Environmental Science & Environ</i>	10.3	2
224	Designing a Solution-Stable Distannene: The Decisive Role of London Dispersion Effects in the Structure and Properties of {Sn(CH-2,4,6-Cy)} (Cy = Cyclohexyl) <i>Journal of the American Chemical Society</i> , 2021 , 143, 21478-21483	16.4	2
223	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. <i>Angewandte Chemie</i> , 2020 , 132, 15795-15803	3.6	20
222	The first microsolvation step for furans: New experiments and benchmarking strategies. <i>Journal of Chemical Physics</i> , 2020 , 152, 164303	3.9	14
221	Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16181-16187	16.4	3
220	BNB-Doped Phenalenyls: Modular Synthesis, Optoelectronic Properties, and One-Electron Reduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11072-11083	16.4	28
219	Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. <i>Angewandte Chemie</i> , 2020 , 132, 16315-16321	3.6	1
218	Dynamic Structural Effects on the Second-Harmonic Generation of Tryptophane-Rich Peptides and Gramicidin A. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 2568-2578	3.4	8
217	Extension and evaluation of the D4 London-dispersion model for periodic systems. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 8499-8512	3.6	42
216	DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. <i>Journal of Chemical Physics</i> , 2020 , 152, 124101	3.9	210
215	Fast and Accurate Quantum Chemical Modeling of Infrared Spectra of Condensed-Phase Systems. Journal of Physical Chemistry B, 2020 , 124, 6664-6670	3.4	10
214	REktitelbild: Heterobifunctional Rotaxanes for Asymmetric Catalysis (Angew. Chem. 13/2020). <i>Angewandte Chemie</i> , 2020 , 132, 5446-5446	3.6	

213	Semiautomated Transition State Localization for Organometallic Complexes with Semiempirical Quantum Chemical Methods. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 2002-2012	6.4	32
212	Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 3636-3646	3.4	17
211	Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8763-8775	16.4	39
210	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15665-15673	16.4	93
209	Automated exploration of the low-energy chemical space with fast quantum chemical methods. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7169-7192	3.6	327
208	Influencing the Self-Sorting Behavior of [2.2]Paracyclophane-Based Ligands by Introducing Isostructural Binding Motifs. <i>Chemistry - A European Journal</i> , 2020 , 26, 3335-3347	4.8	9
207	Heterobifunctional Rotaxanes for Asymmetric Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 5140-5145	3.6	9
206	Heterobifunctional Rotaxanes for Asymmetric Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5102-5107	16.4	28
205	Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7044-7060	6.4	12
204	Mechanistic Insights for Aniline-Catalyzed Halogenation Reactions. <i>ChemCatChem</i> , 2020 , 12, 5369-5373	5.2	1
203	Efficient Calculation of Small Molecule Binding in Metal (Drganic Frameworks and Porous Organic Cages. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 27529-27541	3.8	13
202	A Unified Strategy for the Chemically Intuitive Interpretation of Molecular Optical Response Properties. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7709-7720	6.4	5
201	Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 7166-7176	2.8	15
200	Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules. Journal of Physical Chemistry Letters, 2020, 11, 6606-6611	6.4	27
199	Modeling of spin-spin distance distributions for nitroxide labeled biomacromolecules. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24282-24290	3.6	16
198	Mechanistic Insights for Iodane Mediated Aromatic Halogenation Reactions. <i>ChemCatChem</i> , 2020 , 12, 6186-6190	5.2	1
197	Simplified time-dependent density functional theory (sTD-DFT) for molecular optical rotation. <i>Journal of Chemical Physics</i> , 2020 , 153, 084116	3.9	10
196	Frustrated Lewis Pair Catalyzed Reduction of Carbon Dioxide Using Hydroboranes: New DFT Mechanistic Insights. <i>ChemCatChem</i> , 2020 , 12, 3656-3660	5.2	6

195	Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods. <i>ACS Omega</i> , 2019 , 4, 15120-15133	3.9	17
194	Folding of unstructured peptoids and formation of hetero-bimetallic peptoid complexes upon side-chain-to-metal coordination. <i>Chemical Science</i> , 2019 , 10, 620-632	9.4	18
193	Synthesis of 🛮Oxo-Bridged Iron(III) Tetraphenylporphyrin-Spacer-Nitroxide Dimers and their Structural and Dynamics Characterization by using EPR and MD Simulations. <i>Chemistry - A European Journal</i> , 2019 , 25, 2586-2596	4.8	9
192	TEMPO-Mediated Catalysis of the Sterically Hindered Hydrogen Atom Transfer Reaction between (CPh)Cr(CO)H and a Trityl Radical. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1882-1886	16.4	16
191	A Simplified Spin-Flip Time-Dependent Density Functional Theory Approach for the Electronic Excitation Spectra of Very Large Diradicals. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5815-5825	2.8	9
190	Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11078-11087	16.4	38
189	Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. <i>Angewandte Chemie</i> , 2019 , 131, 11195-11204	3.6	13
188	Structural and Conformational Studies on Carboxamides of 5,6-Diaminouracils-Precursors of Biologically Active Xanthine Derivatives. <i>Molecules</i> , 2019 , 24,	4.8	1
187	Borane-Catalyzed Hydrogenation of Tertiary Amides Activated by Oxalyl Chloride: DFT Mechanistic Insights. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 4609-4612	3.2	5
186	Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 18048-18058	3.6	15
185	Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. <i>Chemistry - A European Journal</i> , 2019 , 25, 8820-8828	4.8	8
184	A generally applicable atomic-charge dependent London dispersion correction. <i>Journal of Chemical Physics</i> , 2019 , 150, 154122	3.9	300
183	Cooperative Organocatalysis: A Systematic Investigation of Covalently Linked Organophosphoric Acids for the Stereoselective Transfer Hydrogenation of Quinolines. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 5190-5195	3.2	6
182	Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. <i>Journal of Chemical Physics</i> , 2019 , 150, 0941	1729	15
181	Fast Quantum Chemical Simulations of Infrared Spectra of Organic Compounds with the B97-3c Composite Method. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 3802-3808	2.8	13
180	Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 2847-2862	6.4	240
179	The Chiral Trimer and a Metastable Chiral Dimer of Achiral Hexafluoroisopropanol: A Multi-Messenger Study. <i>Angewandte Chemie</i> , 2019 , 131, 5134-5138	3.6	15
178	GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 1652-1671	6.4	717

177	Extension of the element parameter set for ultra-fast excitation spectra calculation (sTDA-xTB). <i>Molecular Physics</i> , 2019 , 117, 1104-1116	1.7	3
176	Isolation and Computational Studies of a Series of Terphenyl Substituted Diplumbynes with Ligand Dependent Lead-Lead Multiple-Bonding Character. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14370-14383	16.4	12
175	Pulsed EPR Dipolar Spectroscopy on Spin Pairs with one Highly Anisotropic Spin Center: The Low-Spin Fe Case. <i>Chemistry - A European Journal</i> , 2019 , 25, 14388-14398	4.8	14
174	Are Fully Conjugated Expanded Indenofluorenes Analogues and Diindeno[]thiophene Derivatives Diradicals? A Simplified (Spin-Flip) Time-Dependent Density Functional Theory [(SF-)sTD-DFT] Study. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9828-9839	2.8	5
173	Boron Lewis Acid-Catalyzed Regioselective Hydrothiolation of Conjugated Dienes with Thiols. <i>ACS Catalysis</i> , 2019 , 9, 11627-11633	13.1	11
172	Catalytic Difunctionalization of Unactivated Alkenes with Unreactive Hexamethyldisilane through Regeneration of Silylium Ions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17307-17311	16.4	18
171	Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle. <i>Journal of the Serbian Chemical Society</i> , 2019 , 84, 837-844	0.9	8
170	Reduction of Phosphine Oxide by Using Chlorination Reagents and Dihydrogen: DFT Mechanistic Insights. <i>Chemistry - A European Journal</i> , 2019 , 25, 4670-4672	4.8	11
169	The Chiral Trimer and a Metastable Chiral Dimer of Achiral Hexafluoroisopropanol: A Multi-Messenger Study. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5080-5084	16.4	30
168	Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. <i>Accounts of Chemical Research</i> , 2019 , 52, 258-266	24.3	69
167	Aggregation Behavior of a Six-Membered Cyclic Frustrated Phosphane/Borane Lewis Pair: Formation of a Supramolecular Cyclooctameric Macrocyclic Ring System. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 882-886	16.4	20
166	Frustrated Lewis Pair Catalyzed Hydrogenation of Amides: Halides as Active Lewis Base in the Metal-Free Hydrogen Activation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 159-162	16.4	44
165	Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. <i>Journal of Chemical Physics</i> , 2018 , 148, 193835	3.9	23
164	Donor-acceptor interactions between cyclic trinuclear pyridinate gold(i)-complexes and electron-poor guests: nature and energetics of guest-binding and templating on graphite. <i>Chemical Science</i> , 2018 , 9, 3477-3483	9.4	15
163	Solid state frustrated Lewis pair chemistry. <i>Chemical Science</i> , 2018 , 9, 4859-4865	9.4	24
162	B97-3c: A revised low-cost variant of the B97-D density functional method. <i>Journal of Chemical Physics</i> , 2018 , 148, 064104	3.9	221
161	The furan microsolvation blind challenge for quantum chemical methods: First steps. <i>Journal of Chemical Physics</i> , 2018 , 148, 014301	3.9	34
160	Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Journal of Chemical Theory and Computation, 2018 , 14, 2596-2608	6.4	122

159	Counterintuitive Interligand Angles in the Diaryls E{C6H3-2,6-(C6H2-2,4,6-iPr3)2}2 (E = Ge, Sn, or Pb) and Related Species: The Role of London Dispersion Forces. <i>Organometallics</i> , 2018 , 37, 2075-2085	3.8	18
158	A diuranium carbide cluster stabilized inside a C fullerene cage. <i>Nature Communications</i> , 2018 , 9, 2753	17.4	47
157	Exhaustively Trichlorosilylated C and C Building Blocks: Beyond the Mller-Rochow Direct Process. Journal of the American Chemical Society, 2018 , 140, 9696-9708	16.4	12
156	Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of the first hyperpolarizability. <i>Journal of Chemical Physics</i> , 2018 , 149, 024108	3.9	28
155	Electrophilic Formylation of Arenes by Silylium Ion Mediated Activation of Carbon Monoxide. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8301-8305	16.4	28
154	High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. <i>Journal of Computer-Aided Molecular Design</i> , 2018 , 32, 1139-114	49 ²	31
153	Synthesis of 1,3-Amino Alcohols by Hydroxy-Directed Aziridination and Aziridine Hydrosilylation. <i>Angewandte Chemie</i> , 2018 , 130, 13716-13720	3.6	3
152	Synthesis of 1,3-Amino Alcohols by Hydroxy-Directed Aziridination and Aziridine Hydrosilylation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13528-13532	16.4	13
151	Formation of macrocyclic ring systems by carbonylation of trifunctional P/B/B frustrated Lewis pairs. <i>Chemical Science</i> , 2018 , 9, 1544-1550	9.4	25
150	Computational Chemistry: The Fate of Current Methods and Future Challenges. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4170-4176	16.4	85
149	Raising the Bar in Aromatic Donor-Acceptor Interactions with Cyclic Trinuclear Gold(I) Complexes as Strong Donors. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17932-17944	16.4	29
148	Electrophilic Phosphonium Cation-Mediated Phosphane Oxide Reduction Using Oxalyl Chloride and Hydrogen. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15253-15256	16.4	20
147	Borane-Catalyzed Synthesis of Quinolines Bearing Tetrasubstituted Stereocenters by Hydride Abstraction-Induced Electrocyclization. <i>Chemistry - A European Journal</i> , 2018 , 24, 16287-16291	4.8	35
146	Towards full Quantum-Mechanics-based Protein-Ligand Binding Affinities. <i>ChemPhysChem</i> , 2017 , 18, 898-905	3.2	35
145	Benzimidazolylquinoxalines: novel fluorophores with tuneable sensitivity to solvent effects. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6095-6104	3.6	10
144	Intermolecular Redox-Neutral Amine C-H Functionalization Induced by the Strong Boron Lewis Acid B(C F) in the Frustrated Lewis Pair Regime. <i>Chemistry - A European Journal</i> , 2017 , 23, 4723-4729	4.8	23
143	CO-Reduction Chemistry: Reaction of a CO-Derived Formylhydridoborate with Carbon Monoxide, with Carbon Dioxide, and with Dihydrogen. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6474-64	189.4	39
142	A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Flements (7 = 1-86). Journal of Chemical Theory and Computation. 2017, 13, 1989-2009	6.4	592

141	Ein achtkerniger metallosupramolekularer Wiffel mit Spin-Crossover-Eigenschaften. <i>Angewandte Chemie</i> , 2017 , 129, 5012-5017	3.6	13
140	Frontispiece: An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior. <i>Angewandte Chemie - International Edition</i> , 2017 , 56,	16.4	1
139	Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. <i>Chemical Science</i> , 2017 , 8, 4879-4895	9.4	58
138	Reactions of Boron-Derived Radicals with Nucleophiles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 426-435	16.4	30
137	The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. <i>Chemistry - A European Journal</i> , 2017 , 23, 6150-6164	4.8	65
136	Pyridyl Containing 1,5-Diaza-3,7-diphosphacyclooctanes as Bridging Ligands for Dinuclear Copper(I) Complexes. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2017 , 643, 895-902	1.3	11
135	Full Selectivity Control in Cobalt(III)-Catalyzed C-H Alkylations by Switching of the C-H Activation Mechanism. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10378-10382	16.4	194
134	Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brfisted Acid. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11456-11459	16.4	65
133	S 2 Reactions at Tertiary Carbon Centers in Epoxides. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9719-9722	16.4	18
132	An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4930-4935	16.4	59
131	Quantum Chemical Dissection of the Shortest P=O???I Halogen Bond: The Decisive Role of Crystal Packing Effects. <i>Chemistry - A European Journal</i> , 2017 , 23, 5687-5691	4.8	18
130	Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry. <i>Inorganic Chemistry</i> , 2017 , 56, 8683-8688	5.1	18
129	Reversible formylborane/SO coupling at a frustrated Lewis pair framework. <i>Chemical Communications</i> , 2017 , 53, 633-635	5.8	20
128	A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 32184-32215	3.6	738
127	REktitelbild: Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brested Acid (Angew. Chem. 38/2017). <i>Angewandte Chemie</i> , 2017 , 129, 11814-	113894	
126	Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method. <i>Inorganic Chemistry</i> , 2017 , 56, 12485-12491	5.1	31
125	Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16696-16707	16.4	44
124	Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites. <i>Journal of Computational Chemistry</i> , 2017 , 38, 2618-2631	3.5	30

123	Vollautomatisierte quantenchemische Berechnung von Spin-Spin- gekoppelten magnetischen Kernspinresonanzspektren. <i>Angewandte Chemie</i> , 2017 , 129, 14958-14964	3.6	25
122	Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14763-14769	16.4	107
121	Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brfisted Acid. <i>Angewandte Chemie</i> , 2017 , 129, 11614-11617	3.6	28
120	A general intermolecular force field based on tight-binding quantum chemical calculations. <i>Journal of Chemical Physics</i> , 2017 , 147, 161708	3.9	36
119	Extension of the D3 dispersion coefficient model. <i>Journal of Chemical Physics</i> , 2017 , 147, 034112	3.9	293
118	On the hydrogen activation by frustrated Lewis pairs in the solid state: benchmark studies and theoretical insights. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	8
117	Mild Cobalt(III)-Catalyzed Allylative C-F/C-H Functionalizations at Room Temperature. <i>Chemistry - A European Journal</i> , 2017 , 23, 12145-12148	4.8	85
116	Titanocene-Catalyzed Radical Opening of N-Acylated Aziridines. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12654-12657	16.4	45
115	Biomolecular Structure Information from High-Speed Quantum Mechanical Electronic Spectra Calculation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11682-11685	16.4	24
114	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host-Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 11144-11162	3.4	38
113	1,1-Hydroboration and a Borane Adduct of Diphenyldiazomethane: A Potential Prelude to FLP-N Chemistry. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16588-16592	16.4	70
112	C-F Bond Activation by Silylium Cation/Phosphine Frustrated Lewis Pairs: Mono-Hydrodefluorination of PhCF, PhCF H and Ph CF. <i>Chemistry - A European Journal</i> , 2017 , 23, 17692	- 17 696	; 39
111	Diastereoselective Self-Assembly of a Neutral Dinuclear Double-Stranded Zinc(II) Helicate via Narcissistic Self-Sorting. <i>Chemistry - A European Journal</i> , 2017 , 23, 12380-12386	4.8	16
110	From Additivity to Cooperativity in Chemistry: Can Cooperativity Be Measured?. <i>Chemistry - A European Journal</i> , 2017 , 23, 5864-5873	4.8	33
109	Report on the sixth blind test of organic crystal structure prediction methods. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2016 , 72, 439-59	1.8	338
108	A Frustrated and Confused Lewis Pair. Angewandte Chemie - International Edition, 2016, 55, 14335-1433	916.4	13
107	Copper-Catalyzed Cross-Coupling of Silicon Pronucleophiles with Unactivated Alkyl Electrophiles Coupled with Radical Cyclization. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14222-14225	16.4	70
106	Indirect synthesis of a pair of formal methane activation products at a phosphane/borane frustrated Lewis pair. <i>Dalton Transactions</i> , 2016 , 45, 19230-19233	4.3	7

105	Effect of Conjugation Pathway in Metal-Free Room-Temperature Dual Singlet-Triplet Emitters for Organic Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4802-4808	6.4	30
104	Unimolecular decomposition pathways of negatively charged nitriles by ab initio molecular dynamics. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31017-31026	3.6	9
103	Evidence of a DonorAcceptor (IrH)-BiR3Interaction in a Trapped Ir(III) Silane Catalytic Intermediate. <i>Organometallics</i> , 2016 , 35, 2207-2223	3.8	31
102	Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine. <i>European Physical Journal D</i> , 2016 , 70, 1	1.3	6
101	Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach. <i>Chirality</i> , 2016 , 28, 365-9	2.1	24
100	Highly Active Titanocene Catalysts for Epoxide Hydrosilylation: Synthesis, Theory, Kinetics, EPR Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7671-5	16.4	38
99	Rapid Dihydrogen Cleavage by Persistent Nitroxide Radicals under Frustrated Lewis Pair Conditions. <i>Chemistry - A European Journal</i> , 2016 , 22, 9504-7	4.8	25
98	A computationally efficient double hybrid density functional based on the random phase approximation. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20926-37	3.6	51
97	Selective Oxidation of an Active Intramolecular Amine/Borane Frustrated Lewis Pair with Dioxygen. Journal of the American Chemical Society, 2016 , 138, 4302-5	16.4	38
96	Non-covalent Stabilization in Transition Metal Coordination and Organometallic Complexes 2016 , 115-	143	4
95	Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9216-9	16.4	23
94	Cyclic Amine/Borane Lewis Pairs by the Reaction of N,N-Diallylaniline with Lancaster's H2 B-C6 F5 Reagent. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1394-9	4.5	12
93	Synthesis and Rearrangement of P-Nitroxyl-Substituted P(III) and P(V) Phosphanes: A Combined Experimental and Theoretical Case Study. <i>Chemistry - A European Journal</i> , 2016 , 22, 10102-10	4.8	11
92	Why Does the Intramolecular Trimethylene-Bridged Frustrated Lewis Pair Mes2 PCH2 CH2 CH2 B(C6 F5)2 Not Activate Dihydrogen?. <i>Chemistry - A European Journal</i> , 2016 , 22, 5988-95	4.8	35
91	Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids. <i>Chemistry - A European Journal</i> , 2016 , 22, 9591-8	4.8	2
90	Amide-Substituted Titanocenes in Hydrogen-Atom Transfer Catalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1523-6	16.4	32
89	Frustrated Lewis Pair-Catalyzed Cycloisomerization of 1,5-Enynes via a 5-endo-dig Cyclization/Protodeborylation Sequence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4336-9	16.4	58
	eyetization/11-rotodebotytation-sequence. Angewanate enemie International Edition, 2010, 35, 4550 7		

(2015-2016)

87	Hydrogenation and Transfer Hydrogenation Promoted by Tethered Ru-S Complexes: From Cooperative Dihydrogen Activation to Hydride Abstraction/Proton Release from Dihydrogen Surrogates. <i>Chemistry - A European Journal</i> , 2016 , 22, 10009-16	4.8	29
86	Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB). <i>Journal of Chemical Physics</i> , 2016 , 145, 054103	3.9	87
85	Synthesis and Dynamics of Nanosized Phenylene-Ethynylene-Butadiynylene Rotaxanes and the Role of Shape Persistence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3328-33	16.4	28
84	Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 15519-23	3.6	37
83	Dispersion-Corrected Mean-Field Electronic Structure Methods. <i>Chemical Reviews</i> , 2016 , 116, 5105-54	68.1	738
82	How to Compute Electron Ionization Mass Spectra from First Principles. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 3755-66	2.8	69
81	Synthesis and Comprehensive Structural and Chiroptical Characterization of Enones Derived from (-)-Bantonin by Experiment and Theory. <i>Journal of Organic Chemistry</i> , 2016 , 81, 4588-600	4.2	10
80	Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles. Angewandte Chemie - International Edition, 2016 , 55, 12219-23	16.4	95
79	Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2016 , 72, 502-13	1.8	45
78	S(vi) Lewis acids: fluorosulfoxonium cations. <i>Chemical Communications</i> , 2016 , 52, 12418-12421	5.8	23
77	Strong Evidence of a Phosphanoxyl Complex: Formation, Bonding, and Reactivity of Ligated Phosphorus Analogues of Nitroxides. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14439-14443	16.4	9
76	A Frustrated Phosphane-Borane Lewis Pair and Hydrogen: A Kinetics Study. <i>Chemistry - A European Journal</i> , 2016 , 22, 11958-61	4.8	20
75	Predicting elastic properties of EHMX from first-principles calculations. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 5896-903	3.4	21
74	Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. Journal of Chemical Theory and Computation, 2015 , 11, 3785-801	6.4	146
73	A practicable real-space measure and visualization of static electron-correlation effects. Angewandte Chemie - International Edition, 2015 , 54, 12308-13	16.4	127
72	Electronic circular dichroism of highly conjugated Esystems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3653-62	2.8	15
71	Hydrosilylation of ketones, imines and nitriles catalysed by electrophilic phosphonium cations: functional group selectivity and mechanistic considerations. <i>Chemistry - A European Journal</i> , 2015 , 21, 6491-500	4.8	63
70	A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures. <i>Journal of Chemical Physics</i> , 2015 , 142, 164508	3.9	7

69	Consistent structures and interactions by density functional theory with small atomic orbital basis sets. <i>Journal of Chemical Physics</i> , 2015 , 143, 054107	3.9	404
68	Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. Journal of Chemical Theory and Computation, 2015 , 11, 4972-91	6.4	74
67	Double FLP-Alkyne Exchange Reactions: A Facile Route to Te/B Heterocycles. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13264-7	16.4	22
66	Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine. <i>European Journal of Mass Spectrometry</i> , 2015 , 21, 125-40	1.1	22
65	Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8250-4	16.4	81
64	B(C6F5)3 -catalyzed transfer of dihydrogen from one unsaturated hydrocarbon to another. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12158-62	16.4	60
63	A Case Study of Mechanical Strain in Supramolecular Complexes to Manipulate the Spin State of Iron(II) Centres. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 5503-5510	2.3	14
62	Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. <i>Journal of Chemical Physics</i> , 2015 , 142, 124104	3.9	71
61	Synthesis, Chiral Resolution, and Absolute Configuration of Functionalized Trgers Base Derivatives: Part III. <i>Synthesis</i> , 2015 , 47, 3118-3132	2.9	8
60	The Association of Two BrustratedLewis Pairs by State-of-the-Art Quantum Chemical Methods. <i>Israel Journal of Chemistry</i> , 2015 , 55, 235-242	3.4	20
59	Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging?. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 1037-45	6.4	27
58	The frustrated Lewis pair pathway to methylene phosphonium systems. Chemical Science, 2014, 5, 797-	8934	43
57	Accurate Thermochemistry for Large Molecules with Modern Density Functionals. <i>Topics in Current Chemistry</i> , 2014 , 1-23		15
56	The thermochemistry of london dispersion-driven transition metal reactions: getting the 'right answer for the right reason'. <i>ChemistryOpen</i> , 2014 , 3, 177-89	2.3	70
55	Blind prediction of binding affinities for charged supramolecular host-guest systems: achievements and shortcomings of DFT-D3. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 3431-40	3.4	64
54	Double-hybrid density functionals. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2014 , 4, 576-600	7.9	227
53	A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 4497-514	6.4	130
52	Implementation of nuclear gradients of range-separated hybrid density functionals and benchmarking on rotational constants for organic molecules. <i>Journal of Computational Chemistry</i> ,	3.5	41

(2013-2014)

51	A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. <i>Computational and Theoretical Chemistry</i> , 2014 , 1040-1041, 45-53	2	138
50	Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1785-9	6.4	123
49	DFT-D3 Study of Some Molecular Crystals. Journal of Physical Chemistry C, 2014, 118, 7615-7621	3.8	282
48	Dispersion Interaction and Chemical Bonding 2014 , 477-500		4
47	Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction. <i>Topics in Current Chemistry</i> , 2014 , 345, 1-23		61
46	Substitution effect and effect of axle's flexibility at (pseudo-)rotaxanes. <i>Beilstein Journal of Organic Chemistry</i> , 2014 , 10, 1299-307	2.5	4
45	Low-Cost Quantum Chemical Methods for Noncovalent Interactions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4275-84	6.4	66
44	Remarkable coordination behavior of alkyl isocyanides toward unsaturated vicinal frustrated P/B Lewis pairs. <i>Chemical Science</i> , 2013 , 4, 2657	9.4	75
43	Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16031-42	3.6	188
42	A dispersion-corrected density functional theory case study on ethyl acetate conformers, dimer, and molecular crystal. <i>Theoretical Chemistry Accounts</i> , 2013 , 132, 1	1.9	15
41	Benchmark study of the performance of density functional theory for bond activations with (ni,pd)-based transition-metal catalysts. <i>ChemistryOpen</i> , 2013 , 2, 115-24	2.3	118
40	Reactions of phosphorus/boron frustrated Lewis pairs with SO2. Chemical Science, 2013, 4, 213-219	9.4	132
39	N-Heterocyclic carbene (NHC) catalyzed chemoselective acylation of alcohols in the presence of amines with various acylating reagents. <i>Chemical Science</i> , 2013 , 4, 2177	9.4	68
38	Modeling Transition Metal Reactions with Range-Separated Functionals. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 2286-99	6.4	20
37	Performance of Non-Local and Atom-Pairwise Dispersion Corrections to DFT for Structural Parameters of Molecules with Noncovalent Interactions. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 308-15	6.4	85
36	Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 1580-91	6.4	315
35	Corrected small basis set Hartree-Fock method for large systems. <i>Journal of Computational Chemistry</i> , 2013 , 34, 1672-85	3.5	276
34	Towards Reagents for Bimetallic Activation Reactions: Polyhydride Complexes with Ru2H3, Ru2ZnH6, and Cu2Ru2H6 Cores. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 3039-3048	2.3	11

33	Towards first principles calculation of electron impact mass spectra of molecules. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6306-12	16.4	115
32	A simplified Tamm-Dancoff density functional approach for the electronic excitation spectra of very large molecules. <i>Journal of Chemical Physics</i> , 2013 , 138, 244104	3.9	176
31	A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. <i>Journal of Chemical Physics</i> , 2012 , 136, 154101	3.9	368
30	Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4875-83	3.6	181
29	Frustrated Lewis pair addition to conjugated diynes: formation of zwitterionic 1,2,3-butatriene derivatives. <i>Dalton Transactions</i> , 2012 , 41, 9135-42	4.3	28
28	Accurate Theoretical Description of the (1)La and (1)Lb Excited States in Acenes Using the All Order Constricted Variational Density Functional Theory Method and the Local Density Approximation. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 4434-40	6.4	34
27	Spin-component-scaled electron correlation methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012 , 2, 886-906	7.9	173
26	Accurate Computation of Structures and Strain Energies of Cyclophanes with Modern DFT Methods. <i>Israel Journal of Chemistry</i> , 2012 , 52, 180-192	3.4	32
25	Supramolecular binding thermodynamics by dispersion-corrected density functional theory. <i>Chemistry - A European Journal</i> , 2012 , 18, 9955-64	4.8	974
24	Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 3866-71	6.4	175
23	Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011 , 1, 211-228	7.9	1645
22	System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. <i>ChemPhysChem</i> , 2011 , 12, 3414-20	3.2	188
21	Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. <i>ChemPhysChem</i> , 2011 , 12, 3421-33	3.2	252
20	Effect of the damping function in dispersion corrected density functional theory. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1456-65	3.5	10429
19	Reaktionen frustrierter Lewis-Paare mit konjugierten Inonen Belektive Hydrierung der Kohlenstoff-Kohlenstoff-Dreifachbindung. <i>Angewandte Chemie</i> , 2011 , 123, 7321-7324	3.6	65
18	Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon-carbon triple bond. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7183-6	16.4	160
17	Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 12639-42	16.4	197
16	Cation-cation "attraction": when London dispersion attraction wins over Coulomb repulsion. Inorganic Chemistry, 2011 , 50, 2619-28	5.1	112

LIST OF PUBLICATIONS

A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions - Assessment of Common and Reparameterized (meta-)GGA Density Functionals. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 107-26	6.4	340
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. <i>Journal of Chemical Physics</i> , 2010 , 132, 154104	3.9	23773
Neue Einblicke in den Mechanismus der Diwasserstoff-Aktivierung durch frustrierte Lewis-Paare. <i>Angewandte Chemie</i> , 2010 , 122, 1444-1447	3.6	110
Cyclische Allene und Cumulene durch kooperative Addition frustrierter Lewis-Paare an konjugierte Enine und Diine. <i>Angewandte Chemie</i> , 2010 , 122, 2464-2467	3.6	53
The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1402-5	16.4	350
Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2414-7	16.4	118
"Mindless" DFT Benchmarking. Journal of Chemical Theory and Computation, 2009, 5, 993-1003	6.4	191
Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 3060-7	′3 ^{6.4}	172
Noncovalent metal-metal interactions: the crucial role of london dispersion in a bimetallic indenyl system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14156-7	16.4	40
Do special noncovalent pi-pi stacking interactions really exist?. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3430-4	16.4	808
Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. <i>Chemical Communications</i> , 2007 , 5072-4	5.8	516
Is spin-component scaled second-order Mller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 486	2 - 8 ⁸	159
Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006 , 27, 1787-99	3.5	19063
Semiempirical hybrid density functional with perturbative second-order correlation. <i>Journal of Chemical Physics</i> , 2006 , 124, 034108	3.9	2321
Comparative Theoretical Study on Charge-Transfer Fluorescence Probes: 6-Propanoyl-2-(N,N-dimethylamino)naphthalene and Derivatives. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 7149-7156	2.8	69
	Assessment of Common and Reparameterized (meta-)GGA Density Functionals. Journal of Chemical Theory and Computation, 2010, 6, 107-26 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132, 154104 Neue Einblicke in den Mechanismus der Diwasserstoff-Aktivierung durch frustrierte Lewis-Paare. Angewandte Chemie, 2010, 122, 1444-1447 Cyclische Allene und Cumulene durch kooperative Addition frustrierter Lewis-Paare an konjugierte Enine und Diine. Angewandte Chemie, 2010, 122, 2464-2467 The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angewandte Chemie-International Edition, 2010, 49, 1402-5 Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. Angewandte Chemie - International Edition, 2010, 49, 2414-7 "Mindless" DFT Benchmarking. Journal of Chemical Theory and Computation, 2009, 5, 993-1003 Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics. Journal of Chemical Theory and Computation, 2009, 5, 3060-7 Noncovalent metal-metal interactions: the crucial role of london dispersion in a bimetallic indenyl system. Journal of the American Chemical Society, 2009, 131, 14156-7 Do special noncovalent pi-pi stacking interactions really exist?. Angewandte Chemie - International Edition, 2008, 47, 3430-4 Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chemical Communications, 2007, 5072-4 Is spin-component scaled second-order Miler-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?. Journal of Physical Chemistry A, 2007, 111, 486 Semiempirical Mybrid density functional with perturbative second-order correlation. Journal of Chemical Physics, 2006, 124, 034108 Comparative Theoretical Study on Charge-Transfer Fluoresc	Assessment of Common and Reparameterized (meta-)GGA Density Functionals. Journal of Chemical Theory and Computation, 2010, 6, 107-26 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132, 154104 Neue Einblicke in den Mechanismus der Diwasserstoff-Aktivierung durch frustrierte Lewis-Paare. Angewandte Chemie, 2010, 122, 1444-1447 Cyclische Allene und Cumulene durch kooperative Addition frustrierter Lewis-Paare an konjugierte Enine und Diine. Angewandte Chemie, 2010, 122, 2464-2467 The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angewandte Chemie-International Edition, 2010, 49, 1402-5 Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. Angewandte Chemie - International Edition, 2010, 49, 2414-7 "Mindless" DFT Benchmarking. Journal of Chemical Theory and Computation, 2009, 5, 993-1003 6.4 Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics. Journal of Chemical Theory and Computation, 2009, 5, 3060-73 Noncovalent metal-metal interactions: the crucial role of london dispersion in a bimetallic indenyl system. Journal of the American Chemical Society, 2009, 131, 14156-7 Do special noncovalent pi-pi stacking interactions really exist?. Angewandte Chemie - International Edition, 2008, 47, 3430-4 Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chemical Communications, 2007, 5072-4 Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chemical Communications, 2007, 5072-4 Is spin-component scaled second-order Miler-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?. Journal of Physical Chemistry A, 2007, 111, 486-28 Semiempirical hybrid density