
Russell E Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1345355/publications.pdf Version: 2024-02-01

RUSSELL F MODDIS

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
2	Gas Storage in Nanoporous Materials. Angewandte Chemie - International Edition, 2008, 47, 4966-4981.	7.2	1,453
3	lonic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430, 1012-1016.	13.7	1,196
4	BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angewandte Chemie - International Edition, 2010, 49, 6260-6266.	7.2	1,074
5	Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 2007, 40, 1005-1013.	7.6	809
6	Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 2014, 114, 4807-4837.	23.0	625
7	High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metalâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 1203-1209.	6.6	546
8	Induction of chiral porous solids containing only achiral building blocks. Nature Chemistry, 2010, 2, 353-361.	6.6	522
9	Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials. Chemical Communications, 2009, , 2990.	2.2	423
10	Chiral Induction in the Ionothermal Synthesis of a 3-D Coordination Polymer. Journal of the American Chemical Society, 2007, 129, 4880-4881.	6.6	403
11	Exceptional Behavior over the Whole Adsorptionâ d'Storageâ d'Delivery Cycle for NO in Porous Metal Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 10440-10444.	6.6	391
12	Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007, 9, 2676.	1.3	358
13	A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 2013, 5, 628-633.	6.6	355
14	The Ionothermal Synthesis of Cobalt Aluminophosphate Zeolite Frameworks. Journal of the American Chemical Society, 2006, 128, 2204-2205.	6.6	281
15	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	18.7	275
16	On the Nature of Water Bound to a Solid Acid Catalyst. Science, 1996, 271, 799-802.	6.0	254
17	Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chemistry of Materials, 2013, 25, 1592-1599.	3.2	243
18	NO-Releasing Zeolites and Their Antithrombotic Properties. Journal of the American Chemical Society, 2006, 128, 502-509.	6.6	230

#	Article	IF	CITATIONS
19	Microwave-assisted synthesis of anionic metal–organic frameworks under ionothermal conditions. Chemical Communications, 2006, , 2021-2023.	2.2	227
20	1-Alkyl-3-methyl Imidazolium Bromide Ionic Liquids in the Ionothermal Synthesis of Aluminium Phosphate Molecular Sieves. Chemistry of Materials, 2006, 18, 4882-4887.	3.2	220
21	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	18.7	216
22	Ionothermal Materials Synthesis Using Unstable Deep-Eutectic Solvents as Template-Delivery Agents. Angewandte Chemie - International Edition, 2006, 45, 4962-4966.	7.2	211
23	Metal organic frameworks as NO delivery materials for biological applications. Microporous and Mesoporous Materials, 2010, 129, 330-334.	2.2	209
24	Anion Control in the Ionothermal Synthesis of Coordination Polymers. Journal of the American Chemical Society, 2007, 129, 10334-10335.	6.6	203
25	Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chemistry, 2009, 1, 289-294.	6.6	190
26	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	6.6	186
27	The synthesis of molecular sieves from non-aqueous solvents. Chemical Society Reviews, 1997, 26, 309.	18.7	173
28	A Solid-State NMR Method for Solution of Zeolite Crystal Structures. Journal of the American Chemical Society, 2005, 127, 10365-10370.	6.6	161
29	The ionothermal synthesis of SIZ-6—a layered aluminophosphate. Chemical Communications, 2006, , 380-382.	2.2	161
30	A Synchrotron X-ray Diffraction, Neutron Diffraction, 29Si MAS-NMR, and Computational Study of the Siliceous Form of Zeolite Ferrierite. Journal of the American Chemical Society, 1994, 116, 11849-11855.	6.6	157
31	Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 2015, 7, 381-388.	6.6	153
32	lonic Liquids and Microwaves—Making Zeolites for Emerging Applications. Angewandte Chemie - International Edition, 2008, 47, 442-444.	7.2	149
33	Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.	18.7	144
34	An ionothermally prepared SÂ=Â1/2 vanadium oxyfluoride kagome lattice. Nature Chemistry, 2011, 3, 801-806.	6.6	142
35	Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chemistry, 2011, 3, 304-310.	6.6	141
36	A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications, 2013, 49, 7773.	2.2	138

#	Article	IF	CITATIONS
37	Hydrolytic stability in hemilabile metal–organic frameworks. Nature Chemistry, 2018, 10, 1096-1102.	6.6	134
38	Ionothermal Synthesis of Unusual Cholineâ€Templated Cobalt Aluminophosphates. Angewandte Chemie - International Edition, 2007, 46, 7839-7843.	7.2	131
39	Early Stage Reversed Crystal Growth of Zeolite A and Its Phase Transformation to Sodalite. Journal of the American Chemical Society, 2009, 131, 17986-17992.	6.6	129
40	Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton Transactions, 2012, 41, 4060.	1.6	128
41	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
42	Combined Neutron and X-ray Powder Diffraction Study of Zeolite Ca LSX and a 2H NMR Study of Its Complex with Benzene. The Journal of Physical Chemistry, 1995, 99, 16087-16092.	2.9	123
43	SSZ-23: An Odd Zeolite with Pore Openings of Seven and Nine Tetrahedral Atoms. Angewandte Chemie - International Edition, 1998, 37, 2122-2126. Gapless Spin Liquid Ground State in the <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.2</td><td>113</td></mml:math>	7.2	113
44	display="inline"> <mml:mi>S</mml:mi> <mml:mo mathvariant="bold">=<mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn>Oxyfluoride Kagome Antiferromagnet<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mo< td=""><td>math>Van 2.9</td><td>adium 113</td></mml:mo<></mml:math></mml:mo 	math>Van 2.9	adium 113
45	stretchy="true">[<mml:msub><mml:mi>NH</mml:mi><mml:mn>4</mml:mn></mml:msub> <mml:n Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis. Journal of Physical Chemistry B, 2005, 109, 652-661.</mml:n 	1.2	105 105
46	Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure. Journal of Materials Chemistry, 2006, 16, 3682.	6.7	105
47	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	7.2	104
48	Increased selectivity in hydroformylation reactions using dendrimer based catalysts; a positive dendrimer effect. Chemical Communications, 2001, , 361-362.	2.2	102
49	Topically Applied Nitric Oxide Induces T-Lymphocyte Infiltration in Human Skin, but Minimal Inflammation. Journal of Investigative Dermatology, 2008, 128, 352-360.	0.3	102
50	SSZ-51A New Aluminophosphate Zeotype:Â Synthesis, Crystal Structure, NMR, and Dehydration Properties. Chemistry of Materials, 2004, 16, 2844-2851.	3.2	100
51	Solventless Synthesis of Zeolites. Angewandte Chemie - International Edition, 2013, 52, 2163-2165.	7.2	94
52	NO-loaded Zn2+-exchanged zeolite materials: A potential bifunctional anti-bacterial strategy. Acta Biomaterialia, 2010, 6, 1515-1521.	4.1	93
53	In Situ Single-Crystal Diffraction Studies of the Structural Transition of Metalâ^'Organic Framework Copper 5-Sulfoisophthalate, Cu-SIP-3. Journal of the American Chemical Society, 2010, 132, 3605-3611.	6.6	90
54	Imposition of Polarity on a Centrosymmetric Zeolite Host:  The Effect of Fluoride Ions on Template Ordering in Zeolite IFR. Journal of the American Chemical Society, 2000, 122, 7128-7129.	6.6	89

#	Article	IF	CITATIONS
55	Ionothermal Synthesis of Zirconium Phosphates and Their Catalytic Behavior in the Selective Oxidation of Cyclohexane. Angewandte Chemie - International Edition, 2009, 48, 2206-2209.	7.2	89
56	Pure Silica Zeolite-type Frameworks: A Structural Analysis. Chemistry of Materials, 2008, 20, 1561-1570.	3.2	88
57	Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 2002, 124, 7770-7778.	6.6	87
58	Synthesis and structure of fluoride-containing GeO2 analogues of zeolite double four-ring building unitsElectronic supplementary information (ESI) available: X-ray diffraction data. See http://www.rsc.org/suppdata/cc/b2/b207374a/. Chemical Communications, 2002, , 2220-2221.	2.2	87
59	Ammonia-Rich High-Temperature Superconducting Intercalates of Iron Selenide Revealed through Time-Resolved <1>in Situ X-ray and Neutron Diffraction. Journal of the American Chemical Society, 2014, 136, 630-633.	6.6	86
60	Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks. Dalton Transactions, 2012, 41, 4045.	1.6	85
61	A solid with a hierarchical tetramodal micro-meso-macro pore size distribution. Nature Communications, 2013, 4, 2015.	5.8	85
62	The Location and Ordering of Fluoride Ions in Pure Silica Zeolites with Framework Types IFR and STF; Implications for the Mechanism of Zeolite Synthesis in Fluoride Media. Journal of the American Chemical Society, 2001, 123, 8797-8805.	6.6	83
63	Synthesis of highly functionalised dendrimers based on polyhedral silsesquioxane cores â€. Journal of the Chemical Society Dalton Transactions, 1998, , 2767-2770.	1.1	81
64	Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites. Chemical Science, 2010, 1, 483.	3.7	81
65	Gradual Release of Strongly Bound Nitric Oxide from Fe ₂ (NO) ₂ (dobdc). Journal of the American Chemical Society, 2015, 137, 3466-3469.	6.6	81
66	An X-ray Diffraction and MAS NMR Study of the Thermal Expansion Properties of Calcined Siliceous Ferrierite. Journal of the American Chemical Society, 2003, 125, 4342-4349.	6.6	76
67	3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 2013, 25, 542-547.	3.2	76
68	Fast room temperature lability of aluminosilicate zeolites. Nature Communications, 2019, 10, 4690.	5.8	75
69	Variable-Temperature Microcrystal X-ray Diffraction Studies of Negative Thermal Expansion in the Pure Silica Zeolite IFR. Journal of the American Chemical Society, 2001, 123, 5453-5459.	6.6	73
70	Phosphine-containing carbosilane dendrimers based on polyhedral silsesquioxane cores as ligands for hydroformylation reaction of oct-1-ene. Journal of Molecular Catalysis A, 2002, 182-183, 99-105.	4.8	72
71	Metal–organic frameworks as potential multi-carriers of drugs. CrystEngComm, 2013, 15, 9364.	1.3	70
72	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie - International Edition, 2017, 56, 4324-4327.	7.2	70

#	Article	IF	CITATIONS
73	Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Materials, 2014, 2, .	2.2	66
74	Synthesis of functionalised porous network silsesquioxane polymers. Journal of Materials Chemistry, 2002, 12, 3208-3212.	6.7	65
75	Hydrocarbonylation reactions using alkylphosphine-containing dendrimers based on a polyhedral oligosilsesquioxane core. Dalton Transactions RSC, 2002, , 1997-2008.	2.3	64
76	High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal–organic frameworks, STAM-1 and HKUST-1. Physical Chemistry Chemical Physics, 2013, 15, 919-929.	1.3	64
77	In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nature Chemistry, 2017, 9, 1012-1018.	6.6	63
78	Determination of complex structures by combined neutron and synchrotron X-ray powder diffraction. Nature, 1992, 359, 519-522.	13.7	62
79	Phosphine containing dendrimers for highly regioselective rhodium catalysed hydroformylation of alkenes: a positive †dendritic effect'. Dalton Transactions RSC, 2002, , 4323.	2.3	62
80	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052.	7.2	62
81	Incorporation of cisplatin into the metal–organic frameworks UiO66-NH ₂ and UiO66 – encapsulation vs. conjugation. RSC Advances, 2015, 5, 83648-83656.	1.7	62
82	Synthesis of functional cubes from octavinylsilsesquioxane (OVS). Organic and Biomolecular Chemistry, 2008, 6, 4662.	1.5	61
83	Microporous Magnesium Aluminophosphate STA-1: Synthesis with a Rationally Designed Template and Structure Elucidation by Microcrystal Diffraction. Angewandte Chemie International Edition in English, 1997, 36, 81-83.	4.4	60
84	Modular materials from zeolite-like building blocks. Journal of Materials Chemistry, 2005, 15, 931.	6.7	60
85	Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chemistry of Materials, 2014, 26, 5789-5798.	3.2	60
86	Perovskites. Dalton Transactions, 2015, 44, 10541-10542.	1.6	60
87	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	3.2	60
88	Multirate delivery of multiple therapeutic agents from metal-organic frameworks. APL Materials, 2014, 2, .	2.2	58
89	Synthesis and Structure of an Unusual New Layered Aluminophosphate Containing Oxalate Groups, [NH3CH2CH2NH3]2.5[Al4H(HPO4)4(H2PO4)2(C2O4)4]. Journal of Solid State Chemistry, 1999, 143, 74-76.	1.4	57
90	The location of fluoride and organic guests in â€~as-made' pure silica zeolites FER and CHA. Journal of Materials Chemistry, 2003, 13, 1978-1982.	6.7	57

#	Article	IF	CITATIONS
91	Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water. Chemical Science, 2012, 3, 2293.	3.7	57
92	Azamacrocycle-Containing Gallium Phosphates:Â A New Class of Inorganicâ^'Organic Hybrid Material. Journal of the American Chemical Society, 1998, 120, 6822-6823.	6.6	56
93	Dendrimer-bound tertiary phosphines for alkene hydroformylation. Inorganic Chemistry Communication, 2000, 3, 714-717.	1.8	56
94	Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy. Magnetic Resonance in Chemistry, 2010, 48, S113-S121.	1.1	56
95	The use of ionic liquids in the synthesis of zinc imidazolate frameworks. Dalton Transactions, 2010, 39, 1758-1762.	1.6	56
96	Tuning the nitric oxide release from CPO-27 MOFs. RSC Advances, 2016, 6, 14059-14067.	1.7	55
97	Advances in Organic Anode Materials for Na″K″on Rechargeable Batteries. ChemSusChem, 2020, 13, 4866-4884.	3.6	55
98	How Does Your MOF Grow?. ChemPhysChem, 2009, 10, 327-329.	1.0	53
99	The ionothermal synthesis of metal organic frameworks, Ln(C9O6H3)((CH3NH)2CO)2, using deep eutectic solvents. Solid State Sciences, 2010, 12, 418-421.	1.5	50
100	Hydrogen-bond-directing effect in the ionothermal synthesis of metal coordination polymers. Dalton Transactions, 2008, , 3989.	1.6	49
101	The effect of pressure on the post-synthetic modification of a nanoporous metal–organic framework. Nanoscale, 2014, 6, 4163-4173.	2.8	49
102	Cost-effective ¹⁷ O enrichment and NMR spectroscopy of mixed-metal terephthalate metal–organic frameworks. Chemical Science, 2018, 9, 850-859.	3.7	49
103	Anionic Gallium Phosphate Double Four-Ring Units Containing Occluded Oxygen. Journal of the American Chemical Society, 2000, 122, 11246-11247.	6.6	48
104	The synthesis of gallium phosphate frameworks with and without fluoride ions present: attempts to direct the synthesis of double four-ring containing materials. Journal of Materials Chemistry, 2001, 11, 1850-1857.	6.7	47
105	The role of added water in the ionothermal synthesis of microporous aluminium phosphates. Solid State Sciences, 2009, 11, 411-416.	1.5	47
106	Tuning Different Kinds of Entangled Networks Formed by Isomers of Bis(1,2,4-triazol-1-ylmethyl)benzene and a Flexible Tetracarboxylate Ligand. Crystal Growth and Design, 2013, 13, 1649-1654.	1.4	47
107	The Synthesis and Characterization of a One-Dimensional Aluminophosphate: Na4Al(PO4)2(OH). Journal of Solid State Chemistry, 1995, 118, 412-416.	1.4	46
108	Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catalysis, 2018, 8, 5070-5084.	5.5	46

#	Article	IF	CITATIONS
109	Determination of Complex Structures from Powder Diffraction Data: The Crystal Structure of La3Ti5Al15O37. Journal of Solid State Chemistry, 1994, 111, 52-57.	1.4	45
110	Synthesis and characterisation of Al(O3PCH2CO2)·3H2O, a layered aluminium carboxymethylphosphonate. Journal of the Chemical Society Dalton Transactions, 1998, , 3359-3362.	1.1	44
111	Water based scale-up of CPO-27 synthesis for nitric oxide delivery. Dalton Transactions, 2016, 45, 618-629.	1.6	44
112	AlMePO-β: inclusion and thermal removal of structure directing agent and the topotactic reconstructive transformation to its polymorph AlMePO-α. Journal of Materials Chemistry, 1997, 7, 2287-2292.	6.7	43
113	Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Physical Chemistry Chemical Physics, 2014, 16, 23908-23914.	1.3	43
114	A severely interrupted germanate zeolite framework synthesised from isolated double four-ring unitsElectronic supplementary information (ESI) available: XRD and NMR data. See http://www.rsc.org/suppdata/dt/b3/b314942k/. Dalton Transactions, 2004, , 820.	1.6	42
115	A novel non-centrosymmetric metallophosphate-borate compound via ionothermal synthesis. Dalton Transactions, 2009, , 5287.	1.6	42
116	EPR and magnetic studies of a novel copper metal organic framework (STAM-I). Chemical Physics Letters, 2012, 544, 17-21.	1.2	42
117	Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process. Journal of the American Chemical Society, 2017, 139, 5140-5148.	6.6	42
118	A Synthesis, MAS NMR, Synchrotron X-ray Powder Diffraction, and Computational Study of Zeolite SSZ-23. Chemistry of Materials, 1999, 11, 2878-2885.	3.2	41
119	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	5.2	41
120	Calcination of a layered aluminofluorophosphate precursor to form the zeolitic AFO framework. Journal of Materials Chemistry, 2006, 16, 1035.	6.7	40
121	Tuning the nitric oxide release behavior of amino functionalized HKUST-1. Microporous and Mesoporous Materials, 2015, 216, 118-126.	2.2	40
122	Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science and Technology, 2016, 6, 2775-2786.	2.1	40
123	Metal–Organic Frameworkâ€Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie - International Edition, 2019, 58, 11747-11751.	7.2	40
124	Synthesis and characterisation of silanol-functionalised dendrimers â€. Journal of the Chemical Society Dalton Transactions, 1999, , 2183-2188.	1.1	39
125	The Synthesis and Structure of SSZ-73:  an All-Silica Zeolite with an Unusual Framework Topology. Chemistry of Materials, 2007, 19, 3924-3932.	3.2	39
126	The syntheses and crystal structures of two novel aluminum selenites, Al2(SeO3)3 · 6H2O and AlH(SeO3)2 · 2H2O. Journal of Solid State Chemistry, 1991, 94, 227-235.	1.4	38

#	Article	IF	CITATIONS
127	Synthesis and computer modelling of hydroxy-derivatised carbosilane dendrimers based on polyhedral silsesquioxane cores. Dalton Transactions RSC, 2001, , 3261-3268.	2.3	38
128	Structure and NMR assignment in AlPO4-15: A combined study by diffraction, MAS NMR and first-principles calculations. Solid State Sciences, 2009, 11, 1001-1006.	1.5	38
129	Synthesis and crystal structure of the first scandium-containing open framework solidElectronic supplementary information (ESI) available: crystallographic tables, TGA and TG-MS, le Bail plot and Rietveld fit. See http://www.rsc.org/suppdata/cc/b2/b202500k/. Chemical Communications, 2002, , 1180-1181.	2.2	37
130	Post‣ynthesis Stabilization of Germanosilicate Zeolites ITH, IWW, and UTL by Substitution of Ge for Al. Chemistry - A European Journal, 2016, 22, 17377-17386.	1.7	36
131	New avenues for mechanochemistry in zeolite science. Dalton Transactions, 2021, 50, 8995-9009.	1.6	36
132	Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal–organic framework. Chemical Science, 2012, 3, 2559.	3.7	34
133	A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release. CrystEngComm, 2019, 21, 1857-1861.	1.3	34
134	In Situ Comparison of Ionothermal Kinetics Under Microwave And Conventional Heating. Journal of Physical Chemistry C, 2009, 113, 20553-20558.	1.5	33
135	Post-synthetic incorporation of nickel into CPO-27(Mg) to give materials with enhanced permanent porosity. CrystEngComm, 2013, 15, 9779.	1.3	33
136	¹⁷ 0 NMR spectroscopy of crystalline microporous materials. Chemical Science, 2021, 12, 5016-5036.	3.7	33
137	The synthesis and modification of aluminium phosphonates. Journal of Materials Chemistry, 1999, 9, 179-185.	6.7	32
138	The structure of phosphine-functionalised silsesquioxane-based dendrimers: a molecular dynamics study. Dalton Transactions, 2004, , 1665.	1.6	32
139	Nature of the Spin Liquid Ground State in a Breathing Kagome Compound Studied by NMR and Series Expansion. Physical Review Letters, 2017, 118, 237203.	2.9	32
140	A novel mixed-valence selenium(IV)/selenium(VI) oxo compound: crystal structure determination and x-ray absorption near edge structure study of erbium selenite(IV) selenate(VI) hydrate, Er(SeO3)(SeO4)1/2.cntdot.H2O. Inorganic Chemistry, 1992, 31, 4774-4777.	1.9	31
141	Hybrid Dendritic Molecules with Confined Chromophore Architecture to Tune Fluorescence Efficiency. Journal of Physical Chemistry B, 2008, 112, 16382-16392.	1.2	31
142	Synthetic control of framework zinc purinate crystallisation and properties of a large pore, decorated, mixed-linker RHO-type ZIF. Chemical Communications, 2012, 48, 6690.	2.2	31
143	From Doubleâ€Fourâ€Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem, 2014, 15, 2972-2976.	1.0	31
144	Synthesis and crystal structure of a gallium phosphate with 14-ring channels. Journal of Materials Chemistry, 1998, 8, 1607-1611.	6.7	30

#	Article	IF	CITATIONS
145	Hydrothermal Syntheses and Crystal Structures of Two New Iron Phosphates [C2N2H10]2+[Fe(HPO4)2(OH)]2â~·H2O and KFe3(OH)2(PO4)2·2H2O. Journal of Solid State Chemistry, 1999, 142, 455-460.	, 1.4	30
146	Synthesis, characterization and control of faulting in STF/SFF topologies, a new family of intergrowth zeolitesElectronic supplementary information (ESI) available: details of DIFFaX simulations. See http://www.rsc.org/suppdata/jm/b3/b315643e/. Journal of Materials Chemistry, 2004, 14, 1982.	6.7	30
147	Layered microporous tin(iv) bisphosphonates. Dalton Transactions, 2007, , 2394-2404.	1.6	30
148	A new calcium trimellitate coordination polymer with a chain-like structure. Solid State Sciences, 2007, 9, 455-458.	1.5	30
149	Increasing the dimensionality of hybrid vanadium oxyfluorides using ionothermal synthesis. Dalton Transactions, 2010, 39, 6018.	1.6	30
150	Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Transactions, 2011, 40, 4324.	1.6	30
151	Synthesis of aldehyde functionalised polyhedral oligomeric silsesquioxanes. Dalton Transactions RSC, 2001, , 1123-1127.	2.3	29
152	Cyclam as a Structure-Directing Agent in the Crystallization of Aluminophosphate Open Framework Materials from Fluoride Media. Journal of Solid State Chemistry, 2002, 167, 267-273.	1.4	29
153	Post-synthesis incorporation of Al into germanosilicate ITH zeolites: the influence of treatment conditions on the acidic properties and catalytic behavior in tetrahydropyranylation. Catalysis Science and Technology, 2015, 5, 2973-2984.	2.1	29
154	Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications, 2019, 10, 5129.	5.8	29
155	Zeolitic and magnetic properties of a 24-membered ring porous nickel(II) phosphate, VSB-1. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1999, 2, 387-392.	0.1	28
156	Synthesis and structure of a novel microporous gallophosphate, Na3Ga5(PO4)4O2(OH)2·2H2O. Journal of the Chemical Society Chemical Communications, 1995, , 843-844.	2.0	27
157	Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. Journal of Physical Chemistry B, 2006, 110, 5273-5278.	1.2	26
158	Ionothermal synthesis of β-NH4AlF4 and the determination by single crystal X-ray diffraction of its room temperature and low temperature phases. Journal of Solid State Chemistry, 2007, 180, 49-53.	1.4	26
159	Ionothermal synthesis of inorganic–organic hybrid materials containing perfluorinated aliphatic dicarboxylate ligands. Dalton Transactions, 2009, , 1131.	1.6	26
160	Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 2016, 7, 3589-3601.	3.7	26
161	Gallium hydrogen selenite diselenite hydrate, Ga(HSeO3)(Se2O5).cntdot.1.07H2O: a novel structure type containing alternating cationic and anionic layers. Chemistry of Materials, 1994, 6, 67-69.	3.2	25
162	Some Difficult Challenges for the Synthesis of Nanoporous Materials. Topics in Catalysis, 2010, 53, 1291-1296.	1.3	25

#	Article	IF	CITATIONS
163	Controlling interpenetration in metal–organic frameworks by tuning the conformations of flexible bis(triazole) ligands. CrystEngComm, 2013, 15, 9437.	1.3	24
164	Structural diversity in hybrid vanadium(<scp>iv</scp>) oxyfluorides based on a common building block. Dalton Transactions, 2014, 43, 568-575.	1.6	24
165	Catalysis on Zeolites – Catalysis Science & Technology. Catalysis Science and Technology, 2016, 6, 2465-2466.	2.1	24
166	Rationalising the effect of reducing agent on the oxazaborolidine-mediated asymmetric reduction of N-substituted imines. Tetrahedron Letters, 2004, 45, 853-855.	0.7	23
167	Solid-State NMR Studies of the Fluoride-Containing Zeolite SSZ-44. Chemistry of Materials, 2004, 16, 600-603.	3.2	23
168	Structure and spectroscopy of hydrogen adsorbed in a nickel metal–organic framework. Chemical Physics, 2013, 427, 3-8.	0.9	23
169	Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS Applied Materials & Interfaces, 2020, 12, 58263-58276.	4.0	23
170	Grown into shape. Nature Chemistry, 2011, 3, 347-348.	6.6	22
171	Functionalised solids delivering bioactive nitric oxide gas for therapeutic applications. Materials Today Communications, 2017, 12, 95-105.	0.9	22
172	A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nature Protocols, 2019, 14, 781-794.	5.5	22
173	Synthesis of two new aluminophosphate based layered materials using Tet-A as a structure-directing agent. Journal of Materials Chemistry, 2002, 12, 477-482.	6.7	21
174	Synthesis of microporous materials using macrocycles as structure directing agents. Dalton Transactions, 2007, , 5359.	1.6	21
175	From non-porous crystalline to amorphous microporous metal(IV) bisphosphonates. Microporous and Mesoporous Materials, 2008, 114, 322-336.	2.2	21
176	Ionothermal synthesis, structure and characterization of three-dimensional zinc phosphates. Dalton Transactions, 2009, , 6715.	1.6	21
177	A New Family of Twoâ€Dimensional Zeolites Prepared from the Intermediate Layered Precursor IPCâ€3P Obtained during the Synthesis of TUN Zeolite. Chemistry - A European Journal, 2013, 19, 13937-13945.	1.7	21
178	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	1.3	21
179	Low temperature synthesis study of metal–organic framework CPO-27: investigating metal, solvent and base effects down to â~'78 A°C. Dalton Transactions, 2017, 46, 8298-8303.	1.6	21
180	Pressure-induced chemistry for the 2D to 3D transformation of zeolites. Journal of Materials Chemistry A, 2018, 6, 5255-5259.	5.2	21

#	Article	IF	CITATIONS
181	Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites. Journal of the American Chemical Society, 2019, 141, 4453-4459.	6.6	21
182	A novel pyridine-templated open framework gallophosphate. Chemical Communications, 1999, , 2037-2038.	2.2	20
183	Cyclam as a Structure-Directing Agent in the Crystallization of Aluminophosphate Open Framework Materials from Fluoride Media. Journal of Solid State Chemistry, 2002, 167, 267-273.	1.4	20
184	Simultaneous Gas Storage and Catalytic Gas Production Using Zeolites—A New Concept for Extending Lifetime Gas Delivery. Topics in Catalysis, 2009, 52, 35-41.	1.3	20
185	Sodium Naphthaleneâ€2,6â€dicarboxylate: An Anode for Sodium Batteries. ChemSusChem, 2019, 12, 4522-4528.	3.6	20
186	Synthesis of a family of aluminium benzylphosphonates. Journal of Materials Chemistry, 2000, 10, 2375-2380.	6.7	19
187	Ionothermal synthesis of two novel metal organophosphonates. Dalton Transactions, 2009, , 795-799.	1.6	19
188	On the structure of Al2(SeO3)3 \hat{A} · 6H2O. Journal of Solid State Chemistry, 1992, 99, 200.	1.4	18
189	Synthesis and structure determination from an extremely small single crystal of a new layered gallium phosphate. Journal of Physics and Chemistry of Solids, 2001, 62, 1493-1497.	1.9	18
190	Synthesis and crystal structures of bromo- and ester-functionalised polyhedral silsesquioxanes. Polyhedron, 2006, 25, 853-858.	1.0	18
191	Silsesquioxane dendrimers as catalysts: A bite-sized molecular dynamics study. Dalton Transactions, 2007, , 3415.	1.6	18
192	Antibacterial efficacy from NO-releasing MOF–polymer films. Materials Advances, 2020, 1, 2509-2519.	2.6	18
193	The adsorption, storage and release of nitric oxide using ion exchanged zeolites. Studies in Surface Science and Catalysis, 2007, 170, 902-909.	1.5	17
194	Solvothermal aluminophosphate zeotype synthesis with ionic liquid precursors. Dalton Transactions, 2011, 40, 4926.	1.6	17
195	Ionothermal synthesis and characterization of CoAPO-34 molecular sieve. Microporous and Mesoporous Materials, 2017, 239, 336-341.	2.2	17
196	Monitoring the assembly–disassembly–organisation–reassembly process of germanosilicate UTL through <i>in situ</i> pair distribution function analysis. Journal of Materials Chemistry A, 2018, 6, 17011-17018.	5.2	17
197	Gate-Opening Mechanism of Hydrophilic–Hydrophobic Metal–Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption. Chemistry of Materials, 2018, 30, 5116-5127.	3.2	17
198	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	2.2	16

#	Article	IF	CITATIONS
199	Following the unusual breathing behaviour of ¹⁷ O-enriched mixed-metal (Al,Ga)-MIL-53 using NMR crystallography. Physical Chemistry Chemical Physics, 2020, 22, 14514-14526.	1.3	16
200	Ionic Liquid assisted Synthesis of Zeoliteâ€TON. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1177-1181.	0.6	15
201	Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. Dalton Transactions, 2014, 43, 1519-1523.	1.6	15
202	Extending the Family of V4+S=\${{ 1/2 }}\$ Kagome Antiferromagnets. Angewandte Chemie - International Edition, 2015, 54, 15457-15461.	7.2	15
203	Radial artery access site complications during cardiac procedures, clinical implications and potential solutions: The role of nitric oxide. World Journal of Cardiology, 2019, 12, 26-34.	0.5	15
204	Ultrasound-driven preparation and pair distribution function-assisted structure solution of a copper-based layered coordination polymer. Dalton Transactions, 2014, 43, 10438-10442.	1.6	14
205	Synthesis and crystallographic characterisation of Mg(H 2 dhtp)(H 2 O) 5 ·H 2 O. Inorganic Chemistry Communication, 2016, 65, 21-23.	1.8	14
206	Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Transactions, 2018, 47, 3084-3092.	1.6	14
207	Simultaneous and cooperative gas storage and gas production using bifunctional zeolites. Chemical Communications, 2008, , 6146.	2.2	13
208	A comparison of zeolites and Metal Organic Frameworks as storage and delivery vehicles for biologically active nitric oxide. Studies in Surface Science and Catalysis, 2008, , 441-446.	1.5	13
209	A prototype environmental gas cell for <i>in situ</i> small-molecule X-ray diffraction. Journal of Applied Crystallography, 2009, 42, 457-460.	1.9	13
210	Coordination polymers of Zn ^{II} and 5-methoxy isophthalate. Dalton Transactions, 2015, 44, 17686-17695.	1.6	13
211	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie, 2017, 129, 4388-4391.	1.6	12
212	Mechanochemically assisted hydrolysis in the ADOR process. Chemical Science, 2020, 11, 7060-7069.	3.7	12
213	Ionothermal synthesis and crystal structures of metal phosphate chains. Journal of Solid State Chemistry, 2010, 183, 1625-1631.	1.4	11
214	Layered inorganic solids. Dalton Transactions, 2014, 43, 10274.	1.6	11
215	Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth and Design, 2016, 16, 5771-5780.	1.4	11
216	13C pNMR of "crumple zone―Cu(II) isophthalate metal-organic frameworks. Solid State Nuclear Magnetic Resonance, 2019, 101, 44-50.	1.5	11

#	Article	IF	CITATIONS
217	The structure of La4Ti9O24 from synchrotron X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 1995, 56, 1297-1303.	1.9	10
218	Multitechnique Analysis of the Hydration in Three Different Copper Paddle-Wheel Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 28219-28232.	1.5	10
219	Magneto-structural correlations of novel kagomé-type metal organic frameworks. Journal of Materials Chemistry C, 2019, 7, 6692-6697.	2.7	10
220	Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries. RSC Advances, 2020, 10, 13732-13736.	1.7	10
221	Synthesis and structure of an aluminium 3-aminopropylphosphonate sulfate hydrate. Dalton Transactions RSC, 2001, , 2899-2902.	2.3	9
222	Concepts in the ionothermal synthesis of zeolites and metal organic frameworks. Studies in Surface Science and Catalysis, 2008, 174, 33-42.	1.5	9
223	Coordination chemistry in the solid state. Dalton Transactions, 2012, 41, 3867.	1.6	9
224	A hybrid vanadium fluoride with structurally isolated S = 1 kagome layers. Dalton Transactions, 2014, 43, 6304-6307.	1.6	9
225	Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P. Dalton Transactions, 2016, 45, 14124-14130.	1.6	9
226	Separating out the middle. Nature Materials, 2019, 18, 910-911.	13.3	9
227	Variable temperature high resolution 29Si MAS NMR of siliceous zeolite ferrierite. Journal of Materials Chemistry, 2004, 14, 2036.	6.7	8
228	Synthesis of hybrid dendritic molecules with diazaphospholidine oxide grafted at the surface of		8
	octavinylsilsesquioxane (OVS). Organic and Biomolecular Chemistry, 2011, 9, 1189-1200.	1.5	0
229	octavinylsilsesquioxane (OVS). Organic and Biomolecular Chemistry, 2011, 9, 1189-1200. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Dalton Transactions, 2017, 46, 3915-3920.	1.5 1.6	8
229 230	A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical		
	A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Dalton Transactions, 2017, 46, 3915-3920. Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry	1.6	8
230	 A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Dalton Transactions, 2017, 46, 3915-3920. Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry A, 2017, 5, 8037-8043. Metalâ€"Organic Frameworkâ€Activated Carbon Composite Materials for the Removal of Ammonia from 	1.6 5.2	8
230 231	A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Dalton Transactions, 2017, 46, 3915-3920. Microwave heating and the fast ADOR process for preparing zeolites. Journal of Materials Chemistry A, 2017, 5, 8037-8043. Metal–Organic Frameworkâ€Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie, 2019, 131, 11873-11877. Controlled Synthesis of Large Single Crystals of Metalâ€Organic Framework CPOâ€27â€Ni Prepared by a Modulation Approach: <i>In situ</i>	1.6 5.2 1.6	8 8 8

#	Article	IF	CITATIONS
235	Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27361-27369.	5.2	7
236	Solvothermal Synthesis of a Novel Calcium Metal-Organic Framework: High Temperature and Electrochemical Behaviour. Molecules, 2021, 26, 7048.	1.7	7
237	Rapid Microwaveâ€Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2101016.	4.6	7
238	Synthesis and structure of Li2Al3(HO3PMe)2(O3PMe)4Cl·7H2O,an ionic, layered lithium aluminium methylphosphonate. Chemical Communications, 1999, , 2421-2422.	2.2	6
239	Substitution of transition metals into azamacrocycle–gallophosphate inorganic–organic hybrid materials. Journal of Materials Chemistry, 2001, 11, 513-517.	6.7	6
240	High resolution 29Si MAS NMR study of the thermal behaviour of the aluminosilicate zeolite ferrierite. Solid State Sciences, 2006, 8, 342-345.	1.5	6
241	Coordination polymers of 5-substituted isophthalic acid. CrystEngComm, 2016, 18, 1123-1132.	1.3	6
242	Das mikroporöse Magnesiumalumophosphat STAâ€1: Synthese mit einem maßgeschneiderten Templat und Strukturaufkläung an einem Mikrokristall. Angewandte Chemie, 1997, 109, 76-79.	1.6	5
243	Crystal structure resolution of two different chlorhexidine salts. Journal of Molecular Structure, 2016, 1121, 70-73.	1.8	5
244	Physisorption-induced structural change directing carbon monoxide chemisorption and nitric oxide coordination on hemilabile porous metal organicAframework NaNi ₃ (OH)(SIP) ₂ (H ₂ O) ₅ ·H ₂ O (SIP =) Tj ETQq	0 ₫ ở rgB	T /ðverlock 1
245	Structure Effects Induced by High Mechanical Compaction of STAMâ€17â€OEt MOF Powders. European Journal of Inorganic Chemistry, 2021, 2021, 2334-2342.	1.0	5
246	Diffraction Techniques Applied to Zeolites. Studies in Surface Science and Catalysis, 2007, , 375-IX.	1.5	4
247	Medical Applications of Solid Nitrosyl Complexes. Structure and Bonding, 2013, , 225-256.	1.0	4
248	Synthesis and structural characterisation of the copper MOF: STAM-NMe2. CrystEngComm, 2019, 21, 5387-5391.	1.3	4
249	Nitric oxide production from nitrite by a series of zeolites produced via the ADOR route. Microporous and Mesoporous Materials, 2019, 280, 367-371.	2.2	4
250	Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P. Materials Advances, 2021, 2, 3862-3870.	2.6	4
251	Polyhedral Oligomeric Silsesquioxane Dendrimers. Advances in Silicon Science, 2009, , 121-139.	0.6	4

252 Microporous Materials in Antibacterial Applications. , 2017, , 171-188.

Russell E Morris

#	Article	IF	CITATIONS
253	EPR on Medically Relevant NO Adsorbed to Zn-LTA. Applied Magnetic Resonance, 2010, 37, 619-627.	0.6	3
254	Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. Journal of Visualized Experiments, 2016, , e53463.	0.2	3
255	A structural investigation of organic battery anode materials by NMR crystallography. Magnetic Resonance in Chemistry, 2022, 60, 489-503.	1.1	3
256	Preventing Undesirable Structure Flexibility in Pyromellitate Metal Organic Frameworks. European Journal of Inorganic Chemistry, 2020, 2020, 2537-2544.	1.0	2
257	SSZ-51 — A New Aluminophosphate Zeotype: Synthesis, Crystal Structure, NMR, and Dehydration Properties ChemInform, 2004, 35, no.	0.1	1
258	Ionic Liquids and Eutectic Mixtures as Solvent and Template in Synthesis of Zeolite Analogues ChemInform, 2004, 35, no.	0.1	1
259	O65. Arginase enzyme is overactive in non-lesional psoriatic skin. Nitric Oxide - Biology and Chemistry, 2008, 19, 35.	1.2	1
260	Solvent Dependent Disorder in M2(BzOip)2(H2O)·Solvate (M = Co or Zn). Crystals, 2018, 8, 6.	1.0	1
261	Synthetic and Crystallographic Investigation of the Layered Coordination Framework Copper-1,3-bis(4-carboxyphenyl)-5-ethoxybenzene. Crystal Growth and Design, 2020, 20, 39-42.	1.4	1
262	SSZ-23: An Odd Zeolite with Pore Openings of Seven and Nine Tetrahedral Atoms. , 1998, 37, 2122.		1
263	The preparation of modular porous solids from zeolite-like building blocks. Studies in Surface Science and Catalysis, 2004, 154, 133-138.	1.5	0
264	A Solid-State NMR Method for Solution of Zeolite Crystal Structures ChemInform, 2005, 36, no.	0.1	0
265	Introduction to <i>Dalton Transactions</i> themed issue – New Talent: Europe (2022). Dalton Transactions, 0, , .	1.6	0