Emre Yuce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344956/publications.pdf

Version: 2024-02-01

933264 940416 37 286 10 16 h-index citations g-index papers 38 38 38 346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hybrid design of spectral splitters and concentrators of light for solar cells using iterative search and neural networks. Photonics and Nanostructures - Fundamentals and Applications, 2022, 48, 100987.	1.0	1
2	Comprehensive deep learning model for 3D color holography. Scientific Reports, 2022, 12, 2487.	1.6	4
3	Laser Photochemical Nanostructuring of Silicon for Surface Enhanced Raman Spectroscopy. Advanced Optical Materials, 2022, 10, .	3.6	5
4	Wavefront shaping assisted design of spectral splitters and solar concentrators. Scientific Reports, 2021, 11, 2825.	1.6	5
5	Spectral splitting and concentration of broadband light using neural networks. APL Photonics, 2021, 6, 046101.	3.0	4
6	Actively tunable photonic crystal-based switch via plasmon-analog of index enhancement. Applied Physics Letters, 2021, 119, .	1.5	2
7	Angle-independent diffractive optical elements for efficient solar energy conversion. , 2020, , .		3
8	Effective bandwidth approach for the spectral splitting of solar spectrum using diffractive optical elements. Optics Express, 2020, 28, 12911.	1.7	6
9	Deep learning-based image transmission through a multi-mode fiber. , 2020, , .		1
10	Nonlinear frequency conversion of light inside a microcavity. Turkish Journal of Physics, 2019, 43, 221-227.	0.5	0
11	Designs of Diffractive Optical Elements for Solar Energy Harvesting. , 2019, , .		1
12	Deep Learning Algorithm Applied to Daily Solar Irradiation Estimations. , 2018, , .		3
13	Broadband spectral splitting of white light via 2D diffractive optical elements. Turkish Journal of Physics, 2018, 42, 501-508.	0.5	3
14	Adaptive Control of Necklace States in a Photonic Crystal Waveguide. ACS Photonics, 2018, 5, 3984-3988.	3.2	7
15	Fano lines in the reflection spectrum of directly coupled systems of waveguides and cavities: Measurements, modeling, and manipulation of the Fano asymmetry. Physical Review A, 2017, 96, .	1.0	6
16	Tuning out disorder-induced localization in nanophotonic cavity arrays. Optics Express, 2017, 25, 4598.	1.7	14
17	Measurement of the profiles of disorder-induced localized resonances in photonic crystal waveguides by local tuning. Optics Express, 2016, 24, 21939.	1.7	8
18	Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect. Optics Express, 2016, 24, 239.	1.7	7

#	Article	IF	CITATIONS
19	Local thermal resonance control of GalnP photonic crystal membrane cavities using ambient gas cooling. Applied Physics Letters, 2015, 106, .	1.5	15
20	Femtosecond-scale switching based on excited free-carriers. Optics Express, 2015, 23, 16416.	1.7	14
21	Dispersion of coupled mode-gap cavities. Optics Letters, 2015, 40, 4488.	1.7	10
22	Dynamical electrical tuning of a silicon microsphere: used for spectral mapping of the optical resonances. Applied Optics, 2014, 53, 6181.	0.9	3
23	Polarization behavior of elastic scattering from a silicon microsphere coupled to an optical fiber. Photonics Research, 2014, 2, 45.	3.4	15
24	Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Applied Physics Letters, 2014, 105, .	1.5	16
25	All-optical switching of a microcavity repeated at terahertz rates. Optics Letters, 2013, 38, 374.	1.7	33
26	Frequency dependent dynamics of semiconductor microcavities under ultrafast carrier switching. , 2013, , .		0
27	All-optical switching of a microcavity repeated at terahertz clock rates. , 2013, , .		0
28	Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2630.	0.9	12
29	On the pathway of photoexcited electrons: probing photon-to-electron and photon-to-phonon conversions in silicon by ATR-IR. Physical Chemistry Chemical Physics, 2012, 14, 10882.	1.3	11
30	Geometrically enhanced morphology-dependent resonances of a dielectric sphere. Applied Optics, 2011, 50, 6652.	2.1	5
31	Q-factor dependent Kerr switching of semiconductor microcavities. , 2011, , .		0
32	Ultimate fast optical switching of a semiconductor photonic microcavity., 2011,,.		0
33	Competition between electronic Kerr and free carrier effects in an ultimate fast switched semiconductor microcavity. , $2011, \ldots$		0
34	Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. Applied Physics Letters, 2011, 98, 161114.	1.5	48
35	Near-infrared resonant cavity enhanced silicon microsphere photodetector. Proceedings of SPIE, 2009, , .	0.8	0
36	Silicon microspheres for optical modulation applications. , 2009, , .		0

#	Article	IF	CITATIONS
37	Optical Modulation With Silicon Microspheres. IEEE Photonics Technology Letters, 2009, 21, 1481-1483.	1.3	22