Kulamani Parida

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1344630/kulamani-parida-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

458 19,713 72 111 h-index g-index citations papers 486 23,301 7.92 5.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
458	Valorization of Agricultural Wastes as Low-Cost Adsorbents Towards Efficient Removal of Aqueous Cr(VI) 2022 , 507-530		
457	Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107211	6.8	7
456	Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review <i>Materials Horizons</i> , 2022 ,	14.4	2
455	Robust direct Z-scheme exciton transfer dynamics by architecting 3D BiOI MF-supported non-stoichiometric CuInS NC nanocomposite for co-catalyst-free photocatalytic hydrogen evolution <i>RSC Advances</i> , 2022 , 12, 1265-1277	3.7	1
454	MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. <i>Coordination Chemistry Reviews</i> , 2022 , 456, 214392	23.2	6
453	Hydrolytically stable citrate capped FeO@UiO-66-NH MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H evolution. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 353-366	9.3	13
452	Engineering an oxygen-vacancy-mediated step-scheme charge carrier dynamic coupling WO3K/ZnFe2O4 heterojunction for robust photo-Fenton-driven levofloxacin detoxification. <i>New Journal of Chemistry</i> , 2022 , 46, 5785-5798	3.6	1
451	Development of MgIn2S4 Microflower-Embedded Exfoliated B-Doped g-C3N4 Nanosheets: pli Heterojunction Photocatalysts toward Photocatalytic Water Reduction and H2O2 Production under Visible-Light Irradiation. <i>ACS Applied Energy Materials</i> , 2022 , 5, 2838-2852	6.1	2
450	A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. <i>Journal of Molecular Liquids</i> , 2022 , 119105	6	3
449	Mechanistic insight the visible light driven hydrogen generation by plasmonic Au-Cu alloy mounted on TiO2 @B-doped g-C3N4 heterojunction photocatalyst. <i>Journal of Alloys and Compounds</i> , 2022 , 909, 164754	5.7	1
448	Rationally designed TiC/N, S-TiO/g-CN ternary heterostructure with spatial charge separation for enhanced photocatalytic hydrogen evolution <i>Journal of Colloid and Interface Science</i> , 2022 , 621, 254-26	58·3	2
447	A Glimpse on the plethora of applications of prodigious material MXene. <i>Sustainable Materials and Technologies</i> , 2022 , e00439	5.3	Ο
446	BiFeO 3 -Based Materials For Augmented Photoactivity 2022 , 167-216		Ο
445	Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. <i>Journal of Alloys and Compounds</i> , 2022 , 165	7 53	3
444	Energy band modulation in CuxP(x=3,1/2)/PbTiO3 via heterogeneous erection induced benign junction interface for enhanced photocatalytic H2 evolution. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 3893-3893	6.7	O
443	Facile fabrication of nano silver phosphate on B-doped g-C3N4: An excellent p-n heterojunction photocatalyst towards water oxidation and Cr (VI) reduction. <i>Journal of Alloys and Compounds</i> , 2021 , 898, 162853	5.7	3
442	A review on dimensionally controlled synthesis of g-C3N4 and formation of an isotype heterojunction for photocatalytic hydrogen evolution. <i>Catalysis Science and Technology</i> , 2021 , 11, 7505-	7524	1

(2021-2021)

441	ZnFeO@WO /Polypyrrole: An Efficient Ternary Photocatalytic System for Energy and Environmental Application. <i>ACS Omega</i> , 2021 , 6, 30401-30418	3.9	3
44O	Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. <i>Energy & Dougles</i> , 2021, 35, 4670-4686	4.1	13
439	Exfoliated Boron Nitride (e-BN) Tailored Exfoliated Graphitic Carbon Nitride (e-CN): An Improved Visible Light Mediated Photocatalytic Approach towards TCH Degradation and H Evolution. <i>Inorganic Chemistry</i> , 2021 , 60, 5021-5033	5.1	21
438	Aggrandizing the Photoactivity of ZnO Nanorods toward N2 Reduction and H2 Evolution through Facile In Situ Coupling with NixPy. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 6305-6317	8.3	10
437	Inter-MOF hybrid (IMOFH): A concise analysis on emerging corellhell based hierarchical and multifunctional nanoporous materials. <i>Coordination Chemistry Reviews</i> , 2021 , 434, 213786	23.2	15
436	An insight to band-bending mechanism of polypyrrole sensitized B-rGO/ZnFe2O4 p-n heterostructure with dynamic charge transfer for photocatalytic applications. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	11
435	Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A review. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2021 , 47, 100402	16.4	6
434	Recent Progress in LDH@Graphene and Analogous Heterostructures for Highly Active and Stable Photocatalytic and Photoelectrochemical Water Splitting. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 2211-2	2248	14
433	CdS QDs sensitized various Bi based semiconductors: A comparison study on clean energy production under visible light irradiation. <i>Materials Today: Proceedings</i> , 2021 , 35, 216-220	1.4	
432	Facile synthesis of fullerene modified ZnFe2O4 composites towards photocatalytic H2 evolution under visible light irradiation. <i>Materials Today: Proceedings</i> , 2021 , 35, 203-206	1.4	4
431	Efficient perovskite titanate photocatalysts for oxygen evolution reactions. <i>Materials Today: Proceedings</i> , 2021 , 35, 133-136	1.4	1
430	Zr-based MOF: An enhanced photocatalytic application towards H2 evolution by consequence of functional group and LSPR effect. <i>Materials Today: Proceedings</i> , 2021 , 35, 198-202	1.4	1
429	An amine functionalized ZnCr LDH/MCM-41 nanocomposite as efficient visible light induced photocatalyst for Cr(VI) reduction. <i>Materials Today: Proceedings</i> , 2021 , 35, 252-257	1.4	1
428	Photo-catalytic H2 evolution over Au modified mesoporous g-C3N4. <i>Materials Today: Proceedings</i> , 2021 , 35, 247-251	1.4	O
427	Novel synthesis of boron nitride nanosheets from hexagonal boron nitride by modified aqueous phase bi-thermal exfoliation method. <i>Materials Today: Proceedings</i> , 2021 , 35, 239-242	1.4	3
426	Visible light responsive 2DCeO2-CdSQDs binary hybrid towards photocatalytic degradation of phenol. <i>Materials Today: Proceedings</i> , 2021 , 35, 263-267	1.4	
425	Adsorption study of hexavalent chromium by porous and non-porous ZnFe2O4. <i>Materials Today: Proceedings</i> , 2021 , 35, 289-293	1.4	
424	Designing of a novel p-MoS2@n-ZnIn2S4 heterojunction based semiconducting photocatalyst towards photocatalytic HER. <i>Materials Today: Proceedings</i> , 2021 , 35, 268-274	1.4	2

423	Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104675	6.8	16
422	Comparison of NiFe-LDH based heterostructure material towards photocatalytic rhodamine B and phenol degradation with water splitting reactions. <i>Materials Today: Proceedings</i> , 2021 , 35, 243-246	1.4	3
421	Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation. <i>Materials Today: Proceedings</i> , 2021 , 35, 258-262	1.4	5
420	Noble metal loaded ZnCr-LDH based hybrid material for Suzuki coupling reactions: A comparison study on heterogeneous catalysis with photo catalysis. <i>Materials Today: Proceedings</i> , 2021 , 35, 229-232	1.4	1
419	Superior photocatalytic performance of Co Al LDH in the race of metal incorporated LDH: A comparison study. <i>Materials Today: Proceedings</i> , 2021 , 35, 275-280	1.4	4
418	Calculation of relative fluorescence quantum yield and Urbach energy of colloidal CdS QDs in various easily accessible solvents. <i>Journal of Luminescence</i> , 2021 , 231, 117792	3.8	5
417	Recent advances in anion doped g-C3N4 photocatalysts: A review. <i>Carbon</i> , 2021 , 172, 682-711	10.4	123
416	Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored InS@r-GO@(040/110)-BiVO ternary hybrid. <i>Journal of Colloid and Interface Science</i> , 2021 , 585, 519-537	9.3	11
415	A comparison study between novel ternary retrieval NiFe2O4@P-doped g-C3N4 and Fe3O4@P-doped g-C3N4 nanocomposite in the field of photocatalysis, H2 energy production and super capacitive property. <i>Materials Today: Proceedings</i> , 2021 , 35, 281-288	1.4	О
414	Discriminatory {040}-Reduction Facet/Ag Schottky Barrier Coupled {040/110}-BiVO@Ag@CoAl-LDH Z-Scheme Isotype Heterostructure. <i>Inorganic Chemistry</i> , 2021 , 60, 1698-1715	5.1	14
413	Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10039-10080	13	25
412	Recent progress on strategies for the preparation of 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic energy and environmental applications. <i>Catalysis Science and Technology</i> , 2021 , 11, 1222	-∮2548	29
411	Facile construction of CoWO4 modified g-C3N4 nanocomposites with enhanced photocatalytic activity under visible light irradiation. <i>Materials Today: Proceedings</i> , 2021 , 35, 193-197	1.4	1
410	Growth of macroporous TiO2 on B-doped g-C3N4 nanosheets: a Z-scheme photocatalyst for H2O2 production and phenol oxidation under visible light. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1489-1499	6.8	13
409	A review on g-C3N4/graphene nanocomposites: multifunctional roles of graphene in the nanohybrid photocatalyst toward photocatalytic applications. <i>Catalysis Science and Technology</i> , 2021 , 11, 6018-6040	5.5	3
408	Black titania an emerging photocatalyst: review highlighting the synthesis techniques and photocatalytic activity for hydrogen generation. <i>Nanoscale Advances</i> , 2021 , 3, 5487-5524	5.1	1
407	Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. <i>Catalysis Science and Technology</i> , 2021 , 11, 392-415	5.5	14
406	Metal oxide integrated metal organic frameworks (MO@MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1619-1636	6.8	23

(2020-2021)

One step towards the 1T/2H-MoS2 mixed phase: a journey from synthesis to application. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2143-2172	7.8	10
Cerium-Based Metal © rganic Framework Nanorods Nucleated on CeO2 Nanosheets for Photocatalytic N2 Fixation and Water Oxidation. <i>ACS Applied Nano Materials</i> , 2021 , 4, 9635-9652	5.6	3
MgCr-LDH Nanoplatelets as Effective Oxidation Catalysts for Visible Light-Triggered Rhodamine B Degradation. <i>Catalysts</i> , 2021 , 11, 1072	4	1
Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116487	6	10
Systematic investigation on the charge storage behavior of GdCrO3 in aqueous electrolyte. <i>Journal of Energy Storage</i> , 2021 , 42, 103145	7.8	1
HERs in an acidic medium over MoS2 nanosheets: from fundamentals to synthesis and the recent progress. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 1952-1987	5.8	7
A review on vertical and lateral heterostructures of semiconducting 2D-MoS with other 2D materials: a feasible perspective for energy conversion. <i>Nanoscale</i> , 2021 , 13, 9908-9944	7.7	17
CdS QD Decorated LaFeO3 Nanosheets for Photocatalytic Application Under Visible Light Irradiation. <i>ChemistrySelect</i> , 2020 , 5, 6153-6161	1.8	3
Constructing a Novel Surfactant-free MoS2 Nanosheet Modified MgIn2S4 Marigold Microflower: An Efficient Visible-Light Driven 2D-2D p-n Heterojunction Photocatalyst toward HER and pH Regulated NRR. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 4848-4862	8.3	69
Novel Magnetic Retrievable Visible-Light-Driven Ternary FeO@NiFeO/Phosphorus-Doped g-CN Nanocomposite Photocatalyst with Significantly Enhanced Activity through a Double-Z-Scheme System. <i>Inorganic Chemistry</i> , 2020 , 59, 4255-4272	5.1	35
Architecting a Double Charge-Transfer Dynamics InS/BiVO n-n Isotype Heterojunction for Superior Photocatalytic Oxytetracycline Hydrochloride Degradation and Water Oxidation Reaction: Unveiling the Association of Physicochemical, Electrochemical, and Photocatalytic Properties. ACS	3.9	25
Efficient Photon Conversion via Double Charge Dynamics CeO-BiFeO p-n Heterojunction Photocatalyst Promising toward N Fixation and Phenol-Cr(VI) Detoxification. <i>Inorganic Chemistry</i> , 2020 , 59, 3856-3873	5.1	50
Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: a visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation. <i>Nanoscale Advances</i> , 2020 , 2, 2004-2017	5.1	23
{040/110} Facet Isotype Heterojunctions with Monoclinic Scheelite BiVO. <i>Inorganic Chemistry</i> , 2020 , 59, 10328-10342	5.1	23
UiO-66-NH Metal-Organic Frameworks with Embedded MoS Nanoflakes for Visible-Light-Mediated H and O Evolution. <i>Inorganic Chemistry</i> , 2020 , 59, 9824-9837	5.1	52
Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. <i>Journal of Physics and Chemistry of Solids</i> , 2020 , 140, 109377	3.9	21
Adsorptive remediation of Cr (VI) from aqueous solution using cobalt ferrite: Kinetics and isotherm studies. <i>Materials Today: Proceedings</i> , 2020 , 30, 289-293	1.4	1
Organocatalytic Cascade KnoevenagelMichael Addition Reactions: Direct Synthesis of Polysubstituted 2-Amino-4H-Chromene Derivatives. <i>Catalysis Letters</i> , 2020 , 150, 2331-2351	2.8	14
	Chemistry Frontiers, 2021, 5, 2143-2172 Cerium-Based MetalDrganic Framework Nanorods Nucleated on CeO2 Nanosheets for Photocatalytic N2 Fixation and Water Oxidation. ACS Applied Nano Materials, 2021, 4, 9635-9652 MgCr-LDH Nanoplatelets as Effective Oxidation Catalysts for Visible Light-Triggered Rhodamine B Degradation. Catalysts, 2021, 11, 1072 Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. Journal of Molecular Liquids, 2021, 337, 116487 Systematic investigation on the charge storage behavior of GdCrO3 in aqueous electrolyte. Journal of Energy Storage, 2021, 42, 103145 HERs in an acidic medium over MoS2 nanosheets: from Fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987 A review on vertical and lateral heterostructures of semiconducting 2D-MoS with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021, 13, 9908-9944 CdS OD Decorated LaFeO3 Nanosheets for Photocatalytic Application Under Visible Light Irradiation. ChemistrySelect, 2020, 5, 6153-6161 Constructing a Novel Surfactant-free MoS2 Nanosheet Modified MgIn2S4 Marigold Microflower: An Efficient Visible-Light Driven 2D-2D p-n Heterojunction Photocatalyst toward HER and pH Regulated NRR. ACS Sustainable Chemistry and Engineering, 2020, 8, 4848-4862 Novel Magnetic Retrievable Visible-Light-Driven Ternary FeO@NiFeO/Phosphorus-Doped g-CN Nanocomposite Photocatalyst with Significantly Enhanced Activity through a Double-Scheme System. Inorganic Chemistry, 2020, 59, 4255-4272 Architecting a Double Charge-Transfer Dynamics Ins/BIVO n-n Isotype Heterojunction for Superior Photocatalyst Conyetracycline Hydrochloride Degradation and Water Oxidation Reaction: Unveiling the Association of Physicochemical, Electrochemical, and Photocatalyst Promising toward N Fixation and Phenol-Cr(VI) Detoxification. Inorganic Chemistry, 2020, 59, 9824-9837 Influence of secondary oxide phases in enhancing the pho	Cerium-Based MetalDrganic Framework Nanorods Nucleated on CeO2 Nanosheets for Photocatalytic N2 Fixation and Water Oxidation. ACS Applied Nano Materials, 2021, 4, 9635-9652 5.6 MgCr-LDH Nanoplatelets as Effective Oxidation Catalysts for Visible Light-Triggered Rhodamine B Degradation. Catalysts, 2021, 11, 1072 4 Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. Journal of Molecular Liquids, 2021, 337, 116487 6 Systematic investigation on the charge storage behavior of GdCrO3 in aqueous electrolyte. Journal of Energy Storage, 2021, 42, 103145 78 HERs in an acidic medium over MoS2 nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987 78 A review on vertical and lateral heterostructures of semiconducting 2D-MoS with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021, 13, 9908-9944 77 CdS QD Decorated LaFeO3 Nanosheets for Photocatalytic Application Under Visible Light Irradiation. Chemistry, Select., 2020, 5, 6153-6161 2.8 Constructing a Novel Surfactant-free MoS2 Nanosheet Modified MgIn2S4 Marigold Microflower: An Efficient Visible-Light Driven 2D-2D p-n Heterojunction Photocatalyst toward HER and pH Regulated NRR. ACS Sustainable Chemistry and Engineering, 2020, 8, 4884-4862 Novel Magnetic Retrievable Visible-Light-Driven Ternary FeO@NiFeO/Phosphorus-Doped g-CN Nanocomposite Photocatalyst with Significantly Enhanced Activity through a Double-C-Scheme System. Inorganic Chemistry, 2020, 59, 4255-4272 Architecting a Double Charge-Transfer Dynamics Ins/BIVO n-n Isotype Heterojunction for Superior Photocatalyste Promising toward N Fixation and Phenol-Cr(VI) Detoxification. Inorganic Chemistry, 2020, 59, 3856-3873 Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: a visible light stimulated photocatalyste proposition via Double Charge Dynamics CeO-BiFeO p-n Heterojunction Photocatalyste Promising toward N Fixa

387	A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. <i>Journal of Colloid and Interface Science</i> , 2020 , 568, 89-105	9.3	61
386	A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103896	6.8	97
385	Photo-/Electro-catalytic Applications of Visible Light-Responsive Porous Graphitic Carbon Nitride Toward Environmental Remediation and Solar Energy Conversion. <i>Environmental Chemistry for A Sustainable World</i> , 2020 , 211-246	0.8	O
384	Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-CN nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. <i>Journal of Colloid and Interface Science</i> , 2020 , 566, 211-223	9.3	77
383	Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. Journal of Colloid and Interface Science, 2020, 561, 551-567	9.3	79
382	CdS QDs modified BiOI/Bi2MoO6 nanocomposite for degradation of quinolone and tetracycline types of antibiotics towards environmental remediation. <i>Separation and Purification Technology</i> , 2020 , 253, 117523	8.3	28
381	Quantification of boron contents in BN/BCN composites by prompt gamma-ray neutron activation analysis utilizing thermal neutron beam at Dhruva reactor. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2020 , 325, 977-982	1.5	
380	Dynamic charge transfer through Fermi level equilibration in the p-CuFe2O4/n-NiAl LDH interface towards photocatalytic application. <i>Catalysis Science and Technology</i> , 2020 , 10, 6285-6298	5.5	12
379	Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3805-3836	6.8	27
378	Facile Synthesis and Synergetic Interaction of VPO/ESiC Composites toward Solvent-Free Oxidation of Methanol to Formaldehyde. <i>ACS Omega</i> , 2020 , 5, 22808-22815	3.9	2
377	Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19196-19245	13	79
376	Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S,P co-doped g-C3N4/ZnCr LDH photocatalyst. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3695-3717	6.8	34
375	Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction. <i>Catalysis Today</i> , 2020 , 353, 220-231	5.3	33
374	Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-CN for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 519-535	9.3	39
373	A Mechanistic Approach on Oxygen Vacancy-Engineered CeO Nanosheets Concocts over an Oyster Shell Manifesting Robust Photocatalytic Activity toward Water Oxidation. <i>ACS Omega</i> , 2020 , 5, 9789-9	80 ³⁵⁹	15
372	MoS2-mesoporous LaFeO3 hybrid photocatalyst: Highly efficient visible-light driven photocatalyst. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 11502-11511	6.7	15
371	Serendipitous Assembly of Mixed Phase BiVO on B-Doped g-CN: An Appropriate p-n Heterojunction for Photocatalytic O evolution and Cr(VI) reduction. <i>Inorganic Chemistry</i> , 2019 , 58, 12480-12491	5.1	55
370	Construction of a Z-Scheme Dictated WO /Ag/ZnCr LDH Synergistically Visible Light-Induced Photocatalyst towards Tetracycline Degradation and H Evolution. <i>ACS Omega</i> , 2019 , 4, 14721-14741	3.9	74

369	Facile synthesis of ZnFeO@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H energy production. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 667-679	9.3	51	
368	An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. <i>Catalysis Science and Technology</i> , 2019 , 9, 916-941	5.5	60	
367	Fabrication of a Au-loaded CaFe2O4/CoAl LDH pB junction based architecture with stoichiometric H2 & O2 generation and Cr(VI) reduction under visible light. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 94-10	9 ^{.8}	51	
366	Enhanced Photocatalytic Activities of RhB Degradation and H Evolution from in Situ Formation of the Electrostatic Heterostructure MoS/NiFe LDH Nanocomposite through the Z-Scheme Mechanism via p-n Heterojunctions. ACS Applied Materials & amp; Interfaces, 2019, 11, 20923-20942	9.5	133	
365	Influence of Au/Pd alloy on an amine functionalised ZnCr LDHMCM-41 nanocomposite: A visible light sensitive photocatalyst towards one-pot imine synthesis. <i>Catalysis Science and Technology</i> , 2019 , 9, 2493-2513	5.5	23	
364	Facile construction of a novel NiFe2O4@P-doped g-C3N4 nanocomposite with enhanced visible-light-driven photocatalytic activity. <i>Nanoscale Advances</i> , 2019 , 1, 1864-1879	5.1	43	
363	HPW-Anchored UiO-66 Metal-Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H Evolution via Z-Scheme Charge Dynamics. <i>Inorganic Chemistry</i> , 2019 , 58, 4921-4934	5.1	72	
362	Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9145	5- 53 153	50	
361	A bimetallic AuAg nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7614-7627	13	35	
360	ZnFe2O4-Decorated Mesoporous Al2O3 Modified MCM-41: A Solar-Light-Active Photocatalyst for the Effective Removal of Phenol and Cr (VI) from Water. <i>ChemistrySelect</i> , 2019 , 4, 1806-1819	1.8	17	
359	Synergistic ZnFeO-carbon allotropes nanocomposite photocatalyst for norfloxacin degradation and Cr (VI) reduction. <i>Journal of Colloid and Interface Science</i> , 2019 , 544, 96-111	9.3	68	
358	A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. <i>Catalysis Science and Technology</i> , 2019 , 9, 4678-4692	5.5	35	
357	Stupendous Photocatalytic Activity of p-BiOI/n-PbTiO3 Heterojunction: The Significant Role of Oxygen Vacancies and Interface Coupling. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 21593-21606	3.8	28	
356	Construction of surfactant/polymer/copolymer-templated mesoporous reduced graphene oxide nanoparticles for adsorption applications. <i>Graphene Technology</i> , 2019 , 4, 53-59	1.8	2	
355	One-Pot-Architectured Au-Nanodot-Promoted MoS/ZnInS: A Novel p-n Heterojunction Photocatalyst for Enhanced Hydrogen Production and Phenol Degradation. <i>Inorganic Chemistry</i> , 2019 , 58, 9941-9955	5.1	65	
354	Construction of M-BiVO/T-BiVO isotype heterojunction for enhanced photocatalytic degradation of Norfloxacine and Oxygen evolution reaction. <i>Journal of Colloid and Interface Science</i> , 2019 , 554, 278-295	59.3	56	
353	Rational Design of a Coupled Confronting Z-Scheme System Toward Photocatalytic Refractory Pollutant Degradation and Water Splitting Reaction. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900370	4.6	26	
352	Surface-Plasmon-Resonance-Induced Photocatalysis by Core-Shell SiO@Ag NCs@AgPO toward Water-Splitting and Phenol Oxidation Reactions. <i>Inorganic Chemistry</i> , 2019 , 58, 9643-9654	5.1	26	

351	Construction of Isoenergetic Band Alignment between CdS QDs and CaFe2O4@ZnFe2O4 Heterojunction: A Promising Ternary Hybrid toward Norfloxacin Degradation and H2 Energy Production. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17112-17126	3.8	35
350	Green exfoliation of graphitic carbon nitride towards decolourization of Congo-Red under solar irradiation. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103456	6.8	24
349	La2Ti2O7 As Nanometric Electrode Material: An Emerging Candidate For Supercapacitor Performance. <i>ChemistrySelect</i> , 2019 , 4, 12037-12042	1.8	3
348	Adsorptive removal of Cr(VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. Journal of Radioanalytical and Nuclear Chemistry, 2019 , 322, 983-992	1.5	14
347	Deciphering Z-scheme Charge Transfer Dynamics in Heterostructure NiFe-LDH/N-rGO/g-CN Nanocomposite for Photocatalytic Pollutant Removal and Water Splitting Reactions. <i>Scientific Reports</i> , 2019 , 9, 2458	4.9	94
346	Constructive Interfacial Charge Carrier Separation of a p-CaFeO@n-ZnFeO Heterojunction Architect Photocatalyst toward Photodegradation of Antibiotics. <i>Inorganic Chemistry</i> , 2019 , 58, 16592-	। <i>ह</i> ैर्द08	38
345	An energy band compactable B-rGO/PbTiO p-n junction: a highly dynamic and durable photocatalyst for enhanced photocatalytic H evolution. <i>Nanoscale</i> , 2019 , 11, 22328-22342	7.7	42
344	The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. <i>Catalysis Science and Technology</i> , 2019 , 9, 6585-6597	5.5	41
343	Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation. <i>Journal of Materials Science</i> , 2019 , 54, 5726-5742	4.3	57
342	Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 102821	6.8	23
341	Bio-surfactant assisted solvothermal synthesis of Magnetic retrievable Fe3O4@rGO nanocomposite for photocatalytic reduction of 2-nitrophenol and degradation of TCH under visible light illumination. <i>Applied Surface Science</i> , 2019 , 466, 679-690	6.7	28
340	Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 879-896	6.8	60
339	Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO/g-CN hybrid nanocomposite with superior electrochemical and photocatalytic performance. <i>Nanoscale</i> , 2018 , 10, 5950-5964	7.7	157
338	Kinetics, Isotherm, and Thermodynamic Study for Ultrafast Adsorption of Azo Dye by an Efficient Sorbent: Ternary Mg/(Al + Fe) Layered Double Hydroxides. <i>ACS Omega</i> , 2018 , 3, 2532-2545	3.9	35
337	Pyrochlore CeZrO decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 9872-9885	3.6	45
336	Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. <i>Catalysis Today</i> , 2018 , 315, 52-66	5.3	120
335	Adsorption of Cr (VI) and Textile Dyes on to Mesoporous Silica, Titanate Nanotubes, and Layered Double Hydroxides 2018 , 219-260		7
334	Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. <i>Journal of Nanoparticle Research</i> , 2018 , 20, 1	2.3	60

333	Sulphated Al-MCM-41: A simple, efficient and recyclable catalyst for synthesis of substituted aryl ketones/olefins via alcohols addition to alkynes and coupling with styrenes. <i>Molecular Catalysis</i> , 2018 , 452, 46-53	3.3	8
332	Fabrication of a Co(OH)/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H and O Evolution. <i>Inorganic Chemistry</i> , 2018 , 57, 3840)- 38 54	111
331	An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 1297-1312	16.2	156
330	Fabrication of Hierarchical Two-Dimensional MoS Nanoflowers Decorated upon Cubic CaInS Microflowers: Facile Approach To Construct Novel Metal-Free p-n Heterojunction Semiconductors with Superior Charge Separation Efficiency. <i>Inorganic Chemistry</i> , 2018 , 57, 10059-10071	5.1	79
329	Smart 2D-2D Nano-Composite Adsorbents of LDH-Carbonaceous Materials for the Removal of Aqueous Toxic Heavy Metal Ions: A Review. <i>Current Environmental Engineering</i> , 2018 , 5, 20-34	1.6	11
328	Dynamics of Charge-Transfer Behavior in a Plasmon-Induced Quasi-Type-II p-n/n-n Dual Heterojunction in Ag@AgPO/g-CN/NiFe LDH Nanocomposites for Photocatalytic Cr(VI) Reduction and Phenol Oxidation. <i>ACS Omega</i> , 2018 , 3, 7324-7343	3.9	122
327	Cr(VI) remediation from aqueous environment through modified-TiO-mediated photocatalytic reduction. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 1448-1470	3	68
326	Facile synthesis of ZnFeO photocatalysts for decolourization of organic dyes under solar irradiation. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 436-446	3	52
325	A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. <i>Catalysis Science and Technology</i> , 2018 , 8, 679-696	5.5	77
324	Facile Synthesis of CeO2 Nanosheets Decorated upon BiOI Microplate: A Surface Oxygen Vacancy Promoted Z-Scheme-Based 2D-2D Nanocomposite Photocatalyst with Enhanced Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 808-819	3.8	83
323	Architecture of Biperovskite-Based LaCrO/PbTiO p-n Heterojunction with a Strong Interface for Enhanced Charge Anti-recombination Process and Visible Light-Induced Photocatalytic Reactions. <i>Inorganic Chemistry</i> , 2018 , 57, 15133-15148	5.1	30
322	Erratic charge transfer dynamics of Au/ZnTiO nanocomposites under UV and visible light irradiation and their related photocatalytic activities. <i>Nanoscale</i> , 2018 , 10, 18540-18554	7.7	29
321	Synergistic Effects of Boron and Sulfur Co-doping into Graphitic Carbon Nitride Framework for Enhanced Photocatalytic Activity in Visible Light Driven Hydrogen Generation. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5936-5947	6.1	98
320	Visible-Light-Induced Photocatalytic Degradation of Textile Dyes over Plasmonic Silver-Modified TiO2 2018 , 389-418		7
319	Rational design of light induced self healed Fe based oxygen vacancy rich CeO2 (CeO2NSEeOOH/Fe2O3) nanostructure materials for photocatalytic water oxidation and Cr(VI) reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11377-11389	13	48
318	Facile Fabrication of Organic-Inorganic Hybrid Material Based on Well-Dispersed AuNPs on Organo-Functionalised Zn-Al-Layered Double Hydroxides for Hydroamination of 1-Hexene. <i>ChemistrySelect</i> , 2018 , 3, 3092-3100	1.8	6
317	Topotactic Transformation of Solvated MgCr-LDH Nanosheets to Highly Efficient Porous MgO/MgCrO Nanocomposite for Photocatalytic H Evolution. <i>Inorganic Chemistry</i> , 2018 , 57, 8646-8661	5.1	44
316	Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI). Chemical Engineering Journal, 2017 , 316, 1122-1135	14.7	68

315	Visible Light Active Single-Crystal Nanorod/Needle-like \(\frac{1}{2} MnO2@RGO \) Nanocomposites for Efficient Photoreduction of Cr(VI). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 6039-6049	3.8	50
314	Modification of BiOI Microplates with CdS QDs for Enhancing Stability, Optical Property, Electronic Behavior toward Rhodamine B Decolorization, and Photocatalytic Hydrogen Evolution. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 4834-4849	3.8	118
313	The enhanced photocatalytic activity of g-C3N4-LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 1022-1032	6.8	68
312	A review of solar and visible light active oxo-bridged materials for energy and environment. <i>Catalysis Science and Technology</i> , 2017 , 7, 2153-2164	5.5	42
311	Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO2 nanoparticle: a challenging photocatalyst for Cr(VI) reduction. <i>Catalysis Science and Technology</i> , 2017 , 7, 2772-2781	5.5	57
310	Exfoliated metal free homojunction photocatalyst prepared by a biomediated route for enhanced hydrogen evolution and Rhodamine B degradation. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1641-1653	7.8	41
309	Fabrication of Amine and Zirconia on MCM-41 as Acid B ase Catalysts for the Fixation of Carbon Dioxide. <i>ChemCatChem</i> , 2017 , 9, 4105-4111	5.2	13
308	ZnCr2O4@ZnO/g-C3N4: A Triple-Junction Nanostructured Material for Effective Hydrogen and Oxygen Evolution under Visible Light. <i>Energy Technology</i> , 2017 , 5, 1687-1701	3.5	53
307	Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 9467-9481	6.7	76
306	Controlled Synthesis of CeONS-Au-CdSQDs Ternary Nanoheterostructure: A Promising Visible Light Responsive Photocatalyst for H Evolution. <i>Inorganic Chemistry</i> , 2017 , 56, 12297-12307	5.1	41
305	Green Synthesis of Fe3O4/RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10551-10562	8.3	168
304	Remediation of Cr (VI) Using Clay Minerals, Biomasses and Industrial Wastes as Adsorbents 2017 , 129-1	70	11
303	CuO/PbTiO3: A new-fangled pt junction designed for the efficient absorption of visible light with augmented interfacial charge transfer, photoelectrochemical and photocatalytic activities. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 20359-20373	13	57
302	Titanium-Based Mixed Metal Oxide Nanocomposites for Visible Light-Induced Photocatalysis. Springer Series on Polymer and Composite Materials, 2017 , 295-331	0.9	2
301	Nanocomposites of g-C3N4 with Carbonaceous Etonjugated/Polymeric Materials Towards Visible Light-Induced Photocatalysts. <i>Springer Series on Polymer and Composite Materials</i> , 2017 , 251-294	0.9	3
300	Enhanced photocatalytic activity of nanoporous BiVO 4 /MCM-41 co-joined nanocomposites for solar energy conversion and environmental pollution abatement. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 4524-4530	6.8	8
299	Coupling of Crumpled-Type Novel MoS with CeO Nanoparticles: A Noble-Metal-Free p-n Heterojunction Composite for Visible Light Photocatalytic H Production. <i>ACS Omega</i> , 2017 , 2, 3745-375	3 ^{.9}	90
298	Catalytic activity of vanadium-substituted molybdophosphoric acid supported on titania for the vapor-phase synthesis of isophthalonitrile. <i>Inorganic and Nano-Metal Chemistry</i> , 2017 , 47, 1429-1435	1.2	1

297	Sustainable nano composite of mesoporous silica supported red mud for solar powered degradation of aquatic pollutants. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 6137-6147	6.8	7
296	A Visible Light-Driven Zn/Cr🏻aFeO3 Nanocomposite with Enhanced Photocatalytic Activity towards H2 Production and RhB Degradation. <i>ChemistrySelect</i> , 2017 , 2, 10239-10248	1.8	12
295	Unexpected rapid photo-catalytic decolourisation/degradation of organic pollutants over highly active hetero junction based vanadium phosphate catalyst. <i>Catalysis Today</i> , 2017 , 284, 84-91	5.3	10
294	Enhanced Photocatalytic Activity of a Molybdate-Intercalated Iron-Based Layered Double Hydroxide. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 723-733	2.3	29
293	CdS QDs-Decorated Self-Doped EBiMoO: A Sustainable and Versatile Photocatalyst toward Photoreduction of Cr(VI) and Degradation of Phenol. <i>ACS Omega</i> , 2017 , 2, 9040-9056	3.9	57
292	Cu@CuO promoted g-C3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation. <i>RSC Advances</i> , 2016 , 6, 112602-112613	3.7	49
291	Nanostructured CeO2/MgAl-LDH composite for visible light induced water reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 21166-21180	6.7	72
290	Solvent-Switchable Regioselective Synthesis of Aurones and Flavones Using Palladium-Supported Amine-Functionalized Montmorillonite as a Heterogeneous Catalyst. <i>ChemCatChem</i> , 2016 , 8, 2649-2658	3 ^{5.2}	16
289	Enhanced photodegradation of dyes and mixed dyes by heterogeneous mesoporous CoEe/Al2O3MCM-41 nanocomposites: nanoparticles formation, semiconductor behavior and mesoporosity. <i>RSC Advances</i> , 2016 , 6, 94263-94277	3.7	21
288	A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10744-10766	13	420
287	Enhanced photocatalytic activity of nanostructured Fe doped CeO2 for hydrogen production under visible light irradiation. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 14133-14146	6.7	64
286	Amine modified mesoporous Al2O3@MCM-41: an efficient, synergetic and recyclable catalyst for the formylation of amines using carbon dioxide and DMAB under mild reaction conditions. <i>Catalysis Science and Technology</i> , 2016 , 6, 4872-4881	5.5	26
285	A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO 2 modified MCM-41 nanocomposite. <i>Microporous and Mesoporous Materials</i> , 2016 , 226, 229-242	5.3	51
284	An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 336-347	6.8	168
283	Solar Fuels from CO2 Photoreduction over Nano-Structured Catalysts. <i>Materials Science Forum</i> , 2016 , 855, 1-19	0.4	4
282	A review of harvesting clean fuels from enzymatic CO2 reduction. <i>RSC Advances</i> , 2016 , 6, 44170-44194	3.7	54
281	Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr (VI) reduction. <i>Chemical Engineering Journal</i> , 2016 , 299, 227-235	14.7	44
280	An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. <i>RSC Advances</i> , 2016 , 6, 46929-46951	3.7	205

279	Visible-light-induced water reduction reaction for efficient hydrogen production by N-doped In2Ga2ZnO7 nanoparticle decorated on RGO sheets. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1582-1596	6.8	14
278	The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-CN plasmonic photocatalyst towards visible light induced water reduction reaction. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 28502-28514	3.6	103
277	Mechanistic aspects of enhanced congo red adsorption over graphene oxide in presence of methylene blue. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 3498-3511	6.8	20
276	Transforming inorganic layered montmorillonite into inorganicBrganic hybrid materials for various applications: a brief overview. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1100-1111	6.8	41
275	A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 8070-7	3.6	115
274	Glimpses of the modification of perovskite with graphene-analogous materials in photocatalytic applications. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 807-823	6.8	29
273	An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production. <i>RSC Advances</i> , 2015 , 5, 61535-61553	3.7	117
272	Fabrication of the Mesoporous [email@protected]2NPsMCM-41 Nanocomposite: An Efficient Photocatalyst for Rapid Degradation of Phenolic Compounds. <i>Journal of Physical Chemistry C</i> , 2015 , 150	o∂1 ⁸ 11:	24946009
271	Facile Fabrication Of RGO/N-GZ Mixed Oxide Nanocomposite For Efficient Hydrogen Production Under Visible Light. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6634-6646	3.8	26
270	Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review. <i>RSC Advances</i> , 2015 , 5, 83707-83724	3.7	65
269	Palladium anchored on amine-functionalized K10 as an efficient, heterogeneous and reusable catalyst for carbonylative Sonogashira reaction. <i>Applied Catalysis A: General</i> , 2015 , 506, 237-245	5.1	24
268	Biomimetic synthesis, characterization and mechanism of formation of stable silver nanoparticles using Averrhoa carambola L. leaf extract. <i>Materials Letters</i> , 2015 , 160, 566-571	3.3	42
267	Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1862	2 ¹³ 86	35 ³⁵⁶
266	Cesium salts of manganese based lacunary phosphotungstate supported mesoporous silica: An efficient catalyst for solvent free oxidation reaction. <i>Catalysis Communications</i> , 2015 , 59, 73-77	3.2	10
265	Facile Fabrication of S-TiO2/ESiC Nanocomposite Photocatalyst for Hydrogen Evolution under Visible Light Irradiation. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 245-253	8.3	39
264	Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO2 and aziridines. <i>Applied Catalysis A: General</i> , 2014 , 469, 340-349	5.1	58
263	Amine functionalized MCM-41: an efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. <i>Catalysis Science and Technology</i> , 2014 , 4, 1608-1614	5.5	43
262	Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production. <i>ChemSusChem</i> , 2014 , 7, 585-97	8.3	34

261	Facile fabrication of FeOOH nanorod/RGO composite: a robust photocatalyst for reduction of Cr(VI) under visible light irradiation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10300-10312	13	177
260	Pd(0) Nanoparticles Supported Organofunctionalized Clay Driving Cla Coupling Reactions under Benign Conditions through a Pd(0)/Pd(II) Redox Interplay. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1640-1651	3.8	47
259	Solar light driven Rhodamine B degradation over highly active EsiCIIiO2 nanocomposite. <i>RSC Advances</i> , 2014 , 4, 12918-12928	3.7	31
258	Organic amine-functionalized silica-based mesoporous materials: an update of syntheses and catalytic applications. <i>RSC Advances</i> , 2014 , 4, 57111-57124	3.7	32
257	n-La2Ti2O7/p-LaCrO3: a novel heterojunction based composite photocatalyst with enhanced photoactivity towards hydrogen production. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18405-18412	13	59
256	A multi-functionalized montmorillonite for co-operative catalysis in one-pot Henry reaction and water pollution remediation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7526	13	54
255	Dramatic activities of vanadate intercalated bismuth doped LDH for solar light photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16985-96	3.6	72
254	Effects of Co, Ni, Cu, and Zn on Photophysical and Photocatalytic Properties of Carbonate Intercalated MII/Cr LDHs for Enhanced Photodegradation of Methyl Orange. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 3834-3841	3.9	113
253	Facile fabrication of Gd(OH)3 nanorod/RGO composite: Synthesis, characterisation and photocatalytic reduction of Cr(VI). <i>Chemical Engineering Journal</i> , 2014 , 255, 78-88	14.7	50
252	Cs salt of tungstophosphoric acid-promoted zirconium titanium phosphate solid acid catalyst: An active catalyst for the synthesis of bisphenols. <i>Journal of Chemical Sciences</i> , 2014 , 126, 455-465	1.8	2
251	Heterojunction conception of n-La2Ti2O7/p-CuO in the limelight of photocatalytic formation of hydrogen under visible light. <i>RSC Advances</i> , 2014 , 4, 14633	3.7	35
250	Plasmon induced nano Au particle decorated over S,N-modified TiO(2) for exceptional photocatalytic hydrogen evolution under visible light. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 839-46	9.5	79
249	Fabrication of In2O3 modified ZnO for enhancing stability, optical behaviour, electronic properties and photocatalytic activity for hydrogen production under visible light. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3621	13	109
248	Facile Synthesis of Au/g-C3N4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visible-Light Irradiation. <i>ChemCatChem</i> , 2014 , 6, n/a-n/a	5.2	61
247	Sulfate-Anchored Hierarchical MesoMacroporous N-doped TiO2: A Novel Photocatalyst for Visible Light H2Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1429-1438	8.3	42
246	Facile fabrication of mesoporous #Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. <i>Catalysis Today</i> , 2014 , 224, 171-179	5.3	42
245	Biomimetic Synthesis of Silver Nanoparticles by Aqueous Extract of Cinnamomum tamala Leaves: Optimization of Process Variables. <i>Nanoscience and Nanotechnology Letters</i> , 2014 , 6, 409-414	0.8	2
244	Fabrication of NiO/Ta2O5 composite photocatalyst for hydrogen production under visible light. International Journal of Energy Research, 2013, 37, 161-170	4.5	21

243	Facile fabrication of mesoporous iron modified Al2O3 nanoparticles pillared montmorillonite nanocomposite: a smart photo-Fenton catalyst for quick removal of organic dyes. <i>Dalton Transactions</i> , 2013 , 42, 15139-49	4.3	19
242	Fabrication of #e2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. <i>ACS Applied Materials & Description of Action (Materials & Description of Action of Acti</i>	9.5	262
241	A comparative study of molybdenum promoted vanadium phosphate catalysts towards epoxidation of cyclohexene. <i>Applied Catalysis A: General</i> , 2013 , 464-465, 364-373	5.1	16
240	Probing bifunctional nature of aluminium promoted vanadium phosphate: a versatile catalyst for oxidation and esterification. <i>International Journal of Advances in Engineering Sciences and Applied Mathematics</i> , 2013 , 5, 219-223	0.6	
239	Influence of the nature and concentration of precursor metal ions in the brucite layer of LDHs for phosphate adsorption (a) review. RSC Advances, 2013, 3, 23865	3.7	48
238	One-pot synthesis of 5-hydroxymethylfurfural: a significant biomass conversion over tin-promoted vanadium phosphate (SnIPO) catalyst. <i>Catalysis Science and Technology</i> , 2013 , 3, 3278	5.5	28
237	Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. <i>Catalysis Science and Technology</i> , 2013 , 3, 1558	5.5	11
236	Pillared Clay as an Effective Catalyst for Low Temperature VOCs Decomposition. <i>Key Engineering Materials</i> , 2013 , 571, 71-91	0.4	8
235	Design and development of a visible light harvesting Ni@n/Cr@O32@LDH system for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4236	13	162
234	Sustainable and efficient protocol for the synthesis of a RGONPO composite with synergetic stability and reactivity. <i>RSC Advances</i> , 2013 , 3, 4863	3.7	10
233	Enhanced hydrogen production over CdSe QD/ZTP composite under visible light irradiation without using co-catalyst. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1267-1277	6.7	23
232	Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3-MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material. <i>Dalton Transactions</i> , 2013 , 42, 558-66	4.3	54
231	Novel Sm2Ti2O7/SmCrO3 heterojunction based composite photocatalyst for degradation of Rhodamine 6G dye. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 608-615	14.7	33
230	Green synthesis of fibrous hierarchical meso-macroporous N doped TiO2 nanophotocatalyst with enhanced photocatalytic H2 production. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 3545-3553	6.7	50
229	Fabrication of S, N co-doped #e2O3 nanostructures: effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic activity. <i>RSC Advances</i> , 2013 , 3, 7912	3.7	57
228	Gd2Ti2O7/In2O3: Efficient Visible-Light-Driven Heterojunction-Based Composite Photocatalysts for Hydrogen Production. <i>ChemCatChem</i> , 2013 , 5, 2352-2359	5.2	36
227	Amine functionalized K10 montmorillonite: a solid acid-base catalyst for the Knoevenagel condensation reaction. <i>Dalton Transactions</i> , 2013 , 42, 5122-9	4.3	76
226	Montmorillonite supported metal nanoparticles: an update on syntheses and applications. <i>RSC Advances</i> , 2013 , 3, 13583	3.7	59

225	Facile fabrication of mesoporosity driven NIIiO2@CS nanocomposites with enhanced visible light photocatalytic activity. <i>RSC Advances</i> , 2013 , 3, 4976	3.7	44
224	Pd(II) loaded on diamine functionalized LDH for oxidation of primary alcohol using water as solvent. <i>Applied Catalysis A: General</i> , 2013 , 460-461, 36-45	5.1	23
223	Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. Journal of Materials Chemistry A, 2013 , 1, 7816	13	363
222	Green synthesis of Au/TiO2 for effective dye degradation in aqueous system. <i>Chemical Engineering Journal</i> , 2013 , 229, 492-497	14.7	70
221	Cs salt of Co substituted lacunary phosphotungstate supported K10 montmorillonite showing binary catalytic activity. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 849-858	14.7	34
220	Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. <i>Inorganic Chemistry</i> , 2013 , 52, 6390-401	5.1	203
219	A stable amine functionalized montmorillonite supported Cu, Ni catalyst showing synergistic and co-operative effectiveness towards CB coupling reactions. <i>RSC Advances</i> , 2013 , 3, 7570	3.7	35
218	Fabrication, Characterization, and Photoelectrochemical Properties of Cu-Doped PbTiO3 and Its Hydrogen Production Activity. <i>ChemCatChem</i> , 2013 , 5, 3812-3820	5.2	29
217	Transition Metal-Substituted Salt of Tungsten-Based Polyoxometalate-Supported Mesoporous Silica as a Catalyst for Organic Transformation Reactions 2013 , 57-90		
216	Facile fabrication of aluminum-promoted vanadium phosphate: A highly active heterogeneous catalyst for isopropylation of toluene to cymene. <i>Journal of Catalysis</i> , 2012 , 289, 190-198	7-3	20
215	Zntr layered double hydroxide: Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants. <i>Separation and Purification Technology</i> , 2012 , 91, 73-80	8.3	111
214	Photocatalytic activity of Au/TiO2 nanocomposite for azo-dyes degradation. <i>Kinetics and Catalysis</i> , 2012 , 53, 197-205	1.5	17
213	Fabrication of VMn@mesoporous silica for epoxidation of cyclohexene. <i>Journal of Porous Materials</i> , 2012 , 19, 225-232	2.4	2
212	Effect of Co2+ Substitution in the Framework of Carbonate Intercalated Cu/Cr LDH on Structural, Electronic, Optical, and Photocatalytic Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22417-22	424 ⁸	120
211	A facile method for synthesis of Keggin-type cesium salt of iron substituted lacunary phosphotungstate supported on MCM-41 and study of its extraordinary catalytic activity. <i>Catalysis Today</i> , 2012 , 198, 52-58	5.3	18
210	Liquid phase esterification of acetic acid over WO3 promoted EsiC in a solvent free system. <i>Dalton Transactions</i> , 2012 , 41, 14299-308	4.3	21
209	Facile synthesis of InGaZn mixed oxide nanorods for enhanced hydrogen production under visible light. <i>Dalton Transactions</i> , 2012 , 41, 14107-16	4.3	34
208	Fascinating and challenging role of tungstate promoted vanadium phosphate towards solvent free esterification of oleic acid. <i>Dalton Transactions</i> , 2012 , 41, 1325-31	4.3	18

207	A simple and efficient protocol using palladium based lacunary phosphotungstate supported mesoporous silica towards hydrogenation of p-nitrophenol to p-aminophenol at room temperature. <i>Catalysis Science and Technology</i> , 2012 , 2, 979	5.5	32
206	Molybdate/Tungstate Intercalated Oxo-Bridged Zn/Y LDH for Solar Light Induced Photodegradation of Organic Pollutants. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13063-13070	3.8	143
205	Facile synthesis of mesoporous composite Fe/Al2O3MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7567		43
204	Fabrication of nano N-doped In2Ga2ZnO7 for photocatalytic hydrogen production under visible light. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 17936-17946	6.7	14
203	Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies. <i>Journal of Hazardous Materials</i> , 2012 , 241-242, 395-403	12.8	88
202	Dramatic enhancement of catalytic activity over transition metal substituted hematite. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 1612-1619	6.3	10
201	Facile Method for the Synthesis of Phosphomolybdic Acid Supported on Zirconiateria Mixed Oxide and Its Catalytic Evaluation in the Solvent-Free Oxidation of Benzyl Alcohol. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 7859-7866	3.9	18
200	Visible light induced photo-hydroxylation of phenol to catechol over RGOAg3VO4 nanocomposites without the use of H2O2. <i>RSC Advances</i> , 2012 , 2, 7377	3.7	31
199	Characterization of novel Cs and K substituted phosphotungstic acid modified MCM-41 catalyst and its catalytic activity towards acetylation of aromatic alcohols. <i>Journal of Chemical Sciences</i> , 2012 , 124, 1117-1125	1.8	13
198	Facile fabrication of Bi2O3/BiNaTaO3 photocatalysts for hydrogen generation under visible light irradiation. <i>RSC Advances</i> , 2012 , 2, 9423	3.7	58
197	Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 707-13	9.5	74
196	Facile synthesis of visible light responsive V2O5/N,SIIiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10695		94
195	Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: effects on textural properties and photocatalytic activity for H2 generation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7350		129
194	Adsorption of Copper(II) on NH2-MCM-41 and Its Application for Epoxidation of Styrene. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 2235-2246	3.9	66
193	Selective oxidation of benzaldehyde by molecular oxygen over molybdovanadophosphoric acid supported MCM-41. <i>Journal of Porous Materials</i> , 2012 , 19, 397-404	2.4	13
192	Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes. <i>Chemical Engineering Journal</i> , 2012 , 179, 131-139	14.7	257
191	Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate. <i>Chemical Engineering Journal</i> , 2012 , 180, 270-276	14.7	18
190	Enhanced photocatalytic activity over N-doped GaZn mixed oxide under visible light irradiation. International Journal of Hydrogen Energy, 2012, 37, 115-124	6.7	17

189	Liquid phase catalytic oxidation of benzyl alcohol to benzaldehyde over vanadium phosphate catalyst. <i>Applied Catalysis A: General</i> , 2012 , 413-414, 245-253	5.1	84
188	Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light. <i>Dalton Transactions</i> , 2012 , 41, 1173-8	4.3	110
187	Fabrication, growth mechanism, and characterization of Fe(2)O(3) nanorods. <i>ACS Applied Materials & Description of Materials & Description of Fe(2)O(3) nanorods. ACS Applied Materials & Description of Fe(2)O(3) nanorods.</i>	9.5	159
186	Amine functionalized layered double hydroxide: a reusable catalyst for aldol condensation. <i>New Journal of Chemistry</i> , 2011 , 35, 2503	3.6	21
185	Chemoselective oxidation of primary alcohols catalysed by Ce(III)-complex intercalated LDH using molecular oxygen at room temperature. <i>Dalton Transactions</i> , 2011 , 40, 11838-44	4.3	14
184	A reusable Mn(II)-dampy-MCM-41 system for single step amination of benzene to aniline using hydroxylamine. <i>Catalysis Science and Technology</i> , 2011 , 1, 1496	5.5	16
183	A Kinetic, Thermodynamic, and Mechanistic Approach toward Adsorption of Methylene Blue over Water-Washed Manganese Nodule Leached Residues. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 843-848	3.9	52
182	Liquid Phase Hydrodechlorination of Chlorobenzene over Bimetallic Supported Zirconia Catalyst. <i>Industrial & Discourse Chemistry Research</i> , 2011 , 50, 12439-12448	3.9	7
181	Incorporation of Silver Ions into Zirconium Titanium Phosphate: A Novel Approach toward Antibacterial Activity. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9479-9486	3.9	20
180	Visible-light driven Gd2Ti2O7/GdCrO3 composite for hydrogen evolution. <i>Dalton Transactions</i> , 2011 , 40, 12839-45	4.3	78
179	Facile Method for Synthesis of Polyamine-Functionalized Mesoporous Zirconia and Its Catalytic Evaluation toward Henry Reaction. <i>Industrial & Evaluation Chemistry Research</i> , 2011 , 50, 2055-206	4 ^{3.9}	23
178	Copper and Nickel Modified MCM-41 An Efficient Catalyst for Hydrodehalogenation of Chlorobenzene at Room Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 2839-	2849	58
177	A facile method for the synthesis of copper modified amine-functionalized mesoporous zirconia and its catalytic evaluation in C-S coupling reaction. <i>Dalton Transactions</i> , 2011 , 40, 9169-75	4.3	33
176	Highly active Pd nanoparticles dispersed on amine functionalized layered double hydroxide for Suzuki coupling reaction. <i>Dalton Transactions</i> , 2011 , 40, 7130-2	4.3	48
175	Solar-light induced photodegradation of organic pollutants over CdS-pillared zirconium E itanium phosphate (ZTP). <i>Journal of Molecular Catalysis A</i> , 2011 , 349, 36-41		41
174	Mesoporous nanocomposite Fe/Al2O3MCM-41: An efficient photocatalyst for hydrogen production under visible light. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12753-12760	6.7	26
173	Efficient hydrogen production by composite photocatalyst CdSInS/Zirconiumlitanium phosphate (ZTP) under visible light illumination. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 13452-13460	6.7	69
172	Facile Synthesis of Bi2O3/TiO2Nx and its Direct Solar-Light-Driven Photocatalytic Selective Hydroxylation of Phenol. <i>ChemCatChem</i> , 2011 , 3, 311-318	5.2	27

171	Schiff Base Pt(II) Complex Intercalated Montmorillonite: A Robust Catalyst for Hydrogenation of Aromatic Nitro Compounds at Room Temperature. <i>Industrial & Discourse Industrial Chemistry Research</i> , 2011 , 50, 7849-7856	3.9	37
170	Enhanced photocatalytic and adsorptive degradation of organic dyes by mesoporous Cu/Al2O3-MCM-41: intra-particle mesoporosity, electron transfer and OH radical generation under visible light. <i>Dalton Transactions</i> , 2011 , 40, 7348-56	4.3	41
169	Fe(III)-salim anchored MCM-41: synthesis, characterization and catalytic activity towards liquid phase cyclohexane oxidation. <i>Journal of Porous Materials</i> , 2011 , 18, 707-714	2.4	8
168	Facile Synthesis of Dodecatungstophosphoric Acid @ TiO2 Pillared Montmorillonite and Its Effectual Exploitation Towards Solvent Free Esterification of Acetic Acid with n-Butanol. <i>Catalysis Letters</i> , 2011 , 141, 1476-1483	2.8	13
167	La [email[protected]PILM Offering Resilient Option for Efficient and Green Processing toward Epoxidation of Cyclohexene. <i>Industrial & Epoxidation Chemistry Research</i> , 2011, 50, 8973-8982	3.9	13
166	Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 2794-2802	6.7	87
165	A fascinating Suzuki homo-coupling reaction over anchored gold Schiff base complexes on mesoporous host. <i>Journal of Molecular Catalysis A</i> , 2011 , 342-343, 11-17		16
164	Low temperature CO adsorption and oxidation over Au/rare earth-TiO2 nanocatalysts. <i>Applied Catalysis A: General</i> , 2011 , 399, 110-116	5.1	15
163	Gold promoted S,N-doped TiO(2): an efficient catalyst for CO adsorption and oxidation. <i>Environmental Science & Environmental </i>	10.3	68
162	Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO2 and Direct Solar-Light-Driven Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19473-19482	3.8	152
161	Fe/meso-Al2O3: An Efficient Photo-Fenton Catalyst for the Adsorptive Degradation of Phenol. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8310-8318	3.9	51
160	CuxH3\(\textit{Z}\)xPW12O40 Supported on MCM-41: Their Activity to Heck Vinylation of Aryl Halides. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8942-8948	3.9	20
159	Solar Light Active Photodegradation of Phenol over a FexTi1NO2NNy Nanophotocatalyst. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8339-8346	3.9	43
158	Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7144		51
157	Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue. <i>Journal of Hazardous Materials</i> , 2010 , 173, 758-64	12.8	36
156	Anchoring of Fe(III)salicylamide onto MCM-41 for Catalytic Hydroxylation of Phenol in Aqueous Medium Using Hydrogen Peroxide as Oxidant. <i>Catalysis Letters</i> , 2010 , 136, 155-163	2.8	12
155	A Facile Synthesis of Vanadium Phosphate: An Efficient Catalyst for Solvent Free Esterification of Acetic Acid. <i>Catalysis Letters</i> , 2010 , 140, 197-204	2.8	14
154	Solgel synthesis and characterization of mesoporous ironlitanium mixed oxide for catalytic application. <i>Materials Chemistry and Physics</i> , 2010 , 123, 427-433	4.4	18

(2009-2010)

153	A novel approach towards solvent-free epoxidation of cyclohexene by Ti(IV)Bchiff base complex-intercalated LDH using H2O2 as oxidant. <i>Journal of Catalysis</i> , 2010 , 276, 161-169	7.3	62
152	A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation. <i>Applied Catalysis A: General</i> , 2010 , 381, 226-232	5.1	81
151	Cesium salts of heteropoly acid immobilized mesoporous silica: an efficient catalyst for acylation of anisole. <i>Journal of Colloid and Interface Science</i> , 2010 , 350, 132-9	9.3	36
150	Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane. <i>Journal of Hazardous Materials</i> , 2010 , 179, 642-9	12.8	30
149	Synthesis and characterization of a Fe(III)-Schiff base complex in a Zn-Al LDH host for cyclohexane oxidation. <i>Journal of Molecular Catalysis A</i> , 2010 , 329, 7-12		59
148	Visible light response photocatalytic water splitting over CdS-pillared zirconium E itanium phosphate (ZTP). <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5262-5269	6.7	33
147	Fabrication of nanocrystalline LaFeO3: An efficient solgel auto-combustion assisted visible light responsive photocatalyst for water decomposition. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 12161-12168	6.7	255
146	Synthesis, characterization and catalytic activity of copper incorporated and immobilized mesoporous MCM-41 in the single step amination of benzene. <i>Journal of Molecular Catalysis A</i> , 2010 , 318, 85-93		25
145	Low temperature CO oxidation over gold supported mesoporous FeIIiO2. <i>Journal of Molecular Catalysis A</i> , 2010 , 319, 92-97		39
144	A facile method for promoting activities of vanadium Schiffbase complex anchored on organically modified MCM-41 in epoxidation reaction. <i>Journal of Molecular Catalysis A</i> , 2010 , 325, 40-47		34
143	Synthesis and Surface Properties of Silica Spheres with Core Shell Structure by One Convenient Method. <i>Research Letters in Materials Science</i> , 2009 , 2009, 1-5		3
142	Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. <i>Materials Chemistry and Physics</i> , 2009 , 113, 244-248	4.4	168
141	Enhanced Catalytic Activity of Ti, V, Mn-Grafted Silica Spheres Towards Epoxidation Reaction. <i>Catalysis Letters</i> , 2009 , 128, 111-118	2.8	11
140	Acylation of anisole over 12-heteropolyacid of tungsten and molybdenum promoted zirconia. <i>Journal of Molecular Catalysis A</i> , 2009 , 297, 93-100		25
139	Manganese containing MCM-41: Synthesis, characterization and catalytic activity in the oxidation of ethylbenzene. <i>Journal of Molecular Catalysis A</i> , 2009 , 306, 54-61		70
138	Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. <i>Journal of Molecular Catalysis A</i> , 2009 , 310, 93-100		140
137	Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 269-76	9.3	93
136	Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol. <i>Journal of Colloid and Interface Science</i> , 2009 , 340, 209-17	9.3	35

135	Phosphotungstic acid promoted zirconia lumina mixed oxides: A stable and reusable catalysts for epoxidation of trans-stilbene. <i>Catalysis Communications</i> , 2009 , 11, 51-57	3.2	13
134	Solar Light Induced Photocatalytic Degradation of Pollutants over Titania Pillared Zirconium Phosphate and Titanium Phosphate. <i>Catalysis Surveys From Asia</i> , 2008 , 12, 203-213	2.8	11
133	Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. <i>Journal of Colloid and Interface Science</i> , 2008 , 318, 23	1 ² 7 ³	108
132	Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline. <i>Applied Catalysis A: General</i> , 2008 , 351, 59-67	5.1	69
131	Synthesis, characterisation and catalytic evaluation of ironthanganese mixed oxide pillared clay for VOC decomposition reaction. <i>Applied Catalysis B: Environmental</i> , 2008 , 79, 279-285	21.8	68
130	Hydroxylation of phenol over molybdovanadophosphoric acid modified zirconia. <i>Journal of Molecular Catalysis A</i> , 2008 , 279, 104-111		34
129	Visible light induced photocatalytic activity of rare earth titania nanocomposites. <i>Journal of Molecular Catalysis A</i> , 2008 , 287, 151-158		181
128	Effects of preparation methods on gold/titania catalysts for CO oxidation. <i>Journal of Molecular Catalysis A</i> , 2008 , 288, 125-130		5
127	Dramatic promotion of gold/titania for CO oxidation by sulfate ions. <i>Chemical Communications</i> , 2007 , 1044-6	5.8	45
126	Studies on heteropoly acid supported zirconia II. Liquid phase bromination of phenol and various organic substrates. <i>Catalysis Communications</i> , 2007 , 8, 889-893	3.2	24
125	Selective nitration of phenol over silicotungstic acid supported zirconia. <i>Catalysis Communications</i> , 2007 , 8, 1487-1492	3.2	22
124	Structural properties and catalytic oxidation of benzene to phenol over CuO-impregnated mesoporous silica. <i>Applied Catalysis A: General</i> , 2007 , 321, 101-108	5.1	89
123	Mn(III) oxide pillared titanium phosphate (TiP) for catalytic deep oxidation of VOCs. <i>Applied Catalysis A: General</i> , 2007 , 324, 1-8	5.1	16
122	Studies on heteropoly acid supported zirconia. <i>Journal of Molecular Catalysis A</i> , 2007 , 261, 172-179		32
121	Esterification of acetic acid with n-butanol over manganese nodule leached residue. <i>Journal of Molecular Catalysis A</i> , 2007 , 266, 88-92		34
120	Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue. <i>Journal of Molecular Catalysis A</i> , 2007 , 267, 202-208		62
119	Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. <i>Journal of Molecular Catalysis A</i> , 2007 , 261, 254-261		28
118	Studies on selenite adsorption using manganese nodule leached residues. <i>Journal of Colloid and Interface Science</i> , 2007 , 307, 333-9	9.3	20

(2006-2007)

117	Calcined Mg-Fe-CO(3) LDH as an adsorbent for the removal of selenite. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 216-23	9.3	70	
116	Surface characterization and catalytic evaluation of manganese nodule leached residue toward oxidation of benzene to phenol. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 541-6	9.3	8	
115	A study on the structural properties of mesoporous silica spheres. <i>Materials Letters</i> , 2007 , 61, 3942-39	9453.3	23	
114	Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol. <i>Journal of Molecular Catalysis A</i> , 2007 , 264, 248-254		60	
113	Silicotungstic acid supported zirconia: An effective catalyst for esterification reaction. <i>Journal of Molecular Catalysis A</i> , 2007 , 275, 77-83		69	
112	Fe(III) oxide pillared titanium phosphate (TiP): An effective catalyst for deep oxidation of VOCs. Journal of Molecular Catalysis A, 2007 , 276, 17-23		6	
111	Studies on sulphatization Sulphatization of manganese ore with pyrite. <i>Journal of Chemical Technology and Biotechnology</i> , 2007 , 41, 223-230	3.5	2	
110	Liquid phase bromination of phenol: III. Over heteropoly acid (HPA)-impregnated titanium phosphate (TiP). <i>Journal of Molecular Catalysis A</i> , 2006 , 253, 70-78		14	
109	Photocatalytic activity of sulfate modified titania 3: Decolorization of methylene blue in aqueous solution. <i>Journal of Molecular Catalysis A</i> , 2006 , 258, 118-123		40	
108	Liquid phase mononitration of chlorobenzene over WOx/ZrO2: A study of catalyst and reaction parameters. <i>Journal of Molecular Catalysis A</i> , 2006 , 260, 35-42		7	
107	Studies on MCM-41: Effect of sulfate on nitration of phenol. <i>Journal of Molecular Catalysis A</i> , 2006 , 258, 381-387		37	
106	Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 787-93	9.3	132	
105	Liquid phase bromination of phenol over titania pillared zirconium phosphate and titanium phosphate. <i>Catalysis Communications</i> , 2006 , 7, 68-72	3.2	17	
104	Preparation, characterisation of molybdophosphoric and tungstophosphoric acid intercalated zinc aluminium hydrotalcite-like compounds and their catalytic evaluation towards the oxidative bromination of phenol. <i>Catalysis Communications</i> , 2006 , 7, 913-919	3.2	12	
103	Adsorption of phosphate by layered double hydroxides in aqueous solutions. <i>Applied Clay Science</i> , 2006 , 32, 252-260	5.2	371	
102	Effect of microemulsion composition on textural and photocatalytic activity of titania nanomaterial. <i>Applied Catalysis A: General</i> , 2006 , 310, 183-189	5.1	26	
101	The effect of dopants on the activity of MoO3/ZSM-5 catalysts for the dehydroaromatisation of methane. <i>Catalysis Today</i> , 2006 , 114, 383-387	5.3	47	
100	Using phosphorus doping of MoO3/ZSM-5 to modify performance in methane dehydroaromatisation. <i>Journal of Molecular Catalysis A</i> , 2006 , 245, 141-146		12	

99	Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. <i>Journal of Molecular Catalysis A</i> , 2006 , 245, 217-224		84
98	Liquid phase bromination of phenol: II. Over heteropoly acid (HPA)-impregnated zirconium phosphate (ZrP). <i>Applied Catalysis A: General</i> , 2006 , 305, 32-38	5.1	25
97	Studies on manganese nodule leached residue 4. Physicochemical characterization and catalytic activity of acetic acid treated manganese nodule leached residue. <i>Journal of Colloid and Interface Science</i> , 2006 , 294, 117-21	9.3	2
96	Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching. <i>Journal of Colloid and Interface Science</i> , 2006 , 297, 419-25	9.3	61
95	Synthesis, characterization, and catalytic activity of phosphomolybdic acid supported on hydrous zirconia. <i>Journal of Colloid and Interface Science</i> , 2006 , 300, 237-43	9.3	77
94	Effect of sulfate on the surface and catalytic properties of iron-chromium mixed oxide pillared clay. <i>Journal of Colloid and Interface Science</i> , 2006 , 301, 554-9	9.3	24
93	Preparation and characterization of Mg-Al hydrotalcite-like compounds containing cerium. <i>Journal of Colloid and Interface Science</i> , 2006 , 301, 569-74	9.3	67
92	Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. <i>Solar Energy</i> , 2006 , 80, 1048-1054	6.8	107
91	Amine-modified titania lilica mixed oxides: 1. Effect of amine concentration and activation temperature towards epoxidation of cyclohexene. <i>Catalysis Communications</i> , 2005 , 6, 578-581	3.2	18
90	Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2005 , 170, 189-194	4.7	141
89	Effect of heat treatment on the physico-chemical properties and catalytic activity of manganese nodules leached residue towards decomposition of hydrogen peroxide. <i>Journal of Colloid and Interface Science</i> , 2005 , 290, 431-6	9.3	27
88	Studies on structural properties, surface acidity and benzene isopropylation activity of sulphated ZrO2IIiO2 mixed oxide catalysts. <i>Microporous and Mesoporous Materials</i> , 2005 , 80, 327-336	5.3	13
87	Modified TiO2BiO2 mixed oxides: 1. Effect of manganese concentration and activation temperature towards catalytic combustion of volatile organic compounds. <i>Applied Catalysis B: Environmental</i> , 2005 , 57, 83-91	21.8	28
86	Studies on manganese nodule leached residues 2. Adsorption of aqueous phosphate on manganese nodule leached residues. <i>Journal of Colloid and Interface Science</i> , 2005 , 290, 22-7	9.3	19
85	Iron, and Manganese Doped SO4 2½rO21iO2 Mixed Oxide Catalysts: Studies on Acidity and Benzene Isopropylation Activity. <i>Catalysis Letters</i> , 2004 , 93, 185-193	2.8	14
84	Effect of anions on the textural and catalytic activity of titania-silica mixed oxide. <i>Journal of Materials Science</i> , 2004 , 39, 3549-3562	4.3	8
83	Photo-oxidation of 4-nitrophenol in aqueous suspensions, catalysed by titania intercalated zirconium phosphate (ZrP) and titanium phosphate (TiP). <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 163, 561-567	4.7	36
82	A comparative study on textural characterization: cation-exchange and sorption properties of crystalline alpha-zirconium(IV), tin(IV), and titanium(IV) phosphates. <i>Journal of Colloid and Interface Science</i> , 2004 , 270, 436-45	9.3	50

(2001-2004)

81	Sulfated nanozirconia: an investigation on acid-base properties and n-butane isomerization activity. <i>Journal of Colloid and Interface Science</i> , 2004 , 272, 378-83	9.3	9
80	Studies on manganese-nodule leached residues; 1. Physicochemical characterization and its adsorption behavior toward Ni(2+) in aqueous system. <i>Journal of Colloid and Interface Science</i> , 2004 , 277, 48-54	9.3	36
79	Studies on Mg/Fe hydrotalcite-like Leompound (HTlc): removal of Chromium (VI) from aqueous solution. <i>International Journal of Environmental Studies</i> , 2004 , 61, 605-616	1.8	42
78	Effect of anions on the textural and catalytic activity of titania. <i>Journal of Materials Science</i> , 2003 , 38, 1835-1848	4.3	38
77	SO4 2-/TiO2-SiO2 mixed oxide catalyst, 3. An eco-friendly catalyst for esterification of acetic acid. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 78, 381-387		12
76	Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2003 , 261, 213-20	9.3	231
75	Physico-chemical characterisation and photocatalytic activity of nanosized SO42/TiO2 towards degradation of 4-nitrophenol. <i>Journal of Molecular Catalysis A</i> , 2003 , 198, 277-287		56
74	Isopropylation of benzene over sulfated ZrO2IiO2 mixed-oxide catalyst. <i>Applied Catalysis A: General</i> , 2003 , 243, 271-284	5.1	39
73	Removal Of Aqueous Selenite Using Alumina. <i>International Journal of Environmental Studies</i> , 2003 , 60, 75-86	1.8	8
72	Cation exchange and sorption properties of crystalline alpha-titanium(IV) phosphate. <i>Journal of Colloid and Interface Science</i> , 2002 , 248, 221-30	9.3	40
71	Studies on Mg/Fe hydrotalcite-like-compound (HTlc) I. Removal of inorganic selenite (SeO3(2-)) from aqueous medium. <i>Journal of Colloid and Interface Science</i> , 2002 , 251, 26-32	9.3	81
70	Studies on the effects of CO2 and CO on n-butane isomerisation activity over sulfated zirconia. <i>Journal of Molecular Catalysis A</i> , 2002 , 185, 237-248		2
69	Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2IIiO2 mixed oxides. <i>Journal of Molecular Catalysis A</i> , 2002 , 189, 271-282		65
68	Studies on sulphated zirconia: synthesis, physico-chemical characterisation and n-butane isomerisation activity. <i>Applied Catalysis A: General</i> , 2002 , 224, 179-189	5.1	26
67	Studies on anion-promoted titania. <i>Journal of Molecular Catalysis A</i> , 2001 , 176, 151-163		37
66	SO42ITiO2-SiO2 mixed oxide catalyst: 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid. <i>Applied Catalysis A: General</i> , 2001 , 211, 175-187	5.1	29
65	Butane isomerization over persulfated zirconia. Applied Catalysis A: General, 2001, 217, 263-273	5.1	9
64	Effect of phosphate ion on the textural and catalytic activity of titaniallilica mixed oxide. <i>Applied Catalysis A: General</i> , 2001 , 220, 9-20	5.1	42

63	Freeze-dried promoted and unpromoted sulfated zirconia and their catalytic potential. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1903-1911		17
62	Cation Exchange and Sorption Properties of TIN(IV) Phosphate. <i>Journal of Colloid and Interface Science</i> , 2000 , 225, 511-519	9.3	19
61	Studies on PO43 IZrO2. Journal of Colloid and Interface Science, 2000, 226, 340-345	9.3	20
60	Mg/Al hydrotalcites: preparation, characterisation and ketonisation of acetic acid. <i>Journal of Molecular Catalysis A</i> , 2000 , 151, 185-192		81
59	Studies on anion promoted Titania. <i>Journal of Molecular Catalysis A</i> , 2000 , 156, 267-274		43
58	Tungstate-modified aluminium phosphate. Journal of Molecular Catalysis A, 2000, 164, 217-223		9
57	Catalytic Ketonization of Acetic Acid on Zn/Al Layered Double Hydroxides. <i>Reaction Kinetics and Catalysis Letters</i> , 2000 , 69, 223-229		28
56	Effect of calcination temperature on Indian Ocean manganese nodules. M\(\mathbb{B}\)sbauer, XRD, FT-IR and TG-DTA studies. <i>Thermochimica Acta</i> , 1999 , 325, 69-76	2.9	3
55	Catalytic combustion of volatile organic compounds on Indian Ocean manganese nodules. <i>Applied Catalysis A: General</i> , 1999 , 182, 249-256	5.1	41
54	Effect of perchlorate ion on the textural and catalytic activity of zirconia. <i>Applied Catalysis A: General</i> , 1999 , 184, 219-229	5.1	15
53	Catalytic ketonisation of acetic acid over modified zirconia. <i>Journal of Molecular Catalysis A</i> , 1999 , 139, 73-80		66
52	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1999 , 210, 130-13	3 3 9.3	1
51	SO2-4/TiO2-SiO2 Mixed Oxide Catalyst, I: Synthesis, Characterization, and Acidic Properties. <i>Journal of Colloid and Interface Science</i> , 1999 , 216, 127-133	9.3	22
50	Studies on Anion Promoted Titania.1: Preparation, Characterization, and Catalytic Activity toward Alcohol and Cumene Conversion Reactions of Phosphated Titania. <i>Journal of Colloid and Interface Science</i> , 1999 , 217, 388-394	9.3	30
49	Thermal transformation of trinuclear Fe(III) acetato complex intercalated montmorillonite. <i>Applied Clay Science</i> , 1999 , 15, 463-475	5.2	12
48	Transition metal pillared clay 4. A comparative study of textural, acidic and catalytic properties of chromia pillared montmorillonite and acid activated montmorillonite. <i>Applied Catalysis A: General</i> , 1998 , 166, 123-133	5.1	32
47	Transition metal promoted AlPO4 catalyst 2. The catalytic activity of M0.05Al0.95PO4 for alcohol conversion and cumene cracking/dehydrogenation reactions. <i>Applied Catalysis A: General</i> , 1998 , 166, 115-122	5.1	16
46	Studies on Indian Ocean Manganese Nodules. VIII. Adsorption of Aqueous Phosphate on Ferromanganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1998 , 199, 22-27	9.3	16

45	Studies on Indian Ocean Manganese Nodules. Journal of Colloid and Interface Science, 1998, 197, 236-41	9.3	4
44	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1998 , 200, 249-25	i 5 9.3	6
43	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1998 , 202, 313-31	79.3	3
42	Catalytic ketonization of monocar?ylic acids over Indian Ocean manganese nodules. <i>Applied Catalysis A: General</i> , 1998 , 166, 201-205	5.1	21
41	Transition metal oxide pillared clay: 5. Synthesis, characterisation and catalytic activity of ironthromium mixed oxide pillared montmorillonite. <i>Applied Catalysis A: General</i> , 1998 , 174, 91-98	5.1	31
40	Cation Exchange and Sorption Properties of Aluminum Phosphate. <i>Separation Science and Technology</i> , 1998 , 33, 1057-1073	2.5	25
39	Catalytic activity of transition metal mixed amorphous aluminium phosphate towards alcohol conversion reactions <i>Studies in Surface Science and Catalysis</i> , 1998 , 963-973	1.8	
38	Transition-metal oxide pillared clays. <i>Journal of Materials Chemistry</i> , 1997 , 7, 147-152		38
37	Application of statistical design of experiments in the study of dissolution of Goethite (FeOOH) in hydrochloric acid in the presence of ascorbic acid. <i>Hydrometallurgy</i> , 1997 , 46, 271-275	4	9
36	Sulphated zirconia: an efficient paraselectivecatalyst for mononitration of halobenzenes. <i>Catalysis Letters</i> , 1997 , 47, 255-257	2.8	19
35	Studies on Idian ocean manganese nodules, VII. Effect of 🛭 Irradiation on the physico-chemical properties and catalytic activity of polymetallic nodules. <i>Reaction Kinetics and Catalysis Letters</i> , 1997 , 62, 191-199		2
34	Transition metal pillared clay:. <i>Journal of Molecular Catalysis A</i> , 1997 , 121, 91-96		31
33	Studies on Ferric Oxide Hydroxides. <i>Journal of Colloid and Interface Science</i> , 1997 , 185, 355-62	9.3	100
32	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1997 , 187, 453-8	9.3	2
31	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1997 , 187, 375-80	9.3	17
30	Methane budget from paddy fields in India. <i>Chemosphere</i> , 1996 , 33, 737-757	8.4	54
29	Studies on Ferric Oxide Hydroxides. <i>Journal of Colloid and Interface Science</i> , 1996 , 178, 586-593	9.3	28
28	Transition Metal Promoted Amorphous AlPO4Catalysts 1. Acid B ase and Textural Properties. <i>Journal of Colloid and Interface Science</i> , 1996 , 179, 233-240	9.3	13

27	Studies on Indian Ocean Manganese Nodules PART 2. Physico-chemical Characteristics and Catalytic Activity of Heat-Treated Marine Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1996 , 179, 241-248	9.3	9
26	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1996 , 181, 456-46	5 2 9.3	37
25	Studies on PO3图/ZrO2. <i>Journal of Colloid and Interface Science</i> , 1996 , 182, 381-387	9.3	29
24	Transition Metal Oxide Pillared Clay. <i>Journal of Colloid and Interface Science</i> , 1996 , 183, 176-183	9.3	31
23	Studies on Indian Ocean Manganese Nodules. Journal of Colloid and Interface Science, 1996, 183, 374-9	9.3	6
22	Studies on ferric oxide hydroxides. <i>Journal of Materials Science</i> , 1996 , 31, 2199-2205	4.3	14
21	High surface area silicon carbide from rice husk: A support material for catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 1995 , 54, 29-34		16
20	Studies on Indian Ocean Manganese Nodules. <i>Journal of Colloid and Interface Science</i> , 1995 , 173, 112-11	8 9.3	30
19	Methane emission from flooded rice fields under irrigated conditions. <i>Biology and Fertility of Soils</i> , 1994 , 18, 245-248	6.1	84
18	Importance of specific surface area and basic sites of the catalyst in oxidative coupling of CH4 over LiO/MgO catalysts prepared by precipitation methods. <i>Reaction Kinetics and Catalysis Letters</i> , 1991 , 44, 95-101		4
17	Oxidative coupling of methane over Bi2O3P2O5R2O/Sm2O3. <i>Reaction Kinetics and Catalysis Letters</i> , 1991 , 44, 103-108		4
16	Studies on FeOOH. Journal of Materials Science, 1988, 23, 1201-1205	4.3	14
15	Effect of Anions (CLIISO2II) on the Interfacial Properties of Akaganeite (EFeOOH) in Aqueous Electrolyte Solutions. <i>Adsorption Science and Technology</i> , 1988 , 5, 257-279	3.6	3
14	Studies of FeOOH. Chemical composition, microstructure and other characteristics of some synthetic agakaneite samples. <i>Journal of Materials Science Letters</i> , 1987 , 6, 1476-1478		3
13	Adsorption of Cu2+ on various crystalline modifications of MnO2 at 300°LK. <i>Journal of Colloid and Interface Science</i> , 1984 , 98, 245-251	9.3	12
12	Interfacial behavior of some synthetic MnO2 samples during their adsorption of Cu2+ and Ba2+ from aqueous solution at 300°LK. <i>Journal of Colloid and Interface Science</i> , 1984 , 98, 252-260	9.3	34
11	Homogeneous precipitation of molybdenum oxinate and its estimation in a multicomponent system <i>Bunseki Kagaku</i> , 1984 , 33, E481-E485	0.2	
10	The effect of the thermal stability of some synthetic MnO2 samples on their electrochemical and catalytic activity. <i>Thermochimica Acta</i> , 1983 , 64, 131-138	2.9	14

LIST OF PUBLICATIONS

9	Thermal decomposition characteristics in air and their relationship with electrochemical activity of different polymorphic forms of MnO2. <i>Thermochimica Acta</i> , 1983 , 66, 275-287	2.9	9
8	Studies on MnO2II Chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. <i>Electrochimica Acta</i> , 1981 , 26, 435-443	6.7	132
7	Studies on MnO2II. Relationship between physicochemical properties and electrochemical activity of some synthetic MnO2 of different crystallographic forms. <i>Electrochimica Acta</i> , 1981 , 26, 1147	-9756	32
6	Studies on MnO2III. The kinetics and the mechanism for the catalytic decomposition of H2O2 over different crystalline modifications of MnO2. <i>Electrochimica Acta</i> , 1981 , 26, 1157-1167	6.7	111
5	A concise discussion on MoS2 basal plane activation toward the ennoblement of electrocatalytic HER output. <i>Sustainable Energy and Fuels</i> ,	5.8	0
4	Prominence of Cu in a plasmonic CuAg alloy decorated SiO2@S-doped C3N4 coreShell nanostructured photocatalyst towards enhanced visible light activity. <i>Nanoscale Advances</i> ,	5.1	3
3	Robust charge carrier engineering via plasmonic effect and conjugated Iframework on Au loaded ZnCr-LDH/RGO photocatalyst towards H2 and H2O2 production. <i>Inorganic Chemistry Frontiers</i> ,	6.8	2
2	Crystal facet and surface defect engineered low dimensional CeO2 (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. <i>Materials Advances</i> ,	3.3	4
1	Construction of NiCo2O4/O-g-C3N4 Nanocomposites: A Battery-Type Electrode Material for High-Performance Supercapacitor Application. <i>ACS Applied Nano Materials</i> ,	5.6	5