
Parasuraman Selvam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 2001, 40, 3237-3261.	1.8	462
2	Magnesium and magnesium alloy hydrides. International Journal of Hydrogen Energy, 1986, 11, 169-192.	3.8	277
3	Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Journal of Hazardous Materials, 2008, 155, 39-44.	6.5	212
4	Hydrogenation of nitrobenzene over palladium-supported catalysts—Effect of support. Applied Catalysis A: General, 2009, 353, 160-165.	2.2	132
5	Mesoporous (Cr)MCM-41: A Mild and Efficient Heterogeneous Catalyst for Selective Oxidation of Cyclohexane. Journal of Catalysis, 2002, 211, 134-143.	3.1	131
6	para-Selective t-butylation of phenol over mesoporous H-AlMCM-41. Microporous and Mesoporous Materials, 2000, 39, 457-463.	2.2	128
7	A Quantum Molecular Dynamics Simulation Study of the Initial Hydrolysis Step in Solâ^'Gel Process. Journal of Physical Chemistry B, 2003, 107, 1518-1524.	1.2	115
8	The influence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AlMCM-41 molecular sieves. Microporous and Mesoporous Materials, 2003, 65, 177-187.	2.2	111
9	Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4 by high-pressure sintering of the elements. International Journal of Hydrogen Energy, 1991, 16, 615-617.	3.8	102
10	Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates. Catalysis Today, 2001, 68, 63-68.	2.2	96
11	Regio- and Chemoselective Catalytic Transfer Hydrogenation of Aromatic Nitro and Carbonyl as Well as Reductive Cleavage of Azo Compounds over Novel Mesoporous NiMCM-41 Molecular Sieves. Organic Letters, 2002, 4, 4297-4300.	2.4	92
12	Tertiary butylation of phenol over mesoporous H–FeMCM-41. Catalysis Letters, 2000, 65, 153-157.	1.4	90
13	Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves. Applied Catalysis A: General, 2003, 246, 283-293.	2.2	89
14	Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 2005, 86, 287-294.	2.2	87
15	Heterogeneous catalytic transfer hydrogenation of aromatic nitro and carbonyl compounds over cobalt(II) substituted hexagonal mesoporous aluminophosphate molecular sieves. Tetrahedron Letters, 2002, 43, 8527-8529.	0.7	80
16	Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide?. Journal of Materials Chemistry B, 2019, 7, 5412-5422.	2.9	72
17	A visible-light active catechol–metal oxide carbonaceous polymeric material for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 384-396.	5.2	68
18	Novel mesoporous (Cr)MCM-48 molecular sieves: Promising heterogeneous catalysts for selective oxidation reactions. New Journal of Chemistry, 2003, 27, 1184.	1.4	67

#	Article	IF	CITATIONS
19	The entrapment of UO22+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 50, 173-179.	2.2	65
20	Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Materials Research Bulletin, 2004, 39, 2035-2048.	2.7	63
21	New ternary and quaternary metal hydrides with K2PtCl6-type structures. Journal of the Less Common Metals, 1991, 171, 301-311.	0.9	59
22	Selective reduction of alkenes, α,β-unsaturated carbonyl compounds, nitroarenes, nitroso compounds, N,N-hydrogenolysis of azo and hydrazo functions as well as simultaneous hydrodehalogenation and reduction of substituted aryl halides over PdMCM-41 catalyst under transfer hydrogen conditions. Tetrahedron Letters, 2004, 45, 3071-3075.	0.7	59
23	Mesoporous VMCM-41: highly efficient and remarkable catalyst for selective oxidation of cyclohexane to cyclohexanol. Journal of Molecular Catalysis A, 2004, 223, 241-250.	4.8	55
24	Studies on the thermal characteristics of hydrides of Mg, Mg2Ni, Mg2Cu and Mg2Ni1â^'xMx (M = Fe, Co,) Tj ETQo	0 _{3.8} 0 rgB ⁻	T /Qverlock 1
25	Coexistence of paramagnetic and superparamagnetic Fe(III) in mesoporous MCM-41 silicates. Catalysis Today, 2001, 68, 69-74.	2.2	52
26	Catalytic activity of highly ordered mesoporous VMCM-48. Applied Catalysis A: General, 2004, 276, 257-265.	2.2	52
27	Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods. Progress in Natural Science: Materials International, 2012, 22, 616-623.	1.8	52
28	Title is missing!. Catalysis Letters, 2001, 77, 155-158.	1.4	51
29	The effect of vanadium sources on the synthesis and catalytic activity of VMCM-41. Journal of Catalysis, 2005, 229, 64-71.	3.1	51
30	Influence of aluminium sources on the synthesis and catalytic activity of mesoporous AlMCM-41 molecular sieves. Catalysis Today, 2000, 63, 291-295.	2.2	48
31	Synthesis and characterization of divalent cobalt-substituted mesoporous aluminophosphate molecular sieves and their application as novel heterogeneous catalysts for the oxidation of cycloalkanes. Journal of Catalysis, 2005, 233, 276-287.	3.1	46
32	Chemoselective Reduction ofα,β-Unsaturated Carbonyls over Novel Mesoporous CoHMA Molecular Sieves under Hydrogen Transfer Conditions. Advanced Synthesis and Catalysis, 2004, 346, 542-544.	2.1	44
33	Preparation and characterization of CNSR functionalized Fe 3 O 4 magnetic nanoparticles: An efficient adsorbent for the removal of cadmium ion from water. Journal of Environmental Chemical Engineering, 2017, 5, 4539-4546.	3.3	44
34	Fabrication of SPAEK–cerium zirconium oxide nanotube composite membrane with outstanding performance and durability for vanadium redox flow batteries. Journal of Materials Chemistry A, 2018, 6, 20205-20213.	5.2	44
35	Mesoporous H-AlMCM-48: highly efficient solid acid catalyst. Applied Catalysis A: General, 2003, 254, 239-249.	2.2	42
36	Synthesis and characterization of Keggin-type polyoxometalate/zirconia nanocomposites—Comparison of its photocatalytic activity towards various organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 26-40.	2.0	42

#	Article	IF	CITATIONS
37	XPS studies of the surface properties of CaNi5. Journal of Electron Spectroscopy and Related Phenomena, 1989, 49, 203-211.	0.8	41
38	Tertiary butylation of phenol over mesoporous MeMCM-48 and MeMCM-41 (Me = Ga, Fe, Al or B) solid acid catalysts. Catalysis Today, 2004, 96, 135-141.	2.2	41
39	Vapour phase tertiary butylation of phenol over sulfated zirconia catalyst. Catalysis Letters, 2001, 72, 225-228.	1.4	40
40	Encapsulation, characterization and catalytic properties of uranyl ions in mesoporous molecular sieves. Journal of Molecular Catalysis A, 2002, 181, 91-97.	4.8	40
41	Quantum Chemical Molecular Dynamics Simulation of the Plasma Etching Processes. Japanese Journal of Applied Physics, 2003, 42, 1859-1864.	0.8	40
42	A highly selective, heterogeneous route to enones from allylic and benzylic compounds over mesoporous CrMCM-41 molecular sieves. Journal of Catalysis, 2007, 249, 394-396.	3.1	40
43	Mesoporous H-GaMCM-48: A remarkable solid acid catalyst for tertiary butylation of phenol. Journal of Catalysis, 2004, 224, 178-186.	3.1	39
44	Mesoporous γâ€Iron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Chemistry - A European Journal, 2016, 22, 17020-17028.	1.7	39
45	Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties. Journal of Catalysis, 2006, 238, 88-99.	3.1	38
46	Chemo- and regioselective reduction of nitroarenes, carbonyls and azo dyes over nickel-incorporated hexagonal mesoporous aluminophosphate molecular sieves. Tetrahedron Letters, 2004, 45, 2003-2007.	0.7	37
47	Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves. Applied Catalysis B: Environmental, 2003, 46, 155-163.	10.8	35
48	Ring Opening of Methylenecyclopropane over Lanthanocene Catalyst:  A Quantum-Chemical Molecular Dynamics Simulation Study. Organometallics, 2003, 22, 2181-2183.	1.1	35
49	Periodic density functional investigation of BrĄ̃nsted acidity in isomorphously substituted chabazite and AIPO-34 molecular sieves. Microporous and Mesoporous Materials, 2004, 71, 51-56.	2.2	35
50	An efficient mesoporous carbon nitride (g-C ₃ N ₄) functionalized Pd catalyst for carbon–carbon bond formation reactions. RSC Advances, 2016, 6, 49376-49386.	1.7	35
51	Synthesis, characterization and catalytic properties of trivalent iron substituted hexagonal mesoporous aluminophosphatesElectronic supplementary information (ESI) available: XRD patterns. See http://www.rsc.org/suppdata/cc/b2/b204215k/. Chemical Communications, 2002, , 1466-1467.	2.2	33
52	Titanium substituted hexagonal mesoporous aluminophosphates: Highly efficient and selective heterogeneous catalysts for the oxidation of phenols at room temperature. Catalysis Communications, 2003, 4, 57-62.	1.6	33
53	Selective production of aromatic hydrocarbons from lignocellulosic biomass via catalytic fast-hydropyrolysis using W2C/î ³ -Al2O3. Catalysis Communications, 2018, 110, 68-73.	1.6	32
54	Catalytic hydrodehalogenation of aryl halides, reduction of nitroarenes and reductive cleavage of azo compounds over mesoporous PdMCM-41 molecular sieves under transfer hydrogenation conditions. Applied Catalysis B: Environmental, 2004, 49, 251-255.	10.8	31

#	Article	IF	CITATIONS
55	Supported 12-tungstophosphoricacid: An efficient and selective solid acid catalyst for tert-butylation of phenol and cresols. Catalysis Communications, 2008, 9, 1545-1550.	1.6	30
56	X-Ray Photoelectron Spectroscopic Study of the Oxide Film on an Aluminum-Tin Alloy in 3.5% Sodium Chloride Solution. Corrosion, 1997, 53, 808-812.	0.5	28
57	Catalytic Oxidation of Alkylaromatics over Mesoporous (Cr)MCM-41. Catalysis Letters, 2002, 80, 73-76.	1.4	28
58	Vapor-Phase Tertiary Butylation of Phenol Over Mesoporous Gallosilicate Molecular Sieves. Catalysis Letters, 2002, 84, 37-43.	1.4	28
59	Uranyl-anchored MCM-41 as a highly efficient photocatalyst for the complete oxidation of methanol under sunlight. Applied Catalysis B: Environmental, 2004, 54, 145-154.	10.8	28
60	Surface properties of LaNi5: A reinvestigation. International Journal of Hydrogen Energy, 1991, 16, 23-33.	3.8	27
61	Hydrodeoxygenation kinetics of syringol, guaiacol and phenol over H-ZSM-5. Catalysis Communications, 2021, 148, 106164.	1.6	27
62	Structure refinement of Mg2Cu and a comparison of the Mg2Cu, Mg2Ni and Al2Cu structure types. Acta Crystallographica Section B: Structural Science, 1993, 49, 201-203.	1.8	26
63	Overview on the recent progress on Chevrel phases and the impact on the development of PbMo/sub 6/S/sub 8/ wires. IEEE Transactions on Applied Superconductivity, 1993, 3, 1502-1509.	1.1	26
64	Sunlight-Assisted Photocatalytic Oxidation of Methane over Uranyl-Anchored MCM-41. Catalysis Letters, 2004, 98, 113-116.	1.4	25
65	Title is missing!. Catalysis Letters, 2003, 85, 217-222.	1.4	24
66	Surface properties and their consequences on the hydrogen sorption characteristics of certain materials. Journal of the Less Common Metals, 1990, 163, 89-108.	0.9	23
67	Catalytic Transfer Hydrogenation of Nitro and Carbonyl Compounds over Novel Fe(III) Substituted Hexagonal Mesoporous Aluminophosphates. Chemistry Letters, 2003, 32, 142-143.	0.7	23
68	Synthesis and characterization of new photoresponsive acrylamide polymers having pendant chalcone moieties. Reactive and Functional Polymers, 2005, 62, 179-193.	2.0	23
69	An in situ FT-IR study of photo-oxidation of alcohols over uranyl-anchored MCM-41: Possible reaction pathways. Journal of Catalysis, 2007, 247, 1-19.	3.1	22
70	Rational design, synthesis, characterization and catalytic properties of high-quality low-silica hierarchical FAU- and LTA-type zeolites. Scientific Reports, 2018, 8, 16291.	1.6	22
71	Mg2NiH: A new hydride phase in the Mg2Niî—,H2 system. International Journal of Hydrogen Energy, 1988, 13, 749-759.	3.8	21
72	Quantum-chemical study on the supported precious metal catalyst. Catalysis Today, 2003, 87, 43-50.	2.2	21

#	Article	IF	CITATIONS
73	A theoretical study on the cyclopropane adsorption onto the copper surfaces by density functional theory and quantum chemical molecular dynamics methods. Journal of Molecular Catalysis A, 2004, 220, 189-198.	4.8	21
74	Chemical reaction dynamics of PeCB and TCDD decomposition: A tight-binding quantum chemical molecular dynamics study with first-principles parameterization. International Journal of Quantum Chemistry, 2005, 102, 318-327.	1.0	21
75	Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: experimental and modelling studies. Adsorption, 2020, 26, 1027-1038.	1.4	21
76	Some comments on modes of activation of LaNi5 and CaNi5 alloys for hydrogen storage. International Journal of Hydrogen Energy, 1989, 14, 687-689.	3.8	20
77	Enhanced Jc and improved grain-boundary properties in Ag-doped YBa2Cu3O7â^1^´ films. Applied Physics Letters, 1997, 71, 137-139.	1.5	20
78	Stoichiometry of the diamond/silicon interface and its influence on the silicon content of diamond films. Journal of Applied Physics, 1998, 83, 1120-1124.	1.1	20
79	Synthesis, characterization and catalytic properties of mesoporous TiHMA molecular sieves: selective oxidation of cycloalkanes. Microporous and Mesoporous Materials, 2004, 73, 137-149.	2.2	20
80	The Enhanced Catalytic Performance and Stability of Ordered Mesoporous Carbon Supported Nanoâ€Gold with High Structural Integrity for Glycerol Oxidation. Chemical Record, 2019, 19, 1913-1925.	2.9	20
81	X-ray photoelectron spectroscopic, electrical and magnetic studies on Mg2NiH4. Journal of Electron Spectroscopy and Related Phenomena, 1988, 46, 357-361.	0.8	19
82	Investigation of the intermediate hydride phase β-LaNi5H3.5 by high pressure and high temperature gravimetry. Journal of the Less Common Metals, 1991, 171, L17-L21.	0.9	19
83	Chemical vapour deposition of diamond on stainless steel: the effect of Ni-diamond composite coated buffer layer. Diamond and Related Materials, 1998, 7, 1010-1013.	1.8	19
84	Title is missing!. Topics in Catalysis, 2003, 22, 17-22.	1.3	19
85	Li-ion kinetics in LiFePO 4 /carbon nanocomposite prepared by a two-step process: The role of phase composition. Electrochimica Acta, 2016, 209, 565-573.	2.6	19
86	Electrochemical performance of nano-LiFePO4 embedded ordered mesoporous nitrogenous carbon composite as cathode material for Li-ion battery applications. Journal of Electroanalytical Chemistry, 2019, 848, 113242.	1.9	19
87	Energy and environment—An all time searchâ~†. International Journal of Hydrogen Energy, 1991, 16, 35-45.	3.8	18
88	COMPUTATIONAL CHEMISTRY FOR INDUSTRIAL INNOVATION. Reviews in Chemical Engineering, 2006, 22, .	2.3	18
89	Hydrogenolysis of glycerol over silica-supported copper-nanocatalyst: Effect of precipitating-agent and copper metal-loading. Molecular Catalysis, 2018, 458, 307-316.	1.0	18
90	Ordered mesoporous nanocrystalline titania: A promising new class of photocatalyic materials. Catalysis Today, 2018, 309, 202-211.	2.2	18

#	Article	IF	CITATIONS
91	Evidence for the formation of surface carbonates on some hydrogen storage intermetallic compounds: an XPS study. International Journal of Hydrogen Energy, 1990, 15, 133-137.	3.8	17
92	Hydrogen-stabilized Mg2RhH1.1 with filled Ti2Ni-type structure. Journal of Alloys and Compounds, 1992, 178, 167-172.	2.8	17
93	Electrochemical incorporation of lithium into palladium from aprotic electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 270, 445-450.	0.3	16
94	The influence of atmospheric CO2 on the surface properties of Mg2NiH4 and a comparison with some hydrogen storage alloys. Journal of the Less Common Metals, 1990, 158, L1-L7.	0.9	16
95	Tc variation in PbMo6S8: A critical analysis and a comparison with pure phases. Materials Research Bulletin, 1991, 26, 1151-1165.	2.7	16
96	Oxidation of Phenols Over Mesoporous (Cr)MCM-41 Molecular Sieves. Chemistry Letters, 1999, 28, 1141-1142.	0.7	16
97	Density functional study of lanthanide complexes (η5-C5H5)2LnX·OC4H8 (Ln=La–Lu; X=F, Cl, Br and I). Journal of Organometallic Chemistry, 2003, 679, 84-92.	0.8	16
98	Combinatorial computational chemistry approach to the design of metal catalysts for deNOx. Applied Surface Science, 2004, 223, 159-167.	3.1	16
99	Theoretical Calculations on Electronic Structure and Catalytic Reaction of Organo-f-element Complexes. Chemistry Letters, 2004, 33, 780-785.	0.7	16
100	Tight-binding quantum chemical molecular dynamics method: a novel approach to the understanding and design of new materials and catalysts. Catalysis Today, 2005, 100, 11-25.	2.2	16
101	H-MOR: Density functional investigation for the relative strength of Brà nsted acid sites and dynamics simulation of NH3 protonation–deprotonation. Journal of Molecular Catalysis A, 2006, 243, 1-7.	4.8	16
102	Selective Oxidation of Alkenes over Uranyl-Anchored Mesoporous MCM-41 Molecular Sieves. Journal of Physical Chemistry C, 2011, 115, 1922-1931.	1.5	16
103	Synthesis, characterization and electrocatalytic properties of nano-platinum-supported mesoporous carbon molecular sieves, Pt/NCCR-41. Catalysis Today, 2012, 198, 85-91.	2.2	16
104	Acidâ€Mediated Synthesis of Ordered Mesoporous Aluminosilicates: The Challenge and the Promise. Chemistry - A European Journal, 2017, 23, 1604-1612.	1.7	16
105	X-ray photoelectron spectroscopic investigations of the activation of FeTi for hydrogen uptake. International Journal of Hydrogen Energy, 1987, 12, 245-250.	3.8	15
106	Thermal studies on Mg2NiH4: Existence of additional hydride phase in the Mg2Ni-Hydrogen system. Thermochimica Acta, 1988, 125, 1-8.	1.2	15
107	Platinum group metals substituted MCM-41 molecular sieves: Synthesis, characterization and application as novel catalysts for the reduction of NO by CO. Journal of Molecular Catalysis A, 2009, 314, 49-54.	4.8	15
108	Evaluation of visible-light driven photocatalytic reaction by porphyrin coupled TiO2 nanotubes obtained via rapid breakdown anodization. Journal of Environmental Chemical Engineering, 2020, 8, 104382.	3.3	15

#	Article	IF	CITATIONS
109	Superconducting, microstructural, and grain boundary properties of hotâ€pressed PbMo6S8. Journal of Applied Physics, 1992, 72, 4232-4239.	1.1	14
110	Superconductivity and valence state of Tb in Lu1â^'xTbxBa2Cu3O7â^'Î′(0â‰ ¤ â‰ 9 .7). Applied Physics Letters, 1994, 65, 1296-1298.	1.5	14
111	Studies on photocrosslinkable copolymers of 4-methacryloyloxyphenyl-3′,4′-dimethoxystyryl ketone and methyl methacrylate. European Polymer Journal, 2005, 41, 831-841.	2.6	14
112	Uranyl-Anchored MCM-41 as a Highly Efficient Photocatalyst in the Oxidative Destruction of Short Chain Linear Alkanes: An in situ FTIR Study. Journal of Physical Chemistry C, 2008, 112, 15832-15843.	1.5	14
113	XPS and XAES studies on hydrogen storage magnesium-based alloys. International Journal of Hydrogen Energy, 1989, 14, 899-902.	3.8	13
114	A Convenient Synthesis of Alkyl Substitutedp-Benzoquinones from Phenols and H2O2over TiAPO-5 Molecular Sieve Catalyst. Chemistry Letters, 1999, 28, 455-456.	0.7	13
115	Density Functional Study of the Insertion and Ring-Opening Mechanism of MCP over Cp2LaH and Cp2LuH Catalysts. Journal of the American Chemical Society, 2003, 125, 16210-16212.	6.6	13
116	Fresh and calcined supported 12-tungstosilicicacid: Synthesis, characterization and application to some acid catalyzed reactions. Journal of Molecular Catalysis A, 2007, 275, 14-24.	4.8	13
117	Large-Scale Electronic Structure Calculation on Blue Phosphor BaMgAl10O17:Eu2+Using Tight-Binding Quantum Chemistry Method Implemented for Rare-Earth Elements. Japanese Journal of Applied Physics, 2007, 46, 2534-2541.	0.8	12
118	Designing ordered mesoporous aluminosilicates under acidic conditions via an intrinsic hydrolysis method. Dalton Transactions, 2017, 46, 770-779.	1.6	12
119	Sulfonic Acid Functionalized Ordered Mesoporous Silica and their Application as Highly Efficient and Selective Heterogeneous Catalysts in the Formation of 1,2â€Monoacetoneâ€Dâ€glucose. ChemCatChem, 2018, 10, 5610-5618.	1.8	12
120	Novel ionic liquid-templated ordered mesoporous aluminosilicates: Synthesis, characterization and catalytic properties. Microporous and Mesoporous Materials, 2019, 275, 172-179.	2.2	12
121	Comment on "Crystal structure of lithium beryllium hydride". Physical Review B, 1989, 39, 12329-12330.	1.1	11
122	Critical currents and pinning in powder metallurgically processed Chevrel phase bulk superconducting samples. Physica C: Superconductivity and Its Applications, 1994, 234, 219-228.	0.6	11
123	Title is missing!. Tribology Letters, 2003, 15, 155-162.	1.2	11
124	Theoretical investigation of mixed-ligand lanthanocene complexes, (η5-C5H5)2LnX·OC4H8 (Ln=La, Gd, Lu;) Tj ET	Qq0 0 0 r	gBT /Overloc

125	Selective Oxidation of Cycloalkanes over Iron-substituted Hexagonal Mesoporous Aluminophosphate Molecular Sieves. Chemistry Letters, 2004, 33, 198-199.	0.7	11
126	Development of the bifunctional catalyst Mn-Fe-Beta for selective catalytic reduction of nitrogen oxides. Russian Chemical Bulletin, 2014, 63, 389-395.	0.4	11

#	Article	IF	CITATIONS
127	Surface Studies of Some Hydrogen Storage Materials*. Zeitschrift Fur Physikalische Chemie, 1989, 164, 1199-1206.	1.4	10
128	Specific role of polymorphs of supporting titania in catalytic CO oxidation on gold. Catalysis Today, 2011, 164, 325-331.	2.2	10
129	Investigation of Nano-Molybdenum Carbide Particle Produced by Wire-Explosion Process. IEEE Transactions on Plasma Science, 2015, 43, 3470-3475.	0.6	10
130	A Remarkable Catalytic Activity of Hierarchical Zeolite (ZHâ€5) for Tertiary Butylation of Phenol with Enhanced 2,4â€Ðiâ€ <i>t</i> â€Butylphenol Selectivity. ChemCatChem, 2018, 10, 3978-3984.	1.8	10
131	A novel mixed ligand Te(IV) complex comprising three halides and a dithiocarbamate; synthesis and crystal structure of triiododiethyldithiocarbamatotellurium(IV), Te{(C2H5)2NCS2}I3. Polyhedron, 1996, 15, 1453-1458.	1.0	9
132	High resolution Auger electron spectroscopy studies on (100) and (111) facets of chemical vapor deposited diamond. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 413-418.	0.9	9
133	Diamond deposition on Ni/Ni-diamond coated stainless steel substrate. Journal of Materials Research, 1999, 14, 1148-1152.	1.2	9
134	Synthesis, Characterization and Catalytic Properties of Vanadium Substituted Hexagonal Mesoporous Aluminophosphate Molecular Sieves. Catalysis Letters, 2004, 93, 47-53.	1.4	9
135	Monte Carlo simulation of hydrogen absorption in palladium and palladium–silver alloys. Catalysis Today, 2003, 82, 233-240.	2.2	8
136	Immobilization of Recombinant Endoâ€1,4â€Î²â€xylanase on Ordered Mesoporous Matrices for Xylooligosaccharides Production. ChemistrySelect, 2019, 4, 11214-11221.	0.7	8
137	Surfactantâ€Mediated and Morphologyâ€Controlled Nanostructured LiFePO 4 /Carbon Composite as a Promising Cathode Material for Liâ€ion Batteries. ChemistryOpen, 2020, 9, 23-31.	0.9	8
138	Water-Driven Structural Transformation in Cobalt Trimesate Metal-Organic Frameworks. Energies, 2021, 14, 4751.	1.6	8
139	X-ray crystallographic and thermal studies on the hydrides of magnesium and its intermetallics. Bulletin of Materials Science, 1987, 9, 21-27.	0.8	7
140	Note on the formation of surface carbides. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, 277-287.	0.8	7
141	Ion-induced carbide formation of TiFe: evidence from XPS and AES studies. Journal of the Less Common Metals, 1990, 161, 77-85.	0.9	7
142	Structured TiO2 based catalysts for clean water technologies. Studies in Surface Science and Catalysis, 2006, 162, 151-158.	1.5	7
143	Novel computational chemistry approaches for studying physico-chemical properties of zeolite materials. Microporous and Mesoporous Materials, 2007, 101, 324-333.	2.2	7
144	Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. Molecular Catalysis, 2020, 484, 110745.	1.0	7

#	Article	IF	CITATIONS
145	The role of Sn addition on the improvement of J/sub c/ in PbMo/sub 6/S/sub 8/. IEEE Transactions on Applied Superconductivity, 1993, 3, 1575-1578.	1.1	6
146	Stabilization of a superconducting TbSr2Cu2.85Re0.15O7+δ compound and the valence state of terbium. Applied Physics Letters, 1995, 67, 2711-2713.	1.5	6
147	Ligand effect on the periodic properties of trivalent organolanthanide complexes: a density functional study. Inorganic Chemistry Communication, 2004, 7, 566-568.	1.8	6
148	Synthesis, characterization and photocrosslinking properties of polyacrylamides having bromo substituted pendant cinnamoyl moieties. European Polymer Journal, 2005, 41, 35-45.	2.6	6
149	Theoretical Simulation of Dielectric Breakdown by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods. Japanese Journal of Applied Physics, 2007, 46, 1853-1858.	0.8	6
150	Combined NOx Selective Catalytic Reduction and NH3-slip Oxidation Activity of Composite [Fe-Beta + Fe(Mn)MCM-48] Catalysts. Mendeleev Communications, 2014, 24, 313-315.	0.6	6
151	Fast and Standard Selective Catalytic Reduction in NH3-DeNOx: Pathways Discrimination as a Key Step for the Understanding of Kinetics. Mendeleev Communications, 2014, 24, 311-312.	0.6	6
152	Ionic Liquid Templated Synthesis of Hexagonal (IITM-41) and Cubic (IITM-48) Ordered Mesoporous Silicates. Advanced Porous Materials, 2016, 4, 24-30.	0.3	6
153	Comment on â€~â€~Enhanced Jc's of YBa2Cu3O7â~x–Ag ex situ annealed coevaporated films on LaAlO3 (10 substrates'' [Appl. Phys. Lett. 65, 2350 (1994)]. Applied Physics Letters, 1995, 67, 3650-3652.	00) 1.5	5
154	SUPERCONDUCTIVITY AND CuK-XANES OF (Hg, Re)Sr2CuO4+δ. Modern Physics Letters B, 2001, 15, 261-268.	1.0	5
155	Synthesis, structural parameters and superconducting properties of 1201-type (Hg,M)Sr2CuO4+ \hat{A} (M =) Tj ETQq1	1,0,78431 1,878431	14 rgBT /Civi
156	Theoretical Investigation on Electrical and Electronic Properties of Carbon Materials. Japanese Journal of Applied Physics, 2007, 46, 2650-2654.	0.8	5
157	Probing the Fe(III) sites in mesoporous FeMCM-41. Catalysis Today, 2009, 141, 103-108.	2.2	5
158	Electrochemical performance of nano-sized LiFePO ₄ -embedded 3D-cubic ordered mesoporous carbon and nitrogenous carbon composites. RSC Advances, 2020, 10, 30406-30414.	1.7	5
159	Periodic mesoporous titania with anatase and bronze phases – the new generation photocatalyst: synthesis, characterisation, and application in environmental remediation. New Journal of Chemistry, 2020, 44, 16269-16284.	1.4	5
160	Surface characterisation of anodic films of Pb-Sn alloy electrodes: the effect of Sn on the photoelectrochemical properties. Materials Chemistry and Physics, 1997, 49, 169-173.	2.0	4
161	Photocatalysed reaction of meso-tetraphenylporphyrin on mesoporous TiMCM-41 molecular sieves. Journal of Molecular Catalysis A, 2000, 157, 189-192.	4.8	4
162	Electronic structure of the electrode/electrolyte interface: large-scale tight-binding quantum chemical simulation. Solid State Ionics, 2004, 175, 847-850.	1.3	4

#	Article	IF	CITATIONS
163	1-(4-Chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o405-o407.	0.2	4
164	Regio- and Chemoselective Reduction of Aromatic Nitro and Carbonyl Compounds Over Novel Bakers Yeast Immobilized Nanoporous Silicates. Letters in Organic Chemistry, 2006, 3, 901-904.	0.2	4
165	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	1.6	4
166	Biological Evolution of New Intercalated Layered Double Hydroxides: Anticancer, Antibacterial and Photocatalytic Studies. ChemistrySelect, 2017, 2, 11717-11726.	0.7	4
167	Hydrogen Sorption Characteristics of Ordered Mesoporous Carbons: Experimental and Modeling View Point. Journal of Chemical & Engineering Data, 2018, , .	1.0	4
168	Amino-Functionalized Phosphotungstic Acid-Anchored Mesoporous Molecular Sieves: Highly Efficient Catalysts for Selective Epoxidation of Cyclohexene. Advanced Porous Materials, 2016, 4, 110-117.	0.3	4
169	Surface and bulk properties of hot-pressed PbMo6S8 superconductor studied by Auger electron spectroscopy and calorimetry. Applied Physics A: Materials Science and Processing, 1995, 60, 459-465.	1.1	3
170	Anomalous Auger electron spectroscopy results of chemical vapor deposited diamond (111) and (100) surfaces. Applied Surface Science, 1997, 115, 23-27.	3.1	3
171	Superconductivity in (Hg,Mo)Sr2CuO4+l̃´system. Materials Chemistry and Physics, 2002, 75, 144-146.	2.0	3
172	Copolymers of 4â€(3′,4′â€Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 791-809.	1.2	3
173	3-(3-Hydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o743-o745.	0.2	3
174	Transition-Metal (Ti,V,Cr,Mn,Fe,Co,Cu) Containing Ordered Nanoporous Materials:Novel Heterogeneous Catalysts for Selective Oxidation Reactions. Journal of Nanoscience and Nanotechnology, 2006, 6, 1758-1764.	0.9	3
175	Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions, 2018, 208, 147-185.	1.6	3
176	Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions, 2018, 208, 471-495.	1.6	3
177	Nanostructured zeolite with brain-coral morphology and tailored acidity: a self-organized hierarchical porous material with MFI topology. CrystEngComm, 2020, 22, 6275-6286.	1.3	3
178	ORDERED NANOSTRUCTURED CARBONS, NCCR-41 AND CMK-3: SYNTHESIS, CHARACTERIZATION, AND HYDROGEN SORPTION STUDIES. Catalysis in Green Chemistry and Engineering, 2018, 1, 235-246.	0.2	3
179	Alcohol fuels-the question of their introduction: A comparison with conventional vehicular fuels and hydrogen. International Journal of Hydrogen Energy, 1992, 17, 237-242.	3.8	2
180	Homogeneity and critical current density of Sn-doped PbMo6S8 superconductors. Applied Physics A: Materials Science and Processing, 1995, 61, 615-621.	1.1	2

#	Article	IF	CITATIONS
181	Oxidation state and superconducting properties of Y1â^'xPrxSr2Cu2.85Re0.15O7+l´. Journal of Applied Physics, 1996, 80, 6884-6887.	1.1	2
182	Magnetization study of mercurocuprate (Hg,Re)Sr2CuO4+δ. Pramana - Journal of Physics, 2002, 58, 839-841.	0.9	2
183	Heterogeneous Photocatalytic Degradation of Methanol over Uranyl-Anchored Nanoporous MCM-41 and MCM-48. Journal of Nanoscience and Nanotechnology, 2006, 6, 1811-1814.	0.9	2
184	Crystal structure of bis(acetato-lº <i>O</i>)diaqua(2,2′-bipyridine-lº ² <i>N</i> , <i>N</i> ′)manganese(II). Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m326-m327.	0.2	2
185	Synthesis of \hat{I}^3 -alumina nanoparticles by wire-explosion process: Characterisation and formation mechanism. , 2017, , .		2
186	Interpretation of magnetization measurement data obtained on hot pressed Pb/sub 1-x/Sn/sub x/Mo/sub 6/S/sub 8/ samples. IEEE Transactions on Applied Superconductivity, 1993, 3, 1579-1581.	1.1	1
187	IMPACT OF PRECURSOR SOURCE ON THE STRUCTURAL AND SUPERCONDUCTING PROPERTIES OF (Hg,Cr)Sr2CuO4+l´. Modern Physics Letters B, 2004, 18, 1517-1524.	1.0	1
188	Vapor-phase photocatalytic oxidation of volatile organic compounds over novel uranyl-anchored MCM-41 heterogeneous catalyst. Studies in Surface Science and Catalysis, 2005, , 787-794.	1.5	1
189	Magnetization Studies of Mercury-Cuprates and Its Precursors. Journal of Superconductivity and Novel Magnetism, 2005, 18, 475-480.	0.5	1
190	Crystal structure of aquadioxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-l̂° ³ <i>O</i> , <i>N</i> , <i>O</i> â€2)molybder Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m35-m36.	nuoon⊉VI).	1
191	Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions, 2018, 208, 575-593.	1.6	1
192	Ordered mesoporous carbon-supported nano-platinum catalysts: application in direct methanol fuel cells. Sustainable Energy Developments, 2015, , 131-157.	0.3	1
193	Ordered Mesoporous Carbonâ€supported Morphologicallyâ€controlled Nanoâ€Gold: Role of Support as well as the Shape and Size of Gold Nanoparticles on the Selective Oxidation of Glycerol. ChemCatChem, 2022, 14, .	1.8	1
194	The valence state of M-ions in the chemically stabilized YSr 2 Cu 3-x M x O 7+δ (M=Mo, W and Re) superconductors. Applied Physics A: Materials Science and Processing, 1997, 64, 177-179.	1.1	0
195	Heterogeneous Catalytic Transfer Hydrogenation of Aromatic Nitro and Carbonyl Compounds over Cobalt(II) Substituted Hexagonal Mesoporous Aluminophosphate Molecular Sieves ChemInform, 2003, 34, no.	0.1	0
196	Regio- and Chemoselective Catalytic Transfer Hydrogenation of Aromatic Nitro and Carbonyl as Well as Reductive Cleavage of Azo Compounds over Novel Mesoporous NiMCM-41 Molecular Sieves ChemInform, 2003, 34, no.	0.1	0
197	Catalytic Transfer Hydrogenation of Nitro and Carbonyl Compounds over Novel Fe(III) Substituted Hexagonal Mesoporous Aluminophosphates ChemInform, 2003, 34, no.	0.1	0
198	Chemo- and Regioselective Reduction of Nitroarenes, Carbonyls and Azo Dyes over Nickel-Incorporated Hexagonal Mesoporous Aluminophosphate Molecular Sieves ChemInform, 2004, 35. no.	0.1	0

#	Article	IF	CITATIONS
199	Selective Oxidation of Cycloalkanes over Iron-Substituted Hexagonal Mesoporous Aluminophosphate Molecular Sieves ChemInform, 2004, 35, no.	0.1	0
200	Selective Reduction of Alkenes, α,β-Unsaturated Carbonyl Compounds, Nitroarenes, Nitroso Compounds, N,N-Hydrogenolysis of Azo and Hydrazo Functions as well as Simultaneous Hydrodehalogenation and Reduction of Substituted Aryl Halides over PdMCM-41 Catalyst under Transfer Hydrogen Conditions ChemInform, 2004, 35, no.	0.1	0
201	Theoretical Calculations on Electronic Structure and Catalytic Reaction of Organo-f-Element Complexes. ChemInform, 2004, 35, no.	0.1	0
202	Tight-Binding Quantum Chemical Molecular Dynamics Method: a Novel Approach to the Understanding and Design of New Materials and Catalysts. ChemInform, 2005, 36, no.	0.1	0
203	Synthesis protocol and superconducting properties of (Hg,Cr)Sr2CuO4+δ. Superconductor Science and Technology, 2005, 18, 264-270.	1.8	Ο
204	Crystal structure of (2-formylphenolato-κ2O,O′)oxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-κ3O,N,O′)vanadium(V). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m104-m105.	0.2	0
205	Effect of the Titanium Nanoparticle on the Quantum Chemical Characterization of the Liquid Sodium Nanofluid. Journal of Physical Chemistry B, 2016, 120, 3527-3539.	1.2	0
206	Theoretical Investigation of Electrical and Electronic Properties of Carbon Materials. , 2006, , .		0
207	Theoretical Simulation of Dielectric Breakdown by Molecular Dynamics and Tight-Binding Quantum Chemistry Methods. , 2006, , .		0
208	Theoretical Study on the Electronic and Structural Properties of p-Type Transparent Conducting Metal Oxides. , 2006, , .		0
209	Development of New Calculation Method for Rare Earth Element and Large Scale Electronic Structure Calculation of Blue Phosphor BaMgAl10O17:Eu2+. , 2006, , .		0
210	Ordered Mesoporous Silica-Based Precious Metal Catalysts for NO Reduction. Advanced Porous Materials, 2018, 6, 73-79.	0.3	0
211	Hydrodeoxygenation of Bio-Oil from Fast Pyrolysis of Pinewood Over Various Catalysts. Springer Proceedings in Energy, 2021, , 141-148.	0.2	0