Zhi-ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated synthesis and ripening of AgInS2 QDs in droplet microreactors: An update fluorescence regulating via suitable temperature combination. Chinese Chemical Letters, 2022, 33, 3767-3771.	4.8	3
2	Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. Journal of Virology, 2022, 96, JVI0181321.	1.5	6
3	Ultrasmall MnSe Nanoparticles as <i>T</i> ₁ -MRI Contrast Agents for <i>In Vivo</i> Tumor Imaging. ACS Applied Materials & Interfaces, 2022, 14, 11167-11176.	4.0	9
4	How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?. Science Bulletin, 2022, 67, 619-625.	4.3	5
5	Photoluminescence Enhancement of NIRâ€II Emissive Ag ₂ S Quantum Dots via Chlorideâ€Mediated Growth and Passivation. Advanced Optical Materials, 2022, 10, .	3.6	13
6	Non-invasive T cells adoptive immunotherapy for solid tumor with gel anti-tumor T-cell injections. Chemical Engineering Journal, 2022, 439, 135839.	6.6	3
7	Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Analytical Chemistry, 2022, 94, 1302-1307.	3.2	7
8	Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Analytical Chemistry, 2022, 94, 8392-8398.	3.2	10
9	Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B: Chemical, 2022, 368, 132173.	4.0	4
10	A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta, 2021, 223, 121721.	2.9	5
11	Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition. Analytica Chimica Acta, 2021, 1146, 33-40.	2.6	7
12	Influenza A Viruses Enter Host Cells via Extracellular Ca ²⁺ Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials, 2021, 4, 2044-2051.	2.3	10
13	Size-Resolved Single Entity Collision Biosensing for Dual Quantification of MicroRNAs in a Single Run. ACS Applied Materials & Interfaces, 2021, 13, 22254-22261.	4.0	7
14	Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips. Chemical Communications, 2021, 57, 3555-3558.	2.2	7
15	Ultrasensitive Electrochemiluminescence Biosensor Based on Closed Bipolar Electrode for Alkaline Phosphatase Detection in Single Liver Cancer Cell. Analytical Chemistry, 2021, 93, 1757-1763.	3.2	46
16	Personalized gel-droplet monocyte vaccines for cancer immunotherapy. Lab on A Chip, 2021, 21, 4414-4426.	3.1	8
17	Target-modulated sensitization of upconversion luminescence by NIR-emissive quantum dots: a new strategy to construct upconversion biosensors. Chemical Communications, 2020, 56, 1976-1979.	2.2	20
18	A colorimetric and electrochemical dual-mode biosensor for thrombin using a magnetic separation technique. Journal of Materials Chemistry B, 2020, 8, 3574-3581.	2.9	25

#	Article	IF	CITATIONS
19	Real-Time Monitoring of Temperature Variations around a Gold Nanobipyramid Targeted Cancer Cell under Photothermal Heating by Actively Manipulating an Optically Trapped Luminescent Upconversion Microparticle. Analytical Chemistry, 2020, 92, 1292-1300.	3.2	17
20	One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core–Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Analytical Chemistry, 2020, 92, 830-837.	3.2	26
21	One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA. Analytical Chemistry, 2020, 92, 853-858.	3.2	50
22	A salt-out strategy for purification of amphiphilic polymer-coated quantum dots. New Journal of Chemistry, 2020, 44, 15341-15344.	1.4	1
23	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie, 2020, 132, 11336-11340.	1.6	4
24	Interfacial Synthesis of Ag 2 S/ZnS Core/Shell Quantum Dots in a Droplet Microreactor. ChemistrySelect, 2020, 5, 5889-5894.	0.7	10
25	Ag ₂ Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Applied Nano Materials, 2020, 3, 6071-6077.	2.4	24
26	A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab on A Chip, 2020, 20, 1418-1425.	3.1	15
27	Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Analytical Chemistry, 2020, 92, 5258-5266.	3.2	12
28	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie - International Edition, 2020, 59, 11240-11244.	7.2	36
29	Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Science China Chemistry, 2020, 63, 448-453.	4.2	10
30	Chlorophyll-Based Near-Infrared Fluorescent Nanocomposites: Preparation and Optical Properties. ACS Omega, 2020, 5, 14261-14266.	1.6	3
31	Glucose-functionalized near-infrared Ag ₂ Se quantum dots with renal excretion ability for long-term <i>in vivo</i> tumor imaging. Journal of Materials Chemistry B, 2019, 7, 5782-5788.	2.9	30
32	A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials, 2019, 219, 119367.	5.7	53
33	Absolute quantification of particle number concentration using a digital single particle counting system. Mikrochimica Acta, 2019, 186, 529.	2.5	0
34	Cell derived extracellular vesicles: from isolation to functionalization and biomedical applications. Biomaterials Science, 2019, 7, 3552-3565.	2.6	15
35	Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Analytical Chemistry, 2019, 91, 15260-15266.	3.2	21
36	Microvesicle detection by a reduced graphene oxide field-effect transistor biosensor based on a membrane biotinylation strategy. Analyst, The, 2019, 144, 6055-6063.	1.7	15

#	Article	IF	CITATIONS
37	Transformation of Viral Light Particles into Near-Infrared Fluorescence Quantum Dot-Labeled Active Tumor-Targeting Nanovectors for Drug Delivery. Nano Letters, 2019, 19, 7035-7042.	4.5	23
38	Digital Single Virus Immunoassay for Ultrasensitive Multiplex Avian Influenza Virus Detection Based on Fluorescent Magnetic Multifunctional Nanospheres. ACS Applied Materials & Interfaces, 2019, 11, 5762-5770.	4.0	66
39	Cell Membraneâ€Camouflaged NIR II Fluorescent Ag ₂ Te Quantum Dotsâ€Based Nanobioprobes for Enhanced In Vivo Homotypic Tumor Imaging. Advanced Healthcare Materials, 2019, 8, e1900341.	3.9	68
40	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and Ï€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
41	Economical synthesis of ultra-small Bi ₂ S ₃ nanoparticles for high-sensitive CT imaging. Materials Research Express, 2019, 6, 095005.	0.8	6
42	Coating Magnetic Nanospheres with PEG To Reduce Nonspecific Adsorption on Cells. ACS Omega, 2019, 4, 7391-7399.	1.6	14
43	Multifunctional Cellular Beacons with in Situ Synthesized Quantum Dots Make Pathogen Detectable with the Naked Eye. Analytical Chemistry, 2019, 91, 7280-7287.	3.2	16
44	Controllable and flexible cellular network for virus cell-to-cell spread. Chinese Chemical Letters, 2019, 30, 1229-1232.	4.8	0
45	Controlled Release of Therapeutic Agents with Near-Infrared Laser for Synergistic Photochemotherapy toward Cervical Cancer. Analytical Chemistry, 2019, 91, 6555-6560.	3.2	15
46	Simple and rapid extracellular vesicles quantification via membrane biotinylation strategy coupled with fluorescent nanospheres-based lateral flow assay. Talanta, 2019, 200, 408-414.	2.9	16
47	A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Mikrochimica Acta, 2019, 186, 223.	2.5	74
48	Ebola Virus Aptamers: From Highly Efficient Selection to Application on Magnetism-Controlled Chips. Analytical Chemistry, 2019, 91, 3367-3373.	3.2	53
49	Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosensors and Bioelectronics, 2019, 131, 267-273.	5.3	45
50	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	3.2	58
51	Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 2019, 91, 1178-1184.	3.2	152
52	Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chinese Chemical Letters, 2019, 30, 79-82.	4.8	24
53	Uncovering the Rab5â€Independent Autophagic Trafficking of Influenza A Virus by Quantumâ€Dotâ€Based Singleâ€Virus Tracking. Small, 2018, 14, e1702841.	5.2	22
54	On-demand one-step synthesis of small-sized fluorescent–magnetic bifunctional microparticles on a droplet-splitting chip. Journal of Materials Chemistry B, 2018, 6, 961-965.	2.9	9

#	Article	IF	CITATIONS
55	Photoinduced Electron Transfer Mediated by Coordination between Carboxyl on Carbon Nanodots and Cu ²⁺ Quenching Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 3662-3668.	1.5	56
56	Ultrasmall Pb:Ag ₂ S Quantum Dots with Uniform Particle Size and Bright Tunable Fluorescence in the NIRâ€I Window. Small, 2018, 14, e1703296.	5.2	78
57	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	7.2	86
58	Digital Single Virus Electrochemical Enzyme-Linked Immunoassay for Ultrasensitive H7N9 Avian Influenza Virus Counting. Analytical Chemistry, 2018, 90, 1683-1690.	3.2	53
59	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	1.6	4
60	A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosensors and Bioelectronics, 2018, 99, 186-192.	5.3	94
61	Rapid detection and subtyping of multiple influenza viruses on a microfluidic chip integrated with controllable micro-magnetic field. Biosensors and Bioelectronics, 2018, 100, 348-354.	5.3	45
62	Controllable synthesis of nanocrystals in droplet reactors. Lab on A Chip, 2018, 18, 41-56.	3.1	97
63	Self-co-reactant and ion-annihilation electrogenerated chemiluminescence of carbon nanodots. Carbon, 2018, 129, 168-174.	5.4	27
64	A "Driver Switchover―Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS Nano, 2018, 12, 474-484.	7.3	59
65	Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Analytical Chemistry, 2018, 90, 14020-14028.	3.2	13
66	Internalization of the pseudorabies virus <i>via</i> macropinocytosis analyzed by quantum dot-based single-virus tracking. Chemical Communications, 2018, 54, 11184-11187.	2.2	13
67	Cellular-Beacon-Mediated Counting for the Ultrasensitive Detection of Ebola Virus on an Integrated Micromagnetic Platform. Analytical Chemistry, 2018, 90, 7310-7317.	3.2	22
68	Gd-DTPA-coupled Ag ₂ Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window. Nanoscale, 2018, 10, 10699-10704.	2.8	45
69	Enhanced and High-Purity Enrichment of Circulating Tumor Cells Based on Immunomagnetic Nanospheres. ACS Applied Nano Materials, 2018, 1, 4019-4027.	2.4	9
70	Chip-Assisted Single-Cell Biomarker Profiling of Heterogeneous Circulating Tumor Cells Using Multifunctional Nanospheres. Analytical Chemistry, 2018, 90, 10518-10526.	3.2	50
71	Folate-Engineered Microvesicles for Enhanced Target and Synergistic Therapy toward Breast Cancer. ACS Applied Materials & Interfaces, 2017, 9, 5100-5108.	4.0	48
72	Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells. Biosensors and Bioelectronics, 2017, 94, 219-226.	5.3	52

#	Article	IF	CITATIONS
73	Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component. Journal of Nanobiotechnology, 2017, 15, 37.	4.2	11
74	Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Analytical Chemistry, 2017, 89, 6535-6542.	3.2	47
75	Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano, 2017, 11, 4395-4406.	7.3	61
76	Integrating optical tweezers with up-converting luminescence: a non-amplification analytical platform for quantitative detection of microRNA-21 sequences. Chemical Communications, 2017, 53, 4092-4095.	2.2	19
77	Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip. Scientific Reports, 2017, 7, 44835.	1.6	8
78	Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Analytical Chemistry, 2017, 89, 2039-2048.	3.2	58
79	Cancer Treatment: Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients (Adv. Funct. Mater.) Tj ETQq1 1 C).78 748 14 ı	gBT /Overloc
80	Revealing the biodistribution and clearance of Ag ₂ Se near-infrared quantum dots in mice. New Journal of Chemistry, 2017, 41, 12721-12725.	1.4	18
81	Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 2017, 89, 13105-13111.	3.2	128
82	Enhanced directional cell migration induced by vaccinia virus on a microfluidic-based multi-shear cell migration assay platform. Integrative Biology (United Kingdom), 2017, 9, 903-911.	0.6	5
83	Preparation of Monodisperse Hydrophilic Quantum Dots with Amphiphilic Polymers. ACS Applied Materials & Interfaces, 2017, 9, 39901-39906.	4.0	17
84	Nearâ€Infrared Fluorescent Ag ₂ Se–Cetuximab Nanoprobes for Targeted Imaging and Therapy of Cancer. Small, 2017, 13, 1602309.	5.2	61
85	One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping. Biosensors and Bioelectronics, 2017, 90, 146-152.	5.3	17
86	Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients. Advanced Functional Materials, 2017, 27, 1703482.	7.8	16
87	Fluorescence onverging Carbon Nanodotsâ€Hybridized Silica Nanosphere. Small, 2016, 12, 4702-4706.	5.2	63
88	Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids. Biomaterials, 2016, 99, 24-33.	5.7	17
89	Near-infrared Ag ₂ Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Advances, 2016, 6, 38183-38186.	1.7	40
90	Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Analytical Chemistry, 2016, 88, 9166-9172.	3.2	73

#	Article	IF	CITATIONS
91	Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane. Biomaterials, 2016, 106, 69-77.	5.7	40
92	Photoluminescent Properties of Carbon Nanodots. Carbon Nanostructures, 2016, , 239-256.	0.1	2
93	Sensitive and Quantitative Detection of C-Reaction Protein Based on Immunofluorescent Nanospheres Coupled with Lateral Flow Test Strip. Analytical Chemistry, 2016, 88, 6577-6584.	3.2	180
94	Biofunctionalized magnetic nanospheres-based cell sorting strategy for efficient isolation, detection and subtype analyses of heterogeneous circulating hepatocellular carcinoma cells. Biosensors and Bioelectronics, 2016, 85, 633-640.	5.3	36
95	Purification of quantum dot-based bioprobes via high-performance size exclusion chromatography. Talanta, 2016, 159, 64-73.	2.9	13
96	Ultrasmall Magnetically Engineered Ag ₂ Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. Journal of the American Chemical Society, 2016, 138, 1893-1903.	6.6	143
97	Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale, 2016, 8, 12406-12429.	2.8	93
98	Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells. ACS Applied Materials &	4.0	27
99	A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab on A Chip, 2016, 16, 1214-1223.	3.1	75
100	Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Interfaces, 2016, 8, 28372-28382.	4.0	44
101	Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS Nano, 2016, 10, 1147-1155.	7.3	30
102	Tracking single viruses infecting their host cells using quantum dots. Chemical Society Reviews, 2016, 45, 1211-1224.	18.7	106
103	A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Scientific Reports, 2015, 5, 11937.	1.6	17
104	Biometallizationâ€Based Electrochemical Magnetoimmunosensing Strategy for Avian Influenza A (H7N9) Virus Particle Detection. Chemistry - an Asian Journal, 2015, 10, 1387-1393.	1.7	24
105	Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods. Small, 2015, 11, 5416-5422.	5.2	19
106	Rapid and Quantitative Detection of Avian Influenza A(H7N9) Virions in Complex Matrices Based on Combined Magnetic Capture and Quantum Dot Labeling. Small, 2015, 11, 5280-5288.	5.2	32
107	A room-temperature method for coating a ZnS shell on semiconductor quantum dots. Journal of Materials Chemistry C, 2015, 3, 964-967.	2.7	16
108	Transformation of Cellâ€Derived Microparticles into Quantumâ€Dotâ€Labeled Nanovectors for Antitumor siRNA Delivery. Angewandte Chemie - International Edition, 2015, 54, 1036-1040.	7.2	86

#	Article	IF	CITATIONS
109	Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors and Bioelectronics, 2015, 68, 586-592.	5.3	54
110	Analysis of Cancer Marker in Tissues with Hadamard Transform Fluorescence Spectral Microscopic Imaging. Journal of Fluorescence, 2015, 25, 397-402.	1.3	3
111	Photoluminescenceâ€Tunable Carbon Nanodots: Surfaceâ€6tate Energyâ€Gap Tuning. Advanced Materials, 2015, 27, 1663-1667.	11.1	658
112	An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale, 2015, 7, 5969-5973.	2.8	73
113	Droplet-based microreactor for synthesis of water-soluble Ag ₂ S quantum dots. Nanotechnology, 2015, 26, 275701.	1.3	28
114	Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosensors and Bioelectronics, 2015, 74, 628-636.	5.3	59
115	Simultaneous Point-of-Care Detection of Enterovirus 71 and Coxsackievirus B3. Analytical Chemistry, 2015, 87, 11105-11112.	3.2	43
116	A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots. Nanoscale, 2015, 7, 19310-19316.	2.8	16
117	Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS Nano, 2015, 9, 11750-11760.	7.3	42
118	Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosensors and Bioelectronics, 2015, 66, 520-526.	5.3	53
119	Exploring Sialic Acid Receptorsâ€Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Singleâ€Particle Tracking. Small, 2014, 10, 2712-2720.	5.2	24
120	Fast magnetic isolation of simple sequence repeat markers in microfluidic channels. Lab on A Chip, 2014, 14, 1410-1414.	3.1	11
121	Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells. ACS Nano, 2014, 8, 941-949.	7.3	228
122	Enzyme-Induced Metallization as a Signal Amplification Strategy for Highly Sensitive Colorimetric Detection of Avian Influenza Virus Particles. Analytical Chemistry, 2014, 86, 2752-2759.	3.2	137
123	Control of magnetic field distribution by using nickel powder@PDMS pillars in microchannels. RSC Advances, 2014, 4, 17660-17666.	1.7	22
124	Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus in Live Cells. Analytical Chemistry, 2014, 86, 3902-3908.	3.2	51
125	Recognition Kinetics of Biomolecules at the Surface of Different-Sized Spheres. Biophysical Journal, 2014, 107, 165-173.	0.2	11
126	Revealing Carbon Nanodots As Coreactants of the Anodic Electrochemiluminescence of Ru(bpy) ₃ ²⁺ . Analytical Chemistry, 2014, 86, 7224-7228.	3.2	83

#	Article	IF	CITATIONS
127	Uniform Fluorescent Nanobioprobes for Pathogen Detection. ACS Nano, 2014, 8, 5116-5124.	7.3	120
128	Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters. Nanoscale, 2014, 6, 13126-13134.	2.8	34
129	Evaluation of nonspecific interactions between quantum dots and proteins. Physical Chemistry Chemical Physics, 2014, 16, 7677.	1.3	11
130	Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials, 2014, 35, 2295-2301.	5.7	48
131	Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip. Analytica Chimica Acta, 2014, 820, 104-111.	2.6	12
132	Anisotropic cell-to-cell spread of vaccinia virus on microgrooved substrate. Biomaterials, 2014, 35, 5049-5055.	5.7	12
133	Threeâ€Dimensional Tracking of Rab5―and Rab7â€Associated Infection Process of Influenza Virus. Small, 2014, 10, 4746-4753.	5.2	37
134	Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Scientific Reports, 2013, 3, 2462.	1.6	46
135	A magnetic bead-based bienzymatic electrochemical immunosensor for determination of H9N2 avian influenza virus. Electrochemistry Communications, 2013, 31, 129-132.	2.3	44
136	Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Biomaterials, 2013, 34, 9545-9558.	5.7	115
137	Picoliter droplets developed as microreactors for ultrafast synthesis of multi-color water-soluble CdTe quantum dots. Chemical Communications, 2013, 49, 7114.	2.2	26
138	Site-specific labeling of baculovirus in an integrated microfluidic device. Lab on A Chip, 2013, 13, 860.	3.1	6
139	A Simple Point-of-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry, 2013, 85, 2645-2651.	3.2	77
140	Ag ₂ Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window. ACS Applied Materials & Interfaces, 2013, 5, 1186-1189.	4.0	188
141	On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. Biosensors and Bioelectronics, 2013, 41, 129-136.	5.3	74
142	One-Step Sensitive Detection of Salmonella typhimurium by Coupling Magnetic Capture and Fluorescence Identification with Functional Nanospheres. Analytical Chemistry, 2013, 85, 1223-1230.	3.2	125
143	Optically Encoded Multifunctional Nanospheres for One-Pot Separation and Detection of Multiplex DNA Sequences. Analytical Chemistry, 2013, 85, 11929-11935.	3.2	65
144	Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma. Future Oncology, 2013, 9, 1029-1037.	1.1	12

#	Article	IF	CITATIONS
145	Electrochemical Magnetoimmunosensing Approach for the Sensitive Detection of H9N2 Avian Influenza Virus Particles. Chemistry - an Asian Journal, 2013, 8, 2220-2226.	1.7	22
146	Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips. Applied Physics Letters, 2013, 102, 123502.	1.5	8
147	Electrochemical methods – important means for fabrication of fluorescent nanoparticles. Analyst, The, 2012, 137, 805-815.	1.7	13
148	Effectively and Efficiently Dissecting the Infection of Influenza Virus by Quantum-Dot-Based Single-Particle Tracking. ACS Nano, 2012, 6, 141-150.	7.3	127
149	High-efficiency dual labeling of influenza virus for single-virus imaging. Biomaterials, 2012, 33, 7828-7833.	5.7	61
150	A microfluidic platform for real-time andin situmonitoring of virus infection process. Biomicrofluidics, 2012, 6, 034122.	1.2	17
151	Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. Journal of Materials Chemistry, 2012, 22, 3713.	6.7	34
152	Surface Labeling of Enveloped Viruses Assisted by Host Cells. ACS Chemical Biology, 2012, 7, 683-688.	1.6	42
153	Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 2012, 22, 5917.	6.7	177
154	Emission-Tunable Near-Infrared Ag ₂ S Quantum Dots. Chemistry of Materials, 2012, 24, 3-5.	3.2	183
155	Robust and Highly Sensitive Fluorescence Approach for Point-of-Care Virus Detection Based on Immunomagnetic Separation. Analytical Chemistry, 2012, 84, 2358-2365.	3.2	73
156	Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes between Human Lung Cancer Cells. ACS Nano, 2012, 6, 10033-10041.	7.3	52
157	Fluorescent–magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis. Nanotechnology, 2012, 23, 035602.	1.3	40
158	Ultrasmall Near-Infrared Ag ₂ Se Quantum Dots with Tunable Fluorescence for <i>in Vivo</i> Imaging. Journal of the American Chemical Society, 2012, 134, 79-82.	6.6	313
159	Near-Infrared Electrogenerated Chemiluminescence of Ultrasmall Ag ₂ Se Quantum Dots for the Detection of Dopamine. Analytical Chemistry, 2012, 84, 8932-8935.	3.2	162
160	Construction of CdSe/ZnS quantum dot microarray in a microfluidic chip. Science China Chemistry, 2012, 55, 543-549.	4.2	6
161	Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging inÂvivo. Biomaterials, 2012, 33, 5130-5135.	5.7	288
162	Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials, 2012, 33, 5742-5752.	5.7	45

#	Article	IF	CITATIONS
163	Controlling the Magnetic Field Distribution on the Micrometer Scale and Generation of Magnetic Bead Patterns for Microfluidic Applications. Langmuir, 2011, 27, 5147-5156.	1.6	40
164	Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. Journal of Physical Chemistry C, 2011, 115, 18822-18828.	1.5	45
165	Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells. ACS Nano, 2011, 5, 761-770.	7.3	192
166	Synthesis of sub-5 nm Au–Ag alloy nanoparticles using bio-reducing agent in aqueous solution. Journal of Materials Chemistry, 2011, 21, 17080.	6.7	32
167	Patterning cells and shear flow conditions: Convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response. Lab on A Chip, 2011, 11, 4235.	3.1	34
168	Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials, 2011, 32, 7616-7624.	5.7	62
169	A simple and effective sample preparation method for atomic force microscopy visualization of individual DNA molecules in situ. Molecular Biology Reports, 2011, 38, 965-969.	1.0	3
170	A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomaterials, 2011, 32, 1177-1184.	5.7	57
171	Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Advanced Materials, 2011, 23, 5801-5806.	11.1	872
172	Growth propagation of yeast in linear arrays of microfluidic chambers over many generations. Biomicrofluidics, 2011, 5, 44118-441189.	1.2	16
173	Detection of Epstein-Barr Virus Infection in Gastric Carcinomas Using Quantum Dot-Based Fluorescence <i>In-Situ</i> Hybridization. Journal of Nanoscience and Nanotechnology, 2011, 11, 9725-9730.	0.9	7
174	PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials, 2010, 31, 8362-8370.	5.7	18
175	Kineticsâ€Controlled Formation of Gold Clusters Using a Quasiâ€Biological System. Advanced Functional Materials, 2010, 20, 3673-3677.	7.8	22
176	Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Biosensors and Bioelectronics, 2010, 26, 491-496.	5.3	23
177	Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale, 2010, 2, 2120.	2.8	20
178	Evaluation of the Bioconjugation Efficiency of Different Quantum Dots as Probes for Immunostaining Tumor-Marker Proteins. Applied Spectroscopy, 2010, 64, 847-854.	1.2	10
179	Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg and Pb in cells. Journal of Analytical Atomic Spectrometry, 2010, 25, 1931.	1.6	93
180	Generation of water–ionic liquid droplet pairs in soybean oil on microfluidic chip. Lab on A Chip, 2010, 10, 313-319.	3.1	16

#	Article	IF	CITATIONS
181	Tumor Cell Targeting Using Folate-Conjugated Fluorescent Quantum Dots and Receptor-Mediated Endocytosis. Clinical Chemistry, 2009, 55, 955-963.	1.5	69
182	Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Advanced Functional Materials, 2009, 19, 2359-2364.	7.8	178
183	Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. Biosensors and Bioelectronics, 2009, 24, 3003-3007.	5.3	23
184	Self-loading and cell culture in one layer microfluidic devices. Biomedical Microdevices, 2009, 11, 679-684.	1.4	21
185	Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30, 2912-2918.	5.7	161
186	Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosensors and Bioelectronics, 2009, 24, 1311-1317.	5.3	61
187	Quantum Dotâ^Ferrichrome Bioprobes for Recognition of Pseudomonas fluorescens. Journal of Physical Chemistry C, 2009, 113, 9169-9174.	1.5	16
188	Hadamard transform spectral microscopy for single cell imaging using organic and quantum dotfluorescent probes. Analyst, The, 2009, 134, 504-511.	1.7	11
189	Investigation of the nonspecific interaction between quantum dots and immunoglobulin G using Rayleigh light scattering. Talanta, 2009, 78, 700-704.	2.9	13
190	Core/Shell Structured Noble Metal (Alloy)/Cadmium Selenide Nanocrystals. Chemistry of Materials, 2009, 21, 3039-3041.	3.2	25
191	Color-tunable fluorescent–magnetic core/shell multifunctional nanocrystals. Chemical Communications, 2009, , 4025.	2.2	24
192	Role of DNA in Bacterial Aggregation. Current Microbiology, 2008, 57, 139-144.	1.0	52
193	Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochemistry Communications, 2008, 10, 181-185.	2.3	67
194	Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008, , 5116.	2.2	786
195	Interaction between Room Temperature Ionic Liquid [bmim]BF ₄ and DNA Investigated by Electrochemical Micromethod. Journal of Physical Chemistry B, 2008, 112, 9864-9868.	1.2	43
196	Visible Light-Induced Plasmid DNA Damage Catalyzed by a CdSe/ZnS-Photosensitized Nano-TiO ₂ Film. Environmental Science & Technology, 2008, 42, 5049-5054.	4.6	32
197	Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta, 2008, 77, 262-268.	2.9	24
198	Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. Journal of Physical Chemistry C, 2008, 112, 18904-18910.	1.5	7

#	Article	IF	CITATIONS
199	Heat-fixation Method Used in an Atomic Force Microscopy Study of Cell Morphology. Analytical Sciences, 2008, 24, 257-260.	0.8	3
200	Controlled and reversible binding of positively charged quantum dots to lambda DNA. Frontiers in Bioscience - Landmark, 2008, 13, 923.	3.0	1
201	Integration of minisolenoids in microfluidic device for magnetic bead–based immunoassays. Journal of Applied Physics, 2007, 102, 084911.	1.1	21
202	Visual Recognition and Efficient Isolation of Apoptotic Cells with Fluorescent-Magnetic-Biotargeting Multifunctional Nanospheres. Clinical Chemistry, 2007, 53, 2177-2185.	1.5	60
203	Flow-Focusing Generation of Monodisperse Water Droplets Wrapped by Ionic Liquid on Microfluidic Chips:  From Plug to Sphere. Langmuir, 2007, 23, 11924-11931.	1.6	34
204	Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Organic and Biomolecular Chemistry, 2007, 5, 3674.	1.5	83
205	Wheat Germ Agglutinin-Modified Trifunctional Nanospheres for Cell Recognition. Bioconjugate Chemistry, 2007, 18, 1749-1755.	1.8	62
206	A micropillarâ€integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis, 2007, 28, 4713-4722.	1.3	77
207	Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochemistry Communications, 2007, 9, 1709-1714.	2.3	109
208	Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing. Electrochemistry Communications, 2007, 9, 1337-1342.	2.3	39
209	Glassy carbon electrodes modified with DNA-partly-wrapped single-walled carbon nanotubes. Electrochemistry Communications, 2007, 9, 2729-2733.	2.3	8
210	Direct Electrochemistry and Electrocatalysis of Myoglobin Entrapped in Konjac Glucomannan Films. Chinese Journal of Analytical Chemistry, 2006, 34, 1683-1687.	0.9	2
211	Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 2006, 119, 308-314.	4.0	48
212	pH effect on dynamic coating for capillary electrophoresis of DNA. Analytical and Bioanalytical Chemistry, 2006, 385, 730-736.	1.9	8
213	Quantum-Dot-Labeled DNA Probes for Fluorescence In Situ Hybridization (FISH) in the MicroorganismEscherichia coli. ChemPhysChem, 2006, 7, 1062-1067.	1.0	70
214	Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2005, 581, 303-309.	1.9	97
215	Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids. Langmuir, 2005, 21, 9260-9266.	1.6	355
216	Electrochemical DNA sensing based on gold nanoparticle amplification. Analytical and Bioanalytical Chemistry, 2005, 381, 833-838.	1.9	37

#	Article	IF	CITATIONS
217	Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small, 2005, 1, 506-509.	5.2	142
218	Preparation and Characterization of Overcoated II–VI Quantum Dots. Journal of Nanoscience and Nanotechnology, 2005, 5, 880-886.	0.9	53
219	Yeast Transformation Process Studied by Fluorescence Labeling Technique. Bioconjugate Chemistry, 2005, 16, 250-254.	1.8	29
220	Core/Shell Quantum-Dot-Photosensitized Nano-TiO2Films:Â Fabrication and Application to the Damage of Cells and DNA. Journal of Physical Chemistry B, 2005, 109, 22663-22666.	1.2	31
221	Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chemical Communications, 2005, , 4276.	2.2	88
222	CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chemical Communications, 2005, , 5518.	2.2	83
223	Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2527-2530.	2.0	170
224	Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosensors and Bioelectronics, 2004, 20, 294-304.	5.3	172
225	Combing DNA on CTAB-coated surfaces. Biophysical Chemistry, 2004, 112, 27-33.	1.5	17
226	Improvement of Homogeneity of Analytical Biodevices by Gene Manipulation. Analytical Chemistry, 2004, 76, 632-638.	3.2	19
227	Cell Damage Induced by Photocatalysis of TiO2Thin Films. Langmuir, 2003, 19, 8765-8768.	1.6	187
228	Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. Journal of Medical Virology, 2003, 70, 205-211.	2.5	79
229	Investigation of DNA Orientation on Gold by EC-STM. Bioconjugate Chemistry, 2002, 13, 104-109.	1.8	50
230	Investigation of Ordered ds-DNA Monolayers on Gold Electrodes. Journal of Physical Chemistry B, 2002, 106, 11233-11239.	1.2	46