Zhi-ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344470/publications.pdf

Version: 2024-02-01

230 papers 13,530 citations

59 h-index 26548 107 g-index

235 all docs

235
docs citations

times ranked

235

14658 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Advanced Materials, 2011, 23, 5801-5806.	11.1	872
2	Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008, , 5116.	2.2	786
3	Photoluminescenceâ€Tunable Carbon Nanodots: Surfaceâ€State Energyâ€Gap Tuning. Advanced Materials, 2015, 27, 1663-1667.	11.1	658
4	Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids. Langmuir, 2005, 21, 9260-9266.	1.6	355
5	Ultrasmall Near-Infrared Ag ₂ Se Quantum Dots with Tunable Fluorescence for <i>in Vivo</i> Imaging. Journal of the American Chemical Society, 2012, 134, 79-82.	6.6	313
6	Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging inÂvivo. Biomaterials, 2012, 33, 5130-5135.	5.7	288
7	Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells. ACS Nano, 2014, 8, 941-949.	7.3	228
8	Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells. ACS Nano, 2011, 5, 761-770.	7.3	192
9	Ag ₂ Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1186-1189.	4.0	188
10	Cell Damage Induced by Photocatalysis of TiO2Thin Films. Langmuir, 2003, 19, 8765-8768.	1.6	187
11	Emission-Tunable Near-Infrared Ag ₂ S Quantum Dots. Chemistry of Materials, 2012, 24, 3-5.	3.2	183
12	Sensitive and Quantitative Detection of C-Reaction Protein Based on Immunofluorescent Nanospheres Coupled with Lateral Flow Test Strip. Analytical Chemistry, 2016, 88, 6577-6584.	3.2	180
13	Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Advanced Functional Materials, 2009, 19, 2359-2364.	7.8	178
14	Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 2012, 22, 5917.	6.7	177
15	Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosensors and Bioelectronics, 2004, 20, 294-304.	5.3	172
16	Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2527-2530.	2.0	170
17	Near-Infrared Electrogenerated Chemiluminescence of Ultrasmall Ag ₂ Se Quantum Dots for the Detection of Dopamine. Analytical Chemistry, 2012, 84, 8932-8935.	3.2	162
18	Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30, 2912-2918.	5.7	161

#	Article	IF	CITATIONS
19	Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 2019, 91, 1178-1184.	3.2	152
20	Ultrasmall Magnetically Engineered Ag ₂ Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. Journal of the American Chemical Society, 2016, 138, 1893-1903.	6.6	143
21	Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small, 2005, 1, 506-509.	5.2	142
22	Enzyme-Induced Metallization as a Signal Amplification Strategy for Highly Sensitive Colorimetric Detection of Avian Influenza Virus Particles. Analytical Chemistry, 2014, 86, 2752-2759.	3.2	137
23	Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 2017, 89, 13105-13111.	3.2	128
24	Effectively and Efficiently Dissecting the Infection of Influenza Virus by Quantum-Dot-Based Single-Particle Tracking. ACS Nano, 2012, 6, 141-150.	7.3	127
25	One-Step Sensitive Detection of Salmonella typhimurium by Coupling Magnetic Capture and Fluorescence Identification with Functional Nanospheres. Analytical Chemistry, 2013, 85, 1223-1230.	3.2	125
26	Uniform Fluorescent Nanobioprobes for Pathogen Detection. ACS Nano, 2014, 8, 5116-5124.	7.3	120
27	Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Biomaterials, 2013, 34, 9545-9558.	5.7	115
28	Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochemistry Communications, 2007, 9, 1709-1714.	2.3	109
29	Tracking single viruses infecting their host cells using quantum dots. Chemical Society Reviews, 2016, 45, 1211-1224.	18.7	106
30	Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2005, 581, 303-309.	1.9	97
31	Controllable synthesis of nanocrystals in droplet reactors. Lab on A Chip, 2018, 18, 41-56.	3.1	97
32	A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosensors and Bioelectronics, 2018, 99, 186-192.	5.3	94
33	Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg and Pb in cells. Journal of Analytical Atomic Spectrometry, 2010, 25, 1931.	1.6	93
34	Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale, 2016, 8, 12406-12429.	2.8	93
35	Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chemical Communications, 2005, , 4276.	2.2	88
36	Transformation of Cellâ€Derived Microparticles into Quantumâ€Dotâ€Labeled Nanovectors for Antitumor siRNA Delivery. Angewandte Chemie - International Edition, 2015, 54, 1036-1040.	7.2	86

#	Article	IF	Citations
37	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	7.2	86
38	CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging. Chemical Communications, 2005, , 5518.	2.2	83
39	Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Organic and Biomolecular Chemistry, 2007, 5, 3674.	1.5	83
40	Revealing Carbon Nanodots As Coreactants of the Anodic Electrochemiluminescence of Ru(bpy) ₃ ²⁺ . Analytical Chemistry, 2014, 86, 7224-7228.	3.2	83
41	Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. Journal of Medical Virology, 2003, 70, 205-211.	2.5	79
42	Ultrasmall Pb:Ag ₂ S Quantum Dots with Uniform Particle Size and Bright Tunable Fluorescence in the NIRâ€N Window. Small, 2018, 14, e1703296.	5.2	78
43	A micropillarâ€integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis, 2007, 28, 4713-4722.	1.3	77
44	A Simple Point-of-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry, 2013, 85, 2645-2651.	3.2	77
45	A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab on A Chip, 2016, 16, 1214-1223.	3.1	75
46	On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. Biosensors and Bioelectronics, 2013, 41, 129-136.	5.3	74
47	A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Mikrochimica Acta, 2019, 186, 223.	2.5	74
48	Robust and Highly Sensitive Fluorescence Approach for Point-of-Care Virus Detection Based on Immunomagnetic Separation. Analytical Chemistry, 2012, 84, 2358-2365.	3.2	73
49	An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale, 2015, 7, 5969-5973.	2.8	73
50	Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Analytical Chemistry, 2016, 88, 9166-9172.	3.2	73
51	Quantum-Dot-Labeled DNA Probes for Fluorescence In Situ Hybridization (FISH) in the MicroorganismEscherichia coli. ChemPhysChem, 2006, 7, 1062-1067.	1.0	70
52	Tumor Cell Targeting Using Folate-Conjugated Fluorescent Quantum Dots and Receptor-Mediated Endocytosis. Clinical Chemistry, 2009, 55, 955-963.	1.5	69
53	Cell Membraneâ€Camouflaged NIR II Fluorescent Ag ₂ Te Quantum Dotsâ€Based Nanobioprobes for Enhanced In Vivo Homotypic Tumor Imaging. Advanced Healthcare Materials, 2019, 8, e1900341.	3.9	68
54	Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochemistry Communications, 2008, 10, 181-185.	2.3	67

#	Article	IF	CITATIONS
55	Digital Single Virus Immunoassay for Ultrasensitive Multiplex Avian Influenza Virus Detection Based on Fluorescent Magnetic Multifunctional Nanospheres. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5762-5770.	4.0	66
56	Optically Encoded Multifunctional Nanospheres for One-Pot Separation and Detection of Multiplex DNA Sequences. Analytical Chemistry, 2013, 85, 11929-11935.	3.2	65
57	Fluorescenceâ€Converging Carbon Nanodotsâ€Hybridized Silica Nanosphere. Small, 2016, 12, 4702-4706.	5.2	63
58	Wheat Germ Agglutinin-Modified Trifunctional Nanospheres for Cell Recognition. Bioconjugate Chemistry, 2007, 18, 1749-1755.	1.8	62
59	Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials, 2011, 32, 7616-7624.	5.7	62
60	Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosensors and Bioelectronics, 2009, 24, 1311-1317.	5.3	61
61	High-efficiency dual labeling of influenza virus for single-virus imaging. Biomaterials, 2012, 33, 7828-7833.	5.7	61
62	Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano, 2017, 11, 4395-4406.	7.3	61
63	Nearâ€Infrared Fluorescent Ag ₂ Seâ€"Cetuximab Nanoprobes for Targeted Imaging and Therapy of Cancer. Small, 2017, 13, 1602309.	5.2	61
64	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and π-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
65	Visual Recognition and Efficient Isolation of Apoptotic Cells with Fluorescent-Magnetic-Biotargeting Multifunctional Nanospheres. Clinical Chemistry, 2007, 53, 2177-2185.	1.5	60
66	Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosensors and Bioelectronics, 2015, 74, 628-636.	5.3	59
67	A "Driver Switchover―Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS Nano, 2018, 12, 474-484.	7.3	59
68	Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Analytical Chemistry, 2017, 89, 2039-2048.	3.2	58
69	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	3.2	58
70	A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomaterials, 2011, 32, 1177-1184.	5.7	57
71	Photoinduced Electron Transfer Mediated by Coordination between Carboxyl on Carbon Nanodots and Cu ²⁺ Quenching Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 3662-3668.	1.5	56
72	Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors and Bioelectronics, 2015, 68, 586-592.	5.3	54

#	Article	IF	CITATIONS
73	Preparation and Characterization of Overcoated II–VI Quantum Dots. Journal of Nanoscience and Nanotechnology, 2005, 5, 880-886.	0.9	53
74	Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosensors and Bioelectronics, 2015, 66, 520-526.	5.3	53
75	Digital Single Virus Electrochemical Enzyme-Linked Immunoassay for Ultrasensitive H7N9 Avian Influenza Virus Counting. Analytical Chemistry, 2018, 90, 1683-1690.	3.2	53
76	A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials, 2019, 219, 119367.	5.7	53
77	Ebola Virus Aptamers: From Highly Efficient Selection to Application on Magnetism-Controlled Chips. Analytical Chemistry, 2019, 91, 3367-3373.	3.2	53
78	Role of DNA in Bacterial Aggregation. Current Microbiology, 2008, 57, 139-144.	1.0	52
79	Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes between Human Lung Cancer Cells. ACS Nano, 2012, 6, 10033-10041.	7. 3	52
80	Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells. Biosensors and Bioelectronics, 2017, 94, 219-226.	5.3	52
81	Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus in Live Cells. Analytical Chemistry, 2014, 86, 3902-3908.	3.2	51
82	Investigation of DNA Orientation on Gold by EC-STM. Bioconjugate Chemistry, 2002, 13, 104-109.	1.8	50
83	Chip-Assisted Single-Cell Biomarker Profiling of Heterogeneous Circulating Tumor Cells Using Multifunctional Nanospheres. Analytical Chemistry, 2018, 90, 10518-10526.	3.2	50
84	One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA. Analytical Chemistry, 2020, 92, 853-858.	3.2	50
85	Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 2006, 119, 308-314.	4.0	48
86	Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials, 2014, 35, 2295-2301.	5.7	48
87	Folate-Engineered Microvesicles for Enhanced Target and Synergistic Therapy toward Breast Cancer. ACS Applied Materials & Distriction (2017), 9, 5100-5108.	4.0	48
88	Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Analytical Chemistry, 2017, 89, 6535-6542.	3.2	47
89	Investigation of Ordered ds-DNA Monolayers on Gold Electrodes. Journal of Physical Chemistry B, 2002, 106, 11233-11239.	1.2	46
90	Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Scientific Reports, 2013, 3, 2462.	1.6	46

#	Article	IF	Citations
91	Ultrasensitive Electrochemiluminescence Biosensor Based on Closed Bipolar Electrode for Alkaline Phosphatase Detection in Single Liver Cancer Cell. Analytical Chemistry, 2021, 93, 1757-1763.	3.2	46
92	Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. Journal of Physical Chemistry C, 2011, 115, 18822-18828.	1.5	45
93	Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials, 2012, 33, 5742-5752.	5.7	45
94	Rapid detection and subtyping of multiple influenza viruses on a microfluidic chip integrated with controllable micro-magnetic field. Biosensors and Bioelectronics, 2018, 100, 348-354.	5. 3	45
95	Gd-DTPA-coupled Ag ₂ Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window. Nanoscale, 2018, 10, 10699-10704.	2.8	45
96	Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosensors and Bioelectronics, 2019, 131, 267-273.	5. 3	45
97	A magnetic bead-based bienzymatic electrochemical immunosensor for determination of H9N2 avian influenza virus. Electrochemistry Communications, 2013, 31, 129-132.	2.3	44
98	Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28372-28382.	4.0	44
99	Interaction between Room Temperature Ionic Liquid [bmim]BF ₄ and DNA Investigated by Electrochemical Micromethod. Journal of Physical Chemistry B, 2008, 112, 9864-9868.	1.2	43
100	Simultaneous Point-of-Care Detection of Enterovirus 71 and Coxsackievirus B3. Analytical Chemistry, 2015, 87, 11105-11112.	3.2	43
101	Surface Labeling of Enveloped Viruses Assisted by Host Cells. ACS Chemical Biology, 2012, 7, 683-688.	1.6	42
102	Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS Nano, 2015, 9, 11750-11760.	7.3	42
103	Controlling the Magnetic Field Distribution on the Micrometer Scale and Generation of Magnetic Bead Patterns for Microfluidic Applications. Langmuir, 2011, 27, 5147-5156.	1.6	40
104	Fluorescent–magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis. Nanotechnology, 2012, 23, 035602.	1.3	40
105	Near-infrared Ag ₂ Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Advances, 2016, 6, 38183-38186.	1.7	40
106	Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane. Biomaterials, 2016, 106, 69-77.	5.7	40
107	Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing. Electrochemistry Communications, 2007, 9, 1337-1342.	2.3	39
108	Electrochemical DNA sensing based on gold nanoparticle amplification. Analytical and Bioanalytical Chemistry, 2005, 381, 833-838.	1.9	37

#	Article	IF	CITATIONS
109	Threeâ€Dimensional Tracking of Rab5―and Rab7â€Associated Infection Process of Influenza Virus. Small, 2014, 10, 4746-4753.	5.2	37
110	Biofunctionalized magnetic nanospheres-based cell sorting strategy for efficient isolation, detection and subtype analyses of heterogeneous circulating hepatocellular carcinoma cells. Biosensors and Bioelectronics, 2016, 85, 633-640.	5. 3	36
111	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie - International Edition, 2020, 59, 11240-11244.	7.2	36
112	Flow-Focusing Generation of Monodisperse Water Droplets Wrapped by Ionic Liquid on Microfluidic Chips:  From Plug to Sphere. Langmuir, 2007, 23, 11924-11931.	1.6	34
113	Patterning cells and shear flow conditions: Convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response. Lab on A Chip, 2011, 11, 4235.	3.1	34
114	Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. Journal of Materials Chemistry, 2012, 22, 3713.	6.7	34
115	Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters. Nanoscale, 2014, 6, 13126-13134.	2.8	34
116	Visible Light-Induced Plasmid DNA Damage Catalyzed by a CdSe/ZnS-Photosensitized Nano-TiO ₂ Film. Environmental Science & Environmental Scie	4.6	32
117	Synthesis of sub-5 nm Au–Ag alloy nanoparticles using bio-reducing agent in aqueous solution. Journal of Materials Chemistry, 2011, 21, 17080.	6.7	32
118	Rapid and Quantitative Detection of Avian Influenza A(H7N9) Virions in Complex Matrices Based on Combined Magnetic Capture and Quantum Dot Labeling. Small, 2015, 11, 5280-5288.	5.2	32
119	Core/Shell Quantum-Dot-Photosensitized Nano-TiO2Films:Â Fabrication and Application to the Damage of Cells and DNA. Journal of Physical Chemistry B, 2005, 109, 22663-22666.	1.2	31
120	Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS Nano, 2016, 10, 1147-1155.	7.3	30
121	Glucose-functionalized near-infrared Ag ₂ Se quantum dots with renal excretion ability for long-term <i>in vivo</i> tumor imaging. Journal of Materials Chemistry B, 2019, 7, 5782-5788.	2.9	30
122	Yeast Transformation Process Studied by Fluorescence Labeling Technique. Bioconjugate Chemistry, 2005, 16, 250-254.	1.8	29
123	Droplet-based microreactor for synthesis of water-soluble Ag ₂ S quantum dots. Nanotechnology, 2015, 26, 275701.	1.3	28
124	Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8401-8408.	4.0	27
125	Self-co-reactant and ion-annihilation electrogenerated chemiluminescence of carbon nanodots. Carbon, 2018, 129, 168-174.	5.4	27
126	Picoliter droplets developed as microreactors for ultrafast synthesis of multi-color water-soluble CdTe quantum dots. Chemical Communications, 2013, 49, 7114.	2.2	26

#	Article	IF	Citations
127	One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core–Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Analytical Chemistry, 2020, 92, 830-837.	3.2	26
128	Core/Shell Structured Noble Metal (Alloy)/Cadmium Selenide Nanocrystals. Chemistry of Materials, 2009, 21, 3039-3041.	3.2	25
129	A colorimetric and electrochemical dual-mode biosensor for thrombin using a magnetic separation technique. Journal of Materials Chemistry B, 2020, 8, 3574-3581.	2.9	25
130	Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta, 2008, 77, 262-268.	2.9	24
131	Color-tunable fluorescent–magnetic core/shell multifunctional nanocrystals. Chemical Communications, 2009, , 4025.	2.2	24
132	Exploring Sialic Acid Receptorsâ€Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Singleâ€Particle Tracking. Small, 2014, 10, 2712-2720.	5.2	24
133	Biometallizationâ€Based Electrochemical Magnetoimmunosensing Strategy for Avian Influenza A (H7N9) Virus Particle Detection. Chemistry - an Asian Journal, 2015, 10, 1387-1393.	1.7	24
134	Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chinese Chemical Letters, 2019, 30, 79-82.	4.8	24
135	Ag ₂ Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Applied Nano Materials, 2020, 3, 6071-6077.	2.4	24
136	Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. Biosensors and Bioelectronics, 2009, 24, 3003-3007.	5.3	23
137	Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Biosensors and Bioelectronics, 2010, 26, 491-496.	5.3	23
138	Transformation of Viral Light Particles into Near-Infrared Fluorescence Quantum Dot-Labeled Active Tumor-Targeting Nanovectors for Drug Delivery. Nano Letters, 2019, 19, 7035-7042.	4.5	23
139	Kineticsâ€Controlled Formation of Gold Clusters Using a Quasiâ€Biological System. Advanced Functional Materials, 2010, 20, 3673-3677.	7.8	22
140	Electrochemical Magnetoimmunosensing Approach for the Sensitive Detection of H9N2 Avian Influenza Virus Particles. Chemistry - an Asian Journal, 2013, 8, 2220-2226.	1.7	22
141	Control of magnetic field distribution by using nickel powder@PDMS pillars in microchannels. RSC Advances, 2014, 4, 17660-17666.	1.7	22
142	Uncovering the Rab5â€Independent Autophagic Trafficking of Influenza A Virus by Quantumâ€Dotâ€Based Singleâ€Virus Tracking. Small, 2018, 14, e1702841.	5.2	22
143	Cellular-Beacon-Mediated Counting for the Ultrasensitive Detection of Ebola Virus on an Integrated Micromagnetic Platform. Analytical Chemistry, 2018, 90, 7310-7317.	3.2	22
144	Integration of minisolenoids in microfluidic device for magnetic bead–based immunoassays. Journal of Applied Physics, 2007, 102, 084911.	1.1	21

#	Article	IF	Citations
145	Self-loading and cell culture in one layer microfluidic devices. Biomedical Microdevices, 2009, 11, 679-684.	1.4	21
146	Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Analytical Chemistry, 2019, 91, 15260-15266.	3.2	21
147	Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale, 2010, 2, 2120.	2.8	20
148	Target-modulated sensitization of upconversion luminescence by NIR-emissive quantum dots: a new strategy to construct upconversion biosensors. Chemical Communications, 2020, 56, 1976-1979.	2.2	20
149	Improvement of Homogeneity of Analytical Biodevices by Gene Manipulation. Analytical Chemistry, 2004, 76, 632-638.	3.2	19
150	Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods. Small, 2015, 11, 5416-5422.	5.2	19
151	Integrating optical tweezers with up-converting luminescence: a non-amplification analytical platform for quantitative detection of microRNA-21 sequences. Chemical Communications, 2017, 53, 4092-4095.	2.2	19
152	PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials, 2010, 31, 8362-8370.	5.7	18
153	Revealing the biodistribution and clearance of Ag ₂ Se near-infrared quantum dots in mice. New Journal of Chemistry, 2017, 41, 12721-12725.	1.4	18
154	Combing DNA on CTAB-coated surfaces. Biophysical Chemistry, 2004, 112, 27-33.	1.5	17
155	A microfluidic platform for real-time andin situmonitoring of virus infection process. Biomicrofluidics, 2012, 6, 034122.	1.2	17
156	A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Scientific Reports, 2015, 5, 11937.	1.6	17
157	Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids. Biomaterials, 2016, 99, 24-33.	5.7	17
158	Preparation of Monodisperse Hydrophilic Quantum Dots with Amphiphilic Polymers. ACS Applied Materials & Dots amp; Interfaces, 2017, 9, 39901-39906.	4.0	17
159	One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping. Biosensors and Bioelectronics, 2017, 90, 146-152.	5.3	17
160	Real-Time Monitoring of Temperature Variations around a Gold Nanobipyramid Targeted Cancer Cell under Photothermal Heating by Actively Manipulating an Optically Trapped Luminescent Upconversion Microparticle. Analytical Chemistry, 2020, 92, 1292-1300.	3.2	17
161	Quantum Dotâ^Ferrichrome Bioprobes for Recognition of Pseudomonas fluorescens. Journal of Physical Chemistry C, 2009, 113, 9169-9174.	1.5	16
162	Generation of water–ionic liquid droplet pairs in soybean oil on microfluidic chip. Lab on A Chip, 2010, 10, 313-319.	3.1	16

#	Article	IF	CITATIONS
163	Growth propagation of yeast in linear arrays of microfluidic chambers over many generations. Biomicrofluidics, 2011, 5, 44118-441189.	1.2	16
164	A room-temperature method for coating a ZnS shell on semiconductor quantum dots. Journal of Materials Chemistry C, 2015, 3, 964-967.	2.7	16
165	A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots. Nanoscale, 2015, 7, 19310-19316.	2.8	16
166	Multifunctional Cellular Beacons with in Situ Synthesized Quantum Dots Make Pathogen Detectable with the Naked Eye. Analytical Chemistry, 2019, 91, 7280-7287.	3.2	16
167	Simple and rapid extracellular vesicles quantification via membrane biotinylation strategy coupled with fluorescent nanospheres-based lateral flow assay. Talanta, 2019, 200, 408-414.	2.9	16
168	Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients. Advanced Functional Materials, 2017, 27, 1703482.	7.8	16
169	Cell derived extracellular vesicles: from isolation to functionalization and biomedical applications. Biomaterials Science, 2019, 7, 3552-3565.	2.6	15
170	Microvesicle detection by a reduced graphene oxide field-effect transistor biosensor based on a membrane biotinylation strategy. Analyst, The, 2019, 144, 6055-6063.	1.7	15
171	Controlled Release of Therapeutic Agents with Near-Infrared Laser for Synergistic Photochemotherapy toward Cervical Cancer. Analytical Chemistry, 2019, 91, 6555-6560.	3.2	15
172	A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab on A Chip, 2020, 20, 1418-1425.	3.1	15
173	Coating Magnetic Nanospheres with PEG To Reduce Nonspecific Adsorption on Cells. ACS Omega, 2019, 4, 7391-7399.	1.6	14
174	Investigation of the nonspecific interaction between quantum dots and immunoglobulin G using Rayleigh light scattering. Talanta, 2009, 78, 700-704.	2.9	13
175	Electrochemical methods – important means for fabrication of fluorescent nanoparticles. Analyst, The, 2012, 137, 805-815.	1.7	13
176	Purification of quantum dot-based bioprobes via high-performance size exclusion chromatography. Talanta, 2016, 159, 64-73.	2.9	13
177	Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Analytical Chemistry, 2018, 90, 14020-14028.	3.2	13
178	Internalization of the pseudorabies virus <i>via </i> macropinocytosis analyzed by quantum dot-based single-virus tracking. Chemical Communications, 2018, 54, 11184-11187.	2.2	13
179	Photoluminescence Enhancement of NIRâ€I Emissive Ag ₂ 5 Quantum Dots via Chlorideâ€Mediated Growth and Passivation. Advanced Optical Materials, 2022, 10, .	3.6	13
180	Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma. Future Oncology, 2013, 9, 1029-1037.	1.1	12

#	Article	IF	CITATIONS
181	Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip. Analytica Chimica Acta, 2014, 820, 104-111.	2.6	12
182	Anisotropic cell-to-cell spread of vaccinia virus on microgrooved substrate. Biomaterials, 2014, 35, 5049-5055.	5.7	12
183	Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Analytical Chemistry, 2020, 92, 5258-5266.	3.2	12
184	Hadamard transform spectral microscopy for single cell imaging using organic and quantum dotfluorescent probes. Analyst, The, 2009, 134, 504-511.	1.7	11
185	Fast magnetic isolation of simple sequence repeat markers in microfluidic channels. Lab on A Chip, 2014, 14, 1410-1414.	3.1	11
186	Recognition Kinetics of Biomolecules at the Surface of Different-Sized Spheres. Biophysical Journal, 2014, 107, 165-173.	0.2	11
187	Evaluation of nonspecific interactions between quantum dots and proteins. Physical Chemistry Chemical Physics, 2014, 16, 7677.	1.3	11
188	Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component. Journal of Nanobiotechnology, 2017, 15, 37.	4.2	11
189	Evaluation of the Bioconjugation Efficiency of Different Quantum Dots as Probes for Immunostaining Tumor-Marker Proteins. Applied Spectroscopy, 2010, 64, 847-854.	1.2	10
190	Interfacial Synthesis of Ag 2 S/ZnS Core/Shell Quantum Dots in a Droplet Microreactor. ChemistrySelect, 2020, 5, 5889-5894.	0.7	10
191	Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Science China Chemistry, 2020, 63, 448-453.	4.2	10
192	Influenza A Viruses Enter Host Cells via Extracellular Ca ²⁺ Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials, 2021, 4, 2044-2051.	2.3	10
193	Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Analytical Chemistry, 2022, 94, 8392-8398.	3.2	10
194	On-demand one-step synthesis of small-sized fluorescent–magnetic bifunctional microparticles on a droplet-splitting chip. Journal of Materials Chemistry B, 2018, 6, 961-965.	2.9	9
195	Enhanced and High-Purity Enrichment of Circulating Tumor Cells Based on Immunomagnetic Nanospheres. ACS Applied Nano Materials, 2018, 1, 4019-4027.	2.4	9
196	Ultrasmall MnSe Nanoparticles as $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle MRI$ Contrast Agents for $\langle i \rangle In Vivo \langle i \rangle Tumor Imaging. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11167-11176.$	4.0	9
197	pH effect on dynamic coating for capillary electrophoresis of DNA. Analytical and Bioanalytical Chemistry, 2006, 385, 730-736.	1.9	8
198	Glassy carbon electrodes modified with DNA-partly-wrapped single-walled carbon nanotubes. Electrochemistry Communications, 2007, 9, 2729-2733.	2.3	8

#	Article	IF	Citations
199	Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips. Applied Physics Letters, 2013, 102, 123502.	1.5	8
200	Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip. Scientific Reports, 2017, 7, 44835.	1.6	8
201	Personalized gel-droplet monocyte vaccines for cancer immunotherapy. Lab on A Chip, 2021, 21, 4414-4426.	3.1	8
202	Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. Journal of Physical Chemistry C, 2008, 112, 18904-18910.	1.5	7
203	Detection of Epstein-Barr Virus Infection in Gastric Carcinomas Using Quantum Dot-Based Fluorescence <i>In-Situ</i> Hybridization. Journal of Nanoscience and Nanotechnology, 2011, 11, 9725-9730.	0.9	7
204	Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition. Analytica Chimica Acta, 2021, 1146, 33-40.	2.6	7
205	Size-Resolved Single Entity Collision Biosensing for Dual Quantification of MicroRNAs in a Single Run. ACS Applied Materials & Single Run. ACS Applied Run. ACS	4.0	7
206	Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips. Chemical Communications, 2021, 57, 3555-3558.	2.2	7
207	Current Lifetime of Single-Nanoparticle Collision for Sizing Nanoparticles. Analytical Chemistry, 2022, 94, 1302-1307.	3.2	7
208	Construction of CdSe/ZnS quantum dot microarray in a microfluidic chip. Science China Chemistry, 2012, 55, 543-549.	4.2	6
209	Site-specific labeling of baculovirus in an integrated microfluidic device. Lab on A Chip, 2013, 13, 860.	3.1	6
210	Economical synthesis of ultra-small Bi ₂ S ₃ nanoparticles for high-sensitive CT imaging. Materials Research Express, 2019, 6, 095005.	0.8	6
211	Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. Journal of Virology, 2022, 96, JVI0181321.	1.5	6
212	Enhanced directional cell migration induced by vaccinia virus on a microfluidic-based multi-shear cell migration assay platform. Integrative Biology (United Kingdom), 2017, 9, 903-911.	0.6	5
213	A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta, 2021, 223, 121721.	2.9	5
214	How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?. Science Bulletin, 2022, 67, 619-625.	4.3	5
215	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€5hifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	1.6	4
216	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie, 2020, 132, 11336-11340.	1.6	4

#	Article	IF	CITATIONS
217	Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B: Chemical, 2022, 368, 132173.	4.0	4
218	Heat-fixation Method Used in an Atomic Force Microscopy Study of Cell Morphology. Analytical Sciences, 2008, 24, 257-260.	0.8	3
219	A simple and effective sample preparation method for atomic force microscopy visualization of individual DNA molecules in situ. Molecular Biology Reports, 2011, 38, 965-969.	1.0	3
220	Analysis of Cancer Marker in Tissues with Hadamard Transform Fluorescence Spectral Microscopic Imaging. Journal of Fluorescence, 2015, 25, 397-402.	1.3	3
221	Chlorophyll-Based Near-Infrared Fluorescent Nanocomposites: Preparation and Optical Properties. ACS Omega, 2020, 5, 14261-14266.	1.6	3
222	Integrated synthesis and ripening of AgInS2 QDs in droplet microreactors: An update fluorescence regulating via suitable temperature combination. Chinese Chemical Letters, 2022, 33, 3767-3771.	4.8	3
223	Non-invasive T cells adoptive immunotherapy for solid tumor with gel anti-tumor T-cell injections. Chemical Engineering Journal, 2022, 439, 135839.	6.6	3
224	Direct Electrochemistry and Electrocatalysis of Myoglobin Entrapped in Konjac Glucomannan Films. Chinese Journal of Analytical Chemistry, 2006, 34, 1683-1687.	0.9	2
225	Photoluminescent Properties of Carbon Nanodots. Carbon Nanostructures, 2016, , 239-256.	0.1	2
226	Cancer Treatment: Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients (Adv. Funct. Mater.) Tj ETQq0 0 0	rg ₿. Ɓ/Ove	erloick 10 Tf 50
227	A salt-out strategy for purification of amphiphilic polymer-coated quantum dots. New Journal of Chemistry, 2020, 44, 15341-15344.	1.4	1
228	Controlled and reversible binding of positively charged quantum dots to lambda DNA. Frontiers in Bioscience - Landmark, 2008, 13, 923.	3.0	1
229	Absolute quantification of particle number concentration using a digital single particle counting system. Mikrochimica Acta, 2019, 186, 529.	2.5	0
230	Controllable and flexible cellular network for virus cell-to-cell spread. Chinese Chemical Letters, 2019, 30, 1229-1232.	4.8	0