Tanlong Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facilely prepared blue-green light sensitive curcuminoids with excellent bleaching properties as high performance photosensitizers in cationic and free radical photopolymerization. Polymer Chemistry, 2018, 9, 1787-1798.	3.9	64
2	Epoxide-based PDMS membranes with an ultrashort and controllable membrane-forming process for 1-butanol/water pervaporation. Journal of Membrane Science, 2020, 612, 118472.	8.2	35
3	Synthesis and electrochemical, linear and third-order nonlinear optical properties of ferrocene-based D-ï€-A dyes as novel photoredox catalysts in photopolymerization under visible LED irradiations. Dyes and Pigments, 2019, 166, 140-148.	3.7	32
4	Color evolution of a pyrrole-based enone dye in radical photopolymerization formulations. Dyes and Pigments, 2021, 188, 109212.	3.7	28
5	Enone dyes as visible photoinitiator in radical polymerization: The influence of peripheral N-alkylated (hetero)aromatic amine group. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113449.	3.9	21
6	Pyrrole-based enone dyes as radical photointiator under 405/460Ânm LED lamp: The effect of ketone structure. Dyes and Pigments, 2021, 191, 109372.	3.7	18
7	Fluoroalkyl-grafted methacrylate-PDMS membranes using fluoromonomer as a diluent for enhancing biobutanol pervaporation. Green Chemistry, 2021, 23, 7053-7064.	9.0	17
8	Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chemical Engineering Research and Design, 2021, 168, 13-24.	5.6	15
9	Benzylidene ketones as visible light radical photoinitiator: The effects of electron-donating group and co-initiator. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113395.	3.9	15
10	Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. Journal of Membrane Science, 2022, 653, 120515.	8.2	14
11	A facile synthesized benzophenone Schiff-base ligand as efficient type II visible light photoinitiator. Progress in Organic Coatings, 2021, 157, 106329.	3.9	12
12	Diphenyl sulfone-based A–ï€-D–ï€-A dyes as efficient initiators for one-photon and two-photon initiated polymerization. Polymer Chemistry, 2019, 10, 2152-2161.	3.9	11
13	Synthesis, one/two-photon optical and electrochemical properties and the photopolymerization-sensitizing effect of anthracene-based dyes: influence of the donor groups. New Journal of Chemistry, 2019, 43, 6737-6745.	2.8	10
14	Nondiffusion-Controlled Photoelectron Transfer Induced by Host–Guest Complexes to Initiate Cationic Photopolymerization. Macromolecules, 2021, 54, 8314-8320.	4.8	10
15	Carbazole-based compounds containing aldehyde and cyanoacetic acid: optical properties and applications in photopolymerization. RSC Advances, 2017, 7, 55382-55388.	3.6	10
16	Fast layer-by-layer assembly of PDMS for boosting the gas separation of P84 membranes. Chemical Engineering Science, 2022, 253, 117588.	3.8	10
17	Highly Stretchable and Sensitive Strain Sensor based on Ionogel/Ag Synergistic Conductive Network. Advanced Materials Interfaces, 2022, 9, .	3.7	9
18	Pillar[6]arene: Light Cleaves Macrocycle to Linear Oligomer Biradical to Initiate Photopolymerization. Organic Letters, 2021, 23, 1709-1713.	4.6	8

TANLONG XUE

#	Article	IF	CITATIONS
19	Photopolymerization with AIE dyes for solid-state luminophores. Polymer Chemistry, 2020, 11, 1589-1596.	3.9	7
20	Macrocyclic Photoinitiator Based on Prism[5]arene Matching LEDs Light with Low Migration. Macromolecular Rapid Communications, 2021, 42, e2100299.	3.9	6
21	Unveiling the electronic effect of substituent on sensitized photopolymerization: An experimental and theoretical investigation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112551.	3.9	6
22	A bis-acrylate functionalized enone as photoinitiator and crosslinker in photopolymerization. Progress in Organic Coatings, 2022, 162, 106587.	3.9	6
23	Benzophenone based salicylaldimine and its boron complex as radical photoinitiator: A comparative study. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113625.	3.9	4
24	Facile prepared tropinone-based enone dyes with visible-light induced photothermal liquefaction and cold crystallization properties for reusable and switchable adhesive. Dyes and Pigments, 2022, 201, 110241.	3.7	2
25	The acidochromism of an N-methyl pyrrole-based enone dye toward trifluoroacetic acid in different solvents and solid state. Journal of Photochemistry and Photobiology A: Chemistry, 2022, , 114051.	3.9	1
26	Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 30332-30342.	8.0	1