
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1343737/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health<br>monitoring. Nano Energy, 2016, 23, 7-14.                                                                            | 8.2  | 467       |
| 2  | New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.                                                                                            | 18.7 | 322       |
| 3  | Highâ€performance flexible sensing devices based on polyaniline/MXene nanocomposites. InformaÄnÃ-<br>Materišly, 2019, 1, 407-416.                                                                                           | 8.5  | 310       |
| 4  | Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide<br>(MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. ACS Nano, 2019, 13, 9139-9147.                           | 7.3  | 308       |
| 5  | Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered<br>Wearable Electronics. Advanced Materials, 2018, 30, e1705918.                                                       | 11.1 | 265       |
| 6  | Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale, 2013, 5, 2686.                                                                                                                   | 2.8  | 243       |
| 7  | Branch-like Hierarchical Heterostructure (α-Fe <sub>2</sub> O <sub>3</sub> /TiO <sub>2</sub> ): A Novel<br>Sensing Material for Trimethylamine Gas Sensor. ACS Applied Materials & Interfaces, 2013, 5,<br>12310-12316.     | 4.0  | 230       |
| 8  | Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791.                                                                                                                        | 5.2  | 223       |
| 9  | Metal–Organic Frameworks-Derived Hierarchical Co <sub>3</sub> O <sub>4</sub> Structures as<br>Efficient Sensing Materials for Acetone Detection. ACS Applied Materials & Interfaces, 2018, 10,<br>9765-9773.                | 4.0  | 215       |
| 10 | Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.                                                                            | 14.8 | 215       |
| 11 | Three-Dimensional Hierarchical Flowerlike α-Fe <sub>2</sub> O <sub>3</sub> Nanostructures: Synthesis and Ethanol-Sensing Properties. ACS Applied Materials & Interfaces, 2011, 3, 4689-4694.                                | 4.0  | 214       |
| 12 | Carbon-Reinforced Nb <sub>2</sub> CT <sub>x</sub> MXene/MoS <sub>2</sub> Nanosheets as a<br>Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano, 2021, 15, 7439-7450.                                  | 7.3  | 203       |
| 13 | Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano<br>Energy, 2017, 38, 28-35.                                                                                               | 8.2  | 194       |
| 14 | P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sensors and Actuators B: Chemical, 2017, 242, 369-377.                                                                            | 4.0  | 184       |
| 15 | Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe <sub>2</sub> O <sub>3</sub> Nanospheres as<br>Sensing Material. ACS Applied Materials & Interfaces, 2015, 7, 13098-13104.                                        | 4.0  | 170       |
| 16 | High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators.<br>Nano Energy, 2017, 36, 38-45.                                                                                            | 8.2  | 160       |
| 17 | Microbe-Assisted Assembly of Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene on<br>Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS<br>Nano, 2021, 15, 3423-3433. | 7.3  | 158       |
| 18 | Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for<br>flexible pressure sensors. Nano Energy, 2020, 78, 105252.                                                           | 8.2  | 153       |

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Controlled Assembly of MXene Nanosheets as an Electrode and Active Layer for Highâ€Performance<br>Electronic Skin. Advanced Functional Materials, 2021, 31, 2010533.                                                                                                                                                         | 7.8  | 143       |
| 20 | Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. Journal of Materials Chemistry A, 2014, 2, 10022.                                                                                                                                                      | 5.2  | 135       |
| 21 | Hybrid Co <sub>3</sub> O <sub>4</sub> /SnO <sub>2</sub> Core–Shell Nanospheres as Real-Time<br>Rapid-Response Sensors for Ammonia Gas. ACS Applied Materials & Interfaces, 2016, 8, 6539-6545.                                                                                                                               | 4.0  | 134       |
| 22 | Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3,<br>1800444.                                                                                                                                                                                                                     | 3.0  | 128       |
| 23 | Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> MXene Conductive Layers Supported Bioâ€Derived<br>Fe <i><sub>x</sub></i> <sub>a^'1</sub> Se <i><sub>x</sub></i> /MXene/Carbonaceous Nanoribbons for<br>Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Advanced Materials, 2021, 33,<br>e2101535. | 11.1 | 128       |
| 24 | Flexible Selfâ€Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene<br>Thinâ€Films. Advanced Materials, 2021, 33, e2007890.                                                                                                                                                                     | 11.1 | 127       |
| 25 | Flexible, Grapheneâ€Coated Biocomposite for Highly Sensitive, Realâ€Time Molecular Detection. Advanced<br>Functional Materials, 2016, 26, 8623-8630.                                                                                                                                                                         | 7.8  | 116       |
| 26 | Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties. Journal of Materials Chemistry, 2012, 22, 4767.                                                                                                                                                       | 6.7  | 115       |
| 27 | Bioâ€Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 2019,<br>1, 1900040.                                                                                                                                                                                                          | 3.3  | 115       |
| 28 | Hollow ZnSnO <sub>3</sub> Cubes with Controllable Shells Enabling Highly Efficient Chemical<br>Sensing Detection of Formaldehyde Vapors. ACS Applied Materials & Interfaces, 2017, 9, 14525-14533.                                                                                                                           | 4.0  | 110       |
| 29 | Grainâ€Boundaryâ€Induced Drastic Sensing Performance Enhancement of Polycrystallineâ€Microwire<br>Printed Gas Sensors. Advanced Materials, 2019, 31, e1804583.                                                                                                                                                               | 11.1 | 110       |
| 30 | Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sensors and Actuators B: Chemical, 2015, 209, 449-455.                                                                                                                                                                                           | 4.0  | 104       |
| 31 | Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo<br>biomonitoring. Nano Energy, 2021, 84, 105921.                                                                                                                                                                        | 8.2  | 104       |
| 32 | Zinc oxide core–shell hollow microspheres with multi-shelled architecture for gas sensor applications. Journal of Materials Chemistry, 2011, 21, 19331.                                                                                                                                                                      | 6.7  | 100       |
| 33 | Plantâ€Based Modular Building Blocks for "Green―Electronic Skins. Advanced Functional Materials,<br>2018, 28, 1804510.                                                                                                                                                                                                       | 7.8  | 97        |
| 34 | Design of CuO–TiO <sub>2</sub> heterostructure nanofibers and their sensing performance. Journal of Materials Chemistry A, 2014, 2, 9030-9034.                                                                                                                                                                               | 5.2  | 94        |
| 35 | Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure. Sensors and Actuators B: Chemical, 2011, 156, 395-400.                                                                                                                                                                                  | 4.0  | 92        |
| 36 | Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers. Sensors and Actuators B: Chemical, 2013, 184, 21-26.                                                                                                                                                         | 4.0  | 92        |

| #  | Article                                                                                                                                                                                                                                        | IF              | CITATIONS        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 37 | Artificial Optoelectronic Synapses Based on<br>TiN <i><sub>x</sub></i> O <sub>2–</sub> <i><sub>x</sub></i> /MoS <sub>2</sub> Heterojunction for<br>Neuromorphic Computing and Visual System. Advanced Functional Materials, 2021, 31, 2101201. | 7.8             | 92               |
| 38 | 3D Chemical Cross‣inking Structure of Black Phosphorus@CNTs Hybrid as a Promising Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2020, 30, 1909372.                                                                  | 7.8             | 92               |
| 39 | Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: One-pot synthesis and toluene-sensing properties. Sensors and Actuators B: Chemical, 2014, 201, 1-6.                                                                              | 4.0             | 90               |
| 40 | Enhanced acetone sensing performances of hierarchical hollow Au-loaded NiO hybrid structures.<br>Sensors and Actuators B: Chemical, 2012, 161, 178-183.                                                                                        | 4.0             | 84               |
| 41 | P-type octahedral Cu 2 O particles with exposed {111} facets and superior CO sensing properties.<br>Sensors and Actuators B: Chemical, 2017, 239, 211-217.                                                                                     | 4.0             | 83               |
| 42 | Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review.<br>Small, 2021, 17, e2100804.                                                                                                              | 5.2             | 82               |
| 43 | Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Advanced<br>Materials Technologies, 2021, 6, 2100107.                                                                                               | 3.0             | 81               |
| 44 | Sweatâ€Permeable, Biodegradable, Transparent and Selfâ€powered Chitosanâ€Based Electronic Skin with<br>Ultrathin Elastic Gold Nanofibers. Advanced Functional Materials, 2022, 32, .                                                           | 7.8             | 80               |
| 45 | A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Journal of Materials Chemistry B, 2017, 5, 4019-4024.                                                                        | 2.9             | 76               |
| 46 | Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission.<br>Nanoscale, 2013, 5, 11928.                                                                                                                   | 2.8             | 75               |
| 47 | Grapheneâ€Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh Sensitivity<br>Bioelectronic Platforms. Advanced Functional Materials, 2016, 26, 2097-2103.                                                              | 7.8             | 75               |
| 48 | Nearâ€Infrared Light Triggered Selfâ€Powered Mechanoâ€Optical Communication System using Wearable<br>Photodetector Textile. Advanced Functional Materials, 2021, 31, 2104782.                                                                  | 7.8             | 74               |
| 49 | Enhanced Photoluminescence of Water Soluble YVO <sub>4</sub> :Ln <sup>3+</sup> (Ln = Eu, Dy, Sm,) Tj ETQq1<br>17042-17045.                                                                                                                     | 1 0.7843<br>1.5 | 14 rgBT /O<br>73 |
| 50 | Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance. Sensors and Actuators B: Chemical, 2012, 164, 90-95.                                                                                                  | 4.0             | 73               |
| 51 | Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures.<br>Sensors and Actuators B: Chemical, 2013, 176, 323-329.                                                                                   | 4.0             | 73               |
| 52 | Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4<br>microcrystals under 980 nm excitation. Journal of Materials Chemistry C, 2013, 1, 2485.                                                     | 2.7             | 72               |
| 53 | Concave Cu 2 O octahedral nanoparticles as an advanced sensing material for benzene (C 6 H 6 ) and nitrogen dioxide (NO 2 ) detection. Sensors and Actuators B: Chemical, 2016, 223, 311-317.                                                  | 4.0             | 72               |
| 54 | Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox<br>kinetics enhancement for improved lithium–sulfur battery performance. Journal of Materials<br>Chemistry A, 2019, 7, 806-815.                    | 5.2             | 72               |

| #  | Article                                                                                                                                                                                                                    | IF              | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 109-118.                                 | 5.0             | 72           |
| 56 | Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Advanced Science, 2022, 9, e2103257.                                                                                | 5.6             | 69           |
| 57 | Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform.<br>Sensors and Actuators B: Chemical, 2018, 255, 1436-1444.                                                              | 4.0             | 65           |
| 58 | Assessment of Occlusal Force and Local Gas Release Using Degradable Bacterial<br>Cellulose/Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Bioaerogel for Oral Healthcare.<br>ACS Nano, 2021, 15, 18385-18393.  | 7.3             | 65           |
| 59 | Nanofiber/nanowires-based flexible and stretchable sensors. Journal of Semiconductors, 2020, 41, 041605.                                                                                                                   | 2.0             | 64           |
| 60 | Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. New Journal of Chemistry, 2014, 38, 84-89.                                           | 1.4             | 62           |
| 61 | Comparison of toluene sensing performances of zinc stannate with different morphology-based gas sensors. Sensors and Actuators B: Chemical, 2016, 227, 448-455.                                                            | 4.0             | 62           |
| 62 | Highly sensitive sensing platform based on ZnSnO 3 hollow cubes for detection of ethanol. Applied Surface Science, 2017, 400, 262-268.                                                                                     | 3.1             | 60           |
| 63 | Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176-198.                                                                          | 6.2             | 60           |
| 64 | Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a<br>General Metal– <i>Aspergillus niger</i> Bioleaching Strategy. ACS Applied Materials & Interfaces,<br>2019, 11, 8072-8080.   | 4.0             | 58           |
| 65 | Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4:Ln3+ (Ln=Eu and) Tj ETQq1 1                                                                                                                 | 0.784314<br>2.8 | rgBT /Overic |
| 66 | Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route.<br>Solid-State Electronics, 2012, 76, 91-94.                                                                                  | 0.8             | 57           |
| 67 | Highly Stable Crossâ€Linked Cationic Polyacrylamide/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>MXene Nanocomposites for Flexible Ammoniaâ€Recognition Devices. Advanced Materials Technologies,<br>2020, 5, 2000248. | 3.0             | 56           |
| 68 | An Integrated Flexible Allâ€Nanowire Infrared Sensing System with Record Photosensitivity. Advanced<br>Materials, 2020, 32, e1908419.                                                                                      | 11.1            | 56           |
| 69 | Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting. Sensors and Actuators B: Chemical, 2015, 220, 1224-1231.                                           | 4.0             | 55           |
| 70 | Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sensors and Actuators B: Chemical, 2012, 171-172, 1180-1185.                                                                     | 4.0             | 54           |
| 71 | Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sensors and Actuators B: Chemical, 2013, 183, 467-473.                                                                   | 4.0             | 53           |
| 72 | Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CT MXene hybrids for advanced<br>aqueous electrochemical energy storage properties. Chemical Engineering Journal, 2022, 430, 132992.                     | 6.6             | 53           |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of rattle-type SnO2 structures with porous shells. Journal of Materials Chemistry, 2012, 22, 18111.                                                                                                    | 6.7 | 51        |
| 74 | MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Research, 2022, 15, 3653-3659.                                                                      | 5.8 | 51        |
| 75 | A class of hierarchical nanostructures: ZnO surface-functionalized TiO2 with enhanced sensing properties. RSC Advances, 2013, 3, 3131.                                                                           | 1.7 | 49        |
| 76 | MXene-Bonded hollow MoS2/Carbon sphere strategy for high-performance flexible sodium ion storage. Chemical Engineering Journal, 2022, 430, 132755.                                                               | 6.6 | 49        |
| 77 | Ring-like PdO–NiO with lamellar structure for gas sensor application. Journal of Materials Chemistry, 2012, 22, 12453.                                                                                           | 6.7 | 48        |
| 78 | Facile synthesis of hierarchical SnO2 semiconductor microspheres for gas sensor application.<br>Sensors and Actuators B: Chemical, 2011, 155, 285-289.                                                           | 4.0 | 46        |
| 79 | Biocompatible and Biodegradable Functional Polysaccharides for Flexible Humidity Sensors. Research, 2020, 2020, 8716847.                                                                                         | 2.8 | 46        |
| 80 | Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. Nano Research, 2018, 11, 1029-1037.                                                  | 5.8 | 44        |
| 81 | TiVCT <i><sub>x</sub></i> MXene/Chalcogenide Heterostructureâ€Based Highâ€Performance<br>Magnesiumâ€ion Battery as Flexible Integrated Units. Small, 2022, 18, .                                                 | 5.2 | 44        |
| 82 | High-selective sensitive NH 3 gas sensor: A density functional theory study. Sensors and Actuators B:<br>Chemical, 2018, 263, 502-507.                                                                           | 4.0 | 43        |
| 83 | Constructing Hierarchical Heterostructured<br>Mn <sub>3</sub> O <sub>4</sub> /Zn <sub>2</sub> SnO <sub>4</sub> Materials for Efficient Gas Sensing<br>Reaction. Advanced Materials Interfaces, 2018, 5, 1800115. | 1.9 | 42        |
| 84 | Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF_3 nanocrystals. Optics Letters, 2009, 34, 2781.                                                                                   | 1.7 | 41        |
| 85 | Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol.<br>Sensors and Actuators B: Chemical, 2018, 256, 479-487.                                                    | 4.0 | 40        |
| 86 | A Flexible Humidity Sensor Based on Natural Biocompatible Silk Fibroin Films. Advanced Materials<br>Technologies, 2021, 6, .                                                                                     | 3.0 | 39        |
| 87 | Reduced graphite oxide/SnO <sub>2</sub> /Au hybrid nanomaterials for NO <sub>2</sub> sensing performance at relatively low operating temperature. RSC Advances, 2014, 4, 57436-57441.                            | 1.7 | 38        |
| 88 | MXene/ZIF-67/PAN Nanofiber Film for Ultra-sensitive Pressure Sensors. ACS Applied Materials &<br>Interfaces, 2022, 14, 12367-12374.                                                                              | 4.0 | 38        |
| 89 | Fast and real-time acetone gas sensor using hybrid ZnFe <sub>2</sub> O <sub>4</sub> /ZnO hollow spheres. RSC Advances, 2016, 6, 66738-66744.                                                                     | 1.7 | 37        |
| 90 | Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate<br>Monitoring. , 2021, 3, 921-929.                                                                          |     | 36        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Terminal sliding mode control for full vehicle active suspension systems. Journal of Mechanical<br>Science and Technology, 2018, 32, 2851-2866.                                                                                                        | 0.7 | 35        |
| 92  | Constructing p–n heterostructures for efficient structure–driven ethanol sensing performance.<br>Sensors and Actuators B: Chemical, 2018, 255, 745-753.                                                                                                | 4.0 | 34        |
| 93  | Upconversion emissions from high-energy states of Eu^3+ sensitized by Yb^3+ and Ho^3+ in β-NaYF_4 microcrystals under 980 nm excitation. Optics Express, 2011, 19, 25471.                                                                              | 1.7 | 32        |
| 94  | Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance.<br>Journal of Alloys and Compounds, 2014, 586, 399-403.                                                                                                 | 2.8 | 32        |
| 95  | Efficient luminescence enhancement of Gd_2O_3:Ln^3+ (Ln = Yb/Er, Eu) NCs by codoping Zn^2+ and Li^+ inert ions. Optical Materials Express, 2017, 7, 329.                                                                                               | 1.6 | 32        |
| 96  | Enhanced ethanol sensing properties of NiO-doped SnO2 polyhedra. New Journal of Chemistry, 2012, 36, 1003.                                                                                                                                             | 1.4 | 31        |
| 97  | Ultravioletâ€Assisted Construction of Nitrogenâ€Rich<br>Ag@Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> MXene for Highly Efficient Hydrogen<br>Evolution Electrocatalysis and Supercapacitor. Advanced Materials Interfaces, 2020, 7, 2001449. | 1.9 | 31        |
| 98  | Direct annealing of electrospun synthesized high-performance porous SnO2 hollow nanofibers for gas sensors. RSC Advances, 2013, 3, 9723.                                                                                                               | 1.7 | 30        |
| 99  | NIR to VUV: Seven-Photon Upconversion Emissions from Gd <sup>3+</sup> Ions in Fluoride<br>Nanocrystals. Journal of Physical Chemistry Letters, 2015, 6, 556-560.                                                                                       | 2.1 | 30        |
| 100 | Allâ€Flexible Artificial Reflex Arc Based on Thresholdâ€Switching Memristor. Advanced Functional<br>Materials, 2022, 32, .                                                                                                                             | 7.8 | 30        |
| 101 | 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Applied Surface Science, 2019, 479, 209-215.                                                                                                                   | 3.1 | 28        |
| 102 | Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor. Journal of Colloid and Interface Science, 2018, 524, 76-83.                                                                     | 5.0 | 27        |
| 103 | The synthesis and fast ethanol sensing properties of core–shell SnO <sub>2</sub> @ZnO composite nanospheres using carbon spheres as templates. New Journal of Chemistry, 2016, 40, 6796-6802.                                                          | 1.4 | 26        |
| 104 | Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling. CrystEngComm, 2013, 15, 2897.                                                                                          | 1.3 | 24        |
| 105 | A perspective on flexible sensors in developing diagnostic devices. Applied Physics Letters, 2021, 119, .                                                                                                                                              | 1.5 | 23        |
| 106 | Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co 3 O 4 network. Applied Surface<br>Science, 2017, 426, 951-956.                                                                                                                   | 3.1 | 21        |
| 107 | Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals.<br>Journal of Alloys and Compounds, 2015, 653, 304-309.                                                                                             | 2.8 | 20        |
| 108 | Lightâ€Induced Surface Modification of Natural Plant Microparticles: Toward Colloidal Science and Cellular Adhesion Applications. Advanced Functional Materials, 2018, 28, 1707568.                                                                    | 7.8 | 20        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Highly Active Coâ€Based Catalyst in Nanofiber Matrix as Advanced Sensing Layer for High Selectivity of<br>Flexible Sensing Device. Advanced Materials Technologies, 2018, 4, 1800521.              | 3.0  | 20        |
| 110 | Ultraviolet upconversion emission of Pb <sup>2+</sup> ions sensitized by Yb <sup>3+</sup> -trimers in<br>CaF <sub>2</sub> . RSC Advances, 2017, 7, 2676-2681.                                      | 1.7  | 17        |
| 111 | Ultrafine Sb2S3@carbon-nanofibers for fast and stable sodium storage. Electrochimica Acta, 2022, 411, 140067.                                                                                      | 2.6  | 16        |
| 112 | Fast response/recovery performance of comb-like Co3O4 nanostructure. RSC Advances, 2014, 4, 21115.                                                                                                 | 1.7  | 14        |
| 113 | Hierarchical MXene@ZIFâ€67 Film Based High Performance Tactile Sensor with Large Sensing Range from<br>Motion Monitoring to Sound Wave Detection. Advanced Materials Technologies, 2022, 7, .      | 3.0  | 14        |
| 114 | Biocompatible liquid metal coated stretchable electrospinning film for strain sensors monitoring system. Science China Materials, 2022, 65, 2235-2243.                                             | 3.5  | 14        |
| 115 | Large-scale synthesis and photoluminescence properties ofÂSiC networks. Applied Physics A: Materials<br>Science and Processing, 2009, 96, 521-527.                                                 | 1.1  | 12        |
| 116 | Impurity doping: a novel strategy for selective synthesis of YF <sub>3</sub> and NaYF <sub>4</sub> crystals. CrystEngComm, 2017, 19, 3215-3221.                                                    | 1.3  | 12        |
| 117 | Hydrophobic to superhydrophilic tuning of multifunctional sporopollenin for microcapsule and bio-composite applications. Applied Materials Today, 2020, 18, 100525.                                | 2.3  | 12        |
| 118 | Dynamic simulation and analysis of the elevating mechanism of a forklift based on a power bond graph. Journal of Mechanical Science and Technology, 2016, 30, 4043-4048.                           | 0.7  | 9         |
| 119 | High energy density supercapacitor based on N/B co-doped graphene nanoarchitectures and ionic liquid electrolyte. Ionics, 2019, 25, 4351-4360.                                                     | 1.2  | 9         |
| 120 | Tissueâ€Like Sodium Alginateâ€Coated 2D MXeneâ€Based Flexible Temperature Sensors for Fullâ€Range<br>Temperature Monitoring. Advanced Materials Technologies, 2022, 7, .                           | 3.0  | 9         |
| 121 | Chemically Modified Silk Fibroin Hydrogel for Environment-stable Electronic Skin. Sensors and Actuators Reports, 2022, 4, 100089.                                                                  | 2.3  | 9         |
| 122 | Bright Green Upconversion Fluorescence of Yb3+, Er3+-Codoped NaYF4 Nanocrystals. Journal of<br>Nanoscience and Nanotechnology, 2010, 10, 1825-1828.                                                | 0.9  | 7         |
| 123 | ACETONE SENSING PROPERTIES OF HIERARCHICAL ZnO URCHINLIKE STRUCTURES BY HYDROTHERMAL PROCESS. Biomedical Engineering - Applications, Basis and Communications, 2012, 24, 99-103.                   | 0.3  | 7         |
| 124 | Anchored SnS nanorods based on a carbon-enhanced Nb2CTx three-dimensional nanoflower<br>framework achieve stable, high capacity Na-ion storage. Applied Surface Science, 2022, 597, 153598.        | 3.1  | 7         |
| 125 | Preparation of Highly Monodisperse Electroactive Pollen Biocomposites. ChemNanoMat, 2016, 2, 414-418.                                                                                              | 1.5  | 6         |
| 126 | Gas Sensors: Grainâ€Boundaryâ€Induced Drastic Sensing Performance Enhancement of<br>Polycrystallineâ€Microwire Printed Gas Sensors (Adv. Mater. 4/2019). Advanced Materials, 2019, 31,<br>1970028. | 11.1 | 6         |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The position shifting of charge transfer band in Eu3+-doped Re2O3 phosphors. Chemical Physics<br>Letters, 2019, 731, 136611.                                                                                                                             | 1.2  | 5         |
| 128 | Printable Ta Substrate with High Stability and Enhanced Interface Adhesion for Flexible<br>Supercapacitor Performance Improvement. Advanced Materials Technologies, 2019, 4, 1900338.                                                                    | 3.0  | 5         |
| 129 | 2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.                                                                                                                                   | 0.5  | 5         |
| 130 | The 1S0 → 3P1 transition position shift of Bi3+ ion doped Ln2O3 (Ln = Lu, Gd, La) phosphors. Journal of<br>Luminescence, 2021, 234, 117971.                                                                                                              | 1.5  | 4         |
| 131 | Double-color luminescence and magnetic characteristics in Fe <sup>3+</sup> doped<br>NaErF <sub>4</sub> microcrystals. Optical Materials Express, 2019, 9, 3379.                                                                                          | 1.6  | 4         |
| 132 | The universal equation of state applied to analysis of EOS data for solid molybdenum and tungsten.<br>Journal of Materials Science, 2009, 44, 708-714.                                                                                                   | 1.7  | 3         |
| 133 | Oxidized Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> film-based high-performance flexible pressure sensors. Journal Physics D: Applied Physics, 2021, 54, 384002.                                                                                      | 1.3  | 3         |
| 134 | Biosensors: Graphene-Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh<br>Sensitivity Bioelectronic Platforms (Adv. Funct. Mater. 13/2016). Advanced Functional Materials, 2016,<br>26, 2220-2220.                             | 7.8  | 1         |
| 135 | Enhanced down-conversion luminescence properties of CaSc2O4: Eu3+ crystals. Journal of<br>Luminescence, 2019, 214, 116526.                                                                                                                               | 1.5  | 1         |
| 136 | Biosensors: Flexible, Graphene-Coated Biocomposite for Highly Sensitive, Real-Time Molecular<br>Detection (Adv. Funct. Mater. 47/2016). Advanced Functional Materials, 2016, 26, 8796-8796.                                                              | 7.8  | 0         |
| 137 | Functionalized Natural Particles: Lightâ€Induced Surface Modification of Natural Plant Microparticles:<br>Toward Colloidal Science and Cellular Adhesion Applications (Adv. Funct. Mater. 18/2018). Advanced<br>Functional Materials, 2018, 28, 1870120. | 7.8  | 0         |
| 138 | Enhanced red emission in Yb3+/Ho3+/Cr3+ tridoped K2ErF5 microcrystal. Journal of Luminescence,<br>2020, 225, 117366.                                                                                                                                     | 1.5  | 0         |
| 139 | Infrared Imaging Sensors: An Integrated Flexible Allâ€Nanowire Infrared Sensing System with Record<br>Photosensitivity (Adv. Mater. 16/2020). Advanced Materials, 2020, 32, 2070126.                                                                     | 11.1 | 0         |