Haiqun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1343687/publications.pdf

Version: 2024-02-01

84 papers

5,492 citations

94433 37 h-index 79698 73 g-index

84 all docs

84 docs citations

times ranked

84

7578 citing authors

#	Article	IF	CITATIONS
1	Hydrangea-like NiMoO4-Ag/rGO as Battery-type electrode for hybrid supercapacitors with superior stability. Journal of Colloid and Interface Science, 2022, 606, 1652-1661.	9.4	33
2	Reduced graphene oxide supported ZnO/CdS heterojunction enhances photocatalytic removal efficiency of hexavalent chromium from aqueous solution. Chemosphere, 2022, 286, 131738.	8.2	45
3	A facile solvothermal syntheses of NiFe layered double hydroxide-Bi2MoO6 heterostructure/reduced graphene oxide with efficient photodegradation for tetracycline. Environmental Research, 2022, 204, 112037.	7.5	18
4	Zn-doped Bi2MoO6 supported on reduced graphene oxide with increased surface active sites for degradation of ciprofloxacin. Environmental Science and Pollution Research, 2022, 29, 19835-19846.	5.3	2
5	Supports promote single-atom catalysts toward advanced electrocatalysis. Coordination Chemistry Reviews, 2022, 451, 214261.	18.8	187
6	Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation. Materials Science in Semiconductor Processing, 2022, 140, 106384.	4.0	15
7	Synthesis, Characterization, and Catalytic Study of Caffeine-Derived N-heterocyclic Carbene Palladium Complexes. Organometallics, 2022, 41, 161-168.	2.3	8
8	Hollow nanospheres comprising amorphous NiMoS4 and crystalline NiS2 for all-solid-state supercapacitors. Chemical Engineering Journal, 2022, 436, 135231.	12.7	32
9	Successive Anion/Cation Exchange Enables the Fabrication of Hollow CuCo2S4 Nanorods for Advanced Oxygen Evolution Reaction Electrocatalysis. Inorganic Chemistry, 2022, , .	4.0	9
10	Engineering thiospinel-based hollow heterostructured nanoarrays for boosting electrocatalytic oxygen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 2403-2409.	6.0	13
11	Engineering NiMoO ₄ /NiFe LDH/rGO multicomponent nanosheets toward enhanced electrocatalytic oxygen evolution reaction. Dalton Transactions, 2022, 51, 6448-6453.	3.3	20
12	Flexible Free-Standing Fe ₂ O ₃ Nanoparticle/Carbon Shells/Graphene Films for Advanced Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 5017-5024.	5.0	13
13	Engineering Heterostructured Pd–Bi ₂ Te ₃ Doughnut/Pd Hollow Nanospheres for Ethylene Glycol Electrooxidation. Inorganic Chemistry, 2022, 61, 4533-4540.	4.0	79
14	Race on engineering noble metal single-atom electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2022, 47, 14257-14279.	7.1	105
15	Engineering atomically dispersed single Cu–N ₃ catalytic sites for highly selective oxidation of benzene to phenol. Inorganic Chemistry Frontiers, 2022, 9, 2637-2643.	6.0	7
16	Ultrasensitive electrochemical detection of bisphenol A using composites of MoS2 nanoflowers, CoS2 nano-polyhedrons and reduced graphene oxide. Environmental Chemistry Letters, 2022, 20, 2751-2756.	16.2	4
17	Construction of sulfur vacancies enriched hollow zinc cobalt bimetallic sulfides for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 913, 165191.	5.5	15
18	ZIF-67 derived Mo2N/Mo2C heterostructure as high-efficiency electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 922, 166216.	5.5	14

#	Article	IF	Citations
19	Magnetically separable graphene-based Ni–Fe mixed metal oxide nanocubes derived from a Prussianblue analogue: synthesis, structure and application in oxidative degradation of bisphenol A. Catalysis Science and Technology, 2021, 11, 459-463.	4.1	1
20	Spinel-type FeNi ₂ S ₄ with rich sulfur vacancies grown on reduced graphene oxide toward enhanced supercapacitive performance. Inorganic Chemistry Frontiers, 2021, 8, 2271-2279.	6.0	48
21	Composites of NiS ₂ Microblocks, MoS ₂ Nanosheets, and Reduced Graphene Oxide for Energy Storage and Electrochemical Detection of Bisphenol A. ACS Applied Nano Materials, 2021, 4, 6093-6102.	5.0	29
22	One-step synthesis of reduced graphene oxide based ceric dioxide modified with cadmium sulfide (CeO2/CdS/RGO) heterojunction with enhanced sunlight-driven photocatalytic activity. Journal of Colloid and Interface Science, 2021, 594, 621-634.	9.4	38
23	Synthesis of graphene-based CdS@CuS core-shell nanorods by cation-exchange for efficient degradation of ciprofloxacin. Journal of Alloys and Compounds, 2021, 869, 159305.	5.5	30
24	Synthesis of Ce-doped NiAl LDH/RGO composite as an efficient photocatalyst for photocatalytic degradation of ciprofloxacin. Journal of Environmental Chemical Engineering, 2021, 9, 105405.	6.7	45
25	One-step hydrothermal synthesis of BiVO4/TiO2/RGO composite with effective photocatalytic performance for the degradation of ciprofloxacin. Optical Materials, 2021, 122, 111726.	3.6	13
26	Covalently Induced Grafting of C ₂ N Nanoflakes onto Reduced Graphene Oxide with Dominant Pseudocapacitive Behaviors for a High-Rate Sodium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2021, 9, 15946-15956.	6.7	4
27	Low-temperature preparation of magnetically separable Fe3O4@ZnO-RGO for high-performance removal of methylene blue in visible light. Journal of Alloys and Compounds, 2020, 821, 153366.	5.5	37
28	Combination of αâ€Fe ₂ O ₃ , CdS and reduced graphene oxide: highâ€performance and recyclable visible light photocatalysis. Applied Organometallic Chemistry, 2020, 34, e5340.	3.5	8
29	Mn-Doped NiMoO ₄ Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor. ACS Applied Energy Materials, 2020, 3, 1794-1803.	5.1	68
30	Bi2Ti2O7/TiO2/RGO composite for the simulated sunlight-driven photocatalytic degradation of ciprofloxacin. Materials Chemistry and Physics, 2020, 256, 123650.	4.0	36
31	Heterogeneous activation of persulfate for the degradation of bisphenol A with Ni ₂ SnO ₄ –RGO. New Journal of Chemistry, 2020, 44, 6355-6361.	2.8	9
32	ZnCr layered double hydroxide nanoplate-decorated CdS nanowire with excellent photocatalytic activity for removing Cr(VI) in wastewater. Materials Letters, 2020, 268, 127581.	2.6	8
33	CdS–Bi2MoO6/RGO nanocomposites for efficient degradation of ciprofloxacin under visible light. Journal of Materials Science, 2020, 55, 6065-6077.	3.7	38
34	Graphene Based Copperâ€Nickel Bimetal Nanocomposite: Magnetically Separable Catalyst for Reducing Hexavalent Chromium. ChemistrySelect, 2020, 5, 3243-3247.	1.5	6
35	Activation of persulfate by heterogeneous catalyst ZnCo2O4–RGO for efficient degradation of bisphenol A. Canadian Journal of Chemistry, 2020, 98, 771-778.	1.1	1
36	Formation of CoNi ₂ S ₄ nanofibers with 3D hierarchical pompom-like structure for high-rate electrochemical capacitors. New Journal of Chemistry, 2019, 43, 11749-11757.	2.8	7

#	Article	IF	CITATIONS
37	Synthesis of visible light-driven graphene based ZnFe mixed metal oxide for efficient degradation of tetracycline. Journal of Materials Science: Materials in Electronics, 2019, 30, 8931-8943.	2,2	12
38	Reduced graphene oxide based NiCo layered double hydroxide nanocomposites: An efficient catalyst for epoxidation of styrene. Inorganic Chemistry Communication, 2019, 104, 219-222.	3.9	16
39	A carnation-like rGO/Bi2O2CO3/BiOCl composite: efficient photocatalyst for the degradation of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 2019, 30, 5986-5994.	2.2	53
40	Heterogeneous activation of persulfate by NiFe2â^'xCoxO4-RGO for oxidative degradation of bisphenol A in water. Chemical Engineering Journal, 2019, 365, 259-269.	12.7	61
41	Cytotoxicity of Bacteriostatic Reduced Graphene Oxide-Based Copper Oxide Nanocomposites. Jom, 2019, 71, 294-301.	1.9	9
42	Constructing high-efficiency photocatalyst for degrading ciprofloxacin: Three-dimensional visible light driven graphene based NiAlFe LDH. Journal of Colloid and Interface Science, 2019, 540, 237-246.	9.4	71
43	One-pot synthesis of visible-light-driven photocatalyst for degradation of Rhodamine B: Graphene based bismuth/bismuth(III) oxybromide. Materials Letters, 2019, 240, 246-249.	2.6	11
44	Scalable Green Method to Fabricate Magnetically Separable NiFe ₂ O ₄ -Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance Driven by Visible Light. Industrial & Discourse Chemistry Research, 2018, 57, 4311-4319.	3.7	47
45	Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light. Applied Surface Science, 2018, 441, 599-606.	6.1	29
46	Improved ciprofloxacin removal by a Fe(VI)-Fe3O4/graphene system under visible light irradiation. Water Science and Technology, 2018, 2017, 527-533.	2.5	3
47	CNT-intercalated rGO/sulfur laminated structure for high-rate and long-life lithium-sulfur batteries. Materials Letters, 2018, 219, 68-71.	2.6	12
48	One-step hydrothermal synthesis of peony-like Ag/Bi2WO6 as efficient visible light-driven photocatalyst toward organic pollutants degradation. Journal of Materials Science, 2018, 53, 4848-4860.	3.7	36
49	A self-assembled 2D/2D-type protonated carbon nitride-modified graphene oxide nanocomposite with improved photocatalytic activity. Applied Surface Science, 2018, 434, 456-463.	6.1	53
50	Construction of magnetically separable NiAl LDH/Fe ₃ O ₄ –RGO nanocomposites with enhanced photocatalytic performance under visible light. Physical Chemistry Chemical Physics, 2018, 20, 414-421.	2.8	94
51	A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol A. Mikrochimica Acta, 2018, 185, 459.	5.0	17
52	Construction of 3D marigold-like Bi2WO6/Ag2O/CQDs heterostructure with superior visible-light active photocatalytic activity toward tetracycline degradation and selective oxidation. Journal of Materials Science, 2018, 53, 12040-12055.	3.7	12
53	Amorphous mesoporous nickel phosphate/reduced graphene oxide with superior performance for electrochemical capacitors. Dalton Transactions, 2018, 47, 13052-13062.	3.3	21
54	Enhanced photocatalytic activity of magnetic core–shell Fe3O4@Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. Journal of Materials Science: Materials in Electronics, 2017, 28, 8519-8528.	2.2	49

#	Article	IF	CITATIONS
55	Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature. Applied Surface Science, 2017, 402, 294-300.	6.1	56
56	Cu/graphene with high catalytic activity prepared by glucose blowing for reduction of p -nitrophenol. Journal of Cleaner Production, 2017, 161, 655-662.	9.3	60
57	Scalable and facile preparation of optical-magnetic dual function 3D Ni@graphene-ZnO for high efficiency removal of hexavalent chromium. Ceramics International, 2017, 43, 3792-3796.	4.8	11
58	Trials of Treating Decentralized Domestic Sewage from a Residential Area by Potassium Ferrate(VI). Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	5
59	Synthesis of CuCr ₂ O ₄ /Reduced Graphene Oxide Composite: A Green Catalyst for Selective Oxidation of Cyclohexane to Cyclohexanone with Hydrogen Peroxide. ChemistrySelect, 2017, 2, 10941-10945.	1.5	3
60	One-step solvothermal synthesis of spherical spinel type NiFe2â^'xMnxO4-RGO as high-performance supercapacitor electrodes. Ceramics International, 2017, 43, 2226-2232.	4.8	14
61	Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. Journal of Alloys and Compounds, 2016, 688, 649-656.	5.5	52
62	Benzenoid-like CuFeO2@reduced graphene oxide: Facile synthesis and its excellent catalytic performance in selective oxidation. Applied Surface Science, 2016, 389, 840-848.	6.1	40
63	Solvent-thermal preparation of a CuCo ₂ O ₄ /RGO heterocomposite: an efficient catalyst for the reduction of p-nitrophenol. New Journal of Chemistry, 2016, 40, 4769-4774.	2.8	38
64	In-situ preparation of three-dimensional Ni@graphene-Cu composites for ultrafast reduction of Cr(VI) at room temperature. Catalysis Communications, 2016, 75, 13-17.	3.3	42
65	Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode. Journal of Applied Electrochemistry, 2015, 45, 343-352.	2.9	46
66	One-Step Ball-Milling Preparation of Highly Photocatalytic Active CoFe ₂ O ₄ â€"Reduced Graphene Oxide Heterojunctions For Organic Dye Removal. Industrial & Engineering Chemistry Research, 2015, 54, 2862-2867.	3.7	104
67	A facile novel preparation of three-dimensional Ni@graphene by catalyzed glucose blowing for high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 74463-74466.	3.6	10
68	Prediction for the detonation velocity of the nitrogen-rich energetic compounds based on quantum chemistry. Russian Journal of Physical Chemistry A, 2014, 88, 2363-2369.	0.6	9
69	High Catalytic Activity in the Phenol Hydroxylation of Magnetically Separable CuFe ₂ O ₄ –Reduced Graphene Oxide. Industrial & Engineering Chemistry Research, 2014, 53, 12566-12574.	3.7	112
70	Fabrication of Ag3PO4â^'PANIâ^'GO composites with high visible light photocatalytic performance and stability. Journal of Environmental Chemical Engineering, 2014, 2, 952-957.	6.7	37
71	Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol. Materials Research Bulletin, 2014, 57, 190-196.	5.2	65
72	A Facile Hydrothermal Synthesis of a MnCo2O4@Reduced Graphene Oxide Nanocomposite for Application in Supercapacitors. Chemistry Letters, 2014, 43, 83-85.	1.3	45

#	Article	IF	CITATIONS
73	Fast and Efficient Removal of Cationic Dye Using Graphite Oxide, Adsorption, and Kinetics Studies. Journal of Dispersion Science and Technology, 2013, 34, 1223-1229.	2.4	13
74	Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. Materials Letters, 2013, 98, 164-167.	2.6	123
75	Fe3O4@graphene oxide composite: A magnetically separable and efficient catalyst for the reduction of nitroarenes. Materials Research Bulletin, 2013, 48, 1885-1890.	5.2	89
76	Photosynthesis of Multiple Valence Silver Nanoparticles on Reduced Graphene Oxide Sheets With Enhanced Antibacterial Activity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 440-445.	0.6	5
77	Graphene sheets-based Ag@Ag3PO4 heterostructure for enhanced photocatalytic activity and stability under visible light. Powder Technology, 2013, 246, 278-283.	4.2	37
78	High Photocatalytic Activity of Magnetically Separable Manganese Ferrite–Graphene Heteroarchitectures. Industrial & Engineering Chemistry Research, 2012, 51, 725-731.	3.7	175
79	Grapheneâ€supported nickel ferrite: A magnetically separable photocatalyst with high activity under visible light. AICHE Journal, 2012, 58, 3298-3305.	3.6	95
80	Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. Applied Catalysis B: Environmental, 2012, 111-112, 280-287.	20.2	334
81	Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. Journal of Power Sources, 2012, 204, 46-52.	7.8	166
82	Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance. Materials Letters, 2012, 82, 61-63.	2.6	127
83	Synthesis and characterization of graphene paper with controllable properties via chemical reduction. Journal of Materials Chemistry, 2011, 21, 14631.	6.7	85
84	Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials, 2008, 20, 3557-3561.	21.0	1,843