Akio Takemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1343661/publications.pdf

Version: 2024-02-01

45 papers

1,331 citations

16 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

1698 citing authors

#	Article	IF	CITATIONS
1	Dehulled coffee husk-based biocomposites for green building materials. Journal of Thermoplastic Composite Materials, 2021, 34, 1623-1638.	2.6	17
2	Reinforcement of agricultural wastes liquefied polyols based polyurethane foams by agricultural wastes particles. Journal of Applied Polymer Science, 2021, 138, 50583.	1.3	12
3	Synthesis and characterization of Cu-BTC metal–organic frameworks onto lignocellulosic fibers by layer-by-layer method in aqueous solution. Cellulose, 2020, 27, 1733-1744.	2.4	15
4	Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. International Journal of Biological Macromolecules, 2020, 153, 364-372.	3.6	6
5	Compatibilities and properties of poly lactide/poly (methyl acrylate) grafted chicken feather composite: Effects of graft chain length. Journal of Applied Polymer Science, 2020, 137, 48981.	1.3	9
6	A comparative study of depositing Cu-BTC metal–organic framework onto cellulosic filter paper via different procedures. Cellulose, 2020, 27, 6537-6547.	2.4	15
7	Graft modification of methyl acrylate onto chicken feather via surface initiated Cu(0)â€mediated reversibleâ€deactivation radical polymerization. Journal of Applied Polymer Science, 2019, 136, 48246.	1.3	3
8	Synthesis of Biomass-based Adhesives Derived fromDextran Ester Derivatives. Journal of the Adhesion Society of Japan, 2019, 55, 315-322.	0.0	4
9	In-situ chemical structure analysis of aqueous vinyl polymer solution-isocyanate adhesive in post-cure process by using Fourier transform near infrared spectroscopy. International Journal of Adhesion and Adhesives, 2018, 81, 56-64.	1.4	16
10	Optimization of polyol production via liquefaction from <i>Acacia mangium</i> and analysis of the polyols by traditional methods and two-dimensional correlation spectroscopy. Holzforschung, 2018, 72, 451-458.	0.9	7
11	Synthesis and characterization of regioselectively substituted curdlan hetero esters via an unexpected acyl migration. Carbohydrate Polymers, 2017, 155, 440-447.	5.1	17
12	Surface Science and Adhesion Science. Hyomen Kagaku, 2017, 38, 53-53.	0.0	0
13	Preparation and characterization of polychloroprene nanocomposites with cellulose nanofibers from oil palm empty fruit bunches as a nanofiller. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
14	Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller. Cellulose, 2014, 21, 2519-2527.	2.4	12
15	Curdlan ester derivatives: Synthesis, structure, and properties. Carbohydrate Polymers, 2014, 103, 427-433.	5.1	70
16	The morphology and properties of poly(methyl methacrylate)â€eellulose nanocomposites prepared by immersion precipitation method. Journal of Applied Polymer Science, 2013, 128, 1563-1568.	1.3	19
17	Atomic Force Microscopy Observation of Polylactide Stereocomplex Edge-On Crystals in Thin Films: Effects of Molecular Weight on Lamellar Curvature. ACS Macro Letters, 2013, 2, 355-360.	2.3	34
18	Processing, Mechanical Properties, and Structure Analysis of Melt-Spun Fibers of P(3HB)/UHMW-P(3HB) Identical Blend. ACS Symposium Series, 2012, , 63-75.	0.5	8

#	Article	IF	CITATIONS
19	Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydrate Polymers, 2012, 87, 170-176.	5.1	92
20	Morphology, dynamic mechanical, and electrical properties of bioâ€based poly(trimethylene) Tj ETQq0 0 0 rgBT /C blends. Journal of Applied Polymer Science, 2012, 123, 1056-1067.	Overlock 1 1.3	0 Tf 50 707 ¹
21	Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose, 2011, 18, 443-450.	2.4	127
22	Crystallization, morphology, and electrical properties of bioâ€based poly(trimethylene) Tj ETQq0 0 0 rgBT /Overlog 2714-2724.	ck 10 Tf 50 1.3	0 627 Td (tei 10
23	Morphology, dynamic mechanical, and electrical properties of bioâ€based poly(trimethylene) Tj ETQq1 1 0.78431 glycol 400 bis(2â€ethylhexanoate) blends. Journal of Applied Polymer Science, 2011, 120, 3519-3529.	4 rgBT /Ον 1.3	verlock 10 Tf 9
24	Effects of reprocessing on the hygroscopic behavior of natural fiber highâ€density polyethylene composites. Journal of Applied Polymer Science, 2011, 122, 1258-1267.	1.3	13
25	Recycled Natural Fiber Polypropylene Composites: Water Absorption/Desorption Kinetics and Dimensional Stability. Journal of Polymers and the Environment, 2010, 18, 500-509.	2.4	28
26	Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 2010, 17, 977-985.	2.4	273
27	Structural Properties and Enzymatic Degradation Behavior of PLLA and Stereocomplexed PLA Nanofibers. Macromolecular Materials and Engineering, 2010, 295, 865-871.	1.7	38
28	Surface Property and Compatibility of Poly(styrene-isoprene-styrene) Triblock Copolymer/Tackifier Blend System. Journal of Adhesion, 2010, 86, 953-968.	1.8	2
29	Characterization of Adsorption of Charcoal from Cedar-thinned Woods as Additives for Paper. Kami Pa Gikyoshi/Japan Tappi Journal, 2010, 64, 833-843.	0.1	O
30	Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polymer Composites, 2009, 30, 1226-1233.	2.3	30
31	Antistatic performance and morphological observation of ternary blends of poly(ethylene) Tj ETQq1 1 0.784314 rg 2247-2257.	gBT /Overl 1.5	ock 10 Tf <mark>50</mark> 13
32	Swelling behavior of chitosan/poly(acrylic acid) complex. Journal of Applied Polymer Science, 2004, 92, 2930-2940.	1.3	25
33	Simplified method for estimation of composition of alginates by FTIR. Journal of Applied Polymer Science, 2004, 93, 1372-1377.	1.3	115
34	Crosslinked acrylic pressure-sensitive adhesives. I. Effect of the crosslinking reaction on the peel strength. Journal of Applied Polymer Science, 2003, 87, 1493-1499.	1.3	45
35	Crosslinked acrylic pressure-sensitive adhesives. II. Effect of humidity on the crosslinking reaction. Journal of Applied Polymer Science, 2003, 89, 3039-3045.	1.3	11
36	Synthesis and FTIR spectroscopic studies on shear induced oriented liquid crystalline chitin/poly(acrylic acid) composite. Journal of Applied Polymer Science, 2003, 90, 1932-1940.	1.3	9

Akio Takemura

#	Article	lF	CITATION
37	Synthesis and orientation study of a magnetically aligned liquid-crystalline chitin/poly(acrylic acid) composite. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 711-714.	2.4	11
38	Synthesis and characterization of chitosan/poly(acrylic acid) polyelectrolyte complex. Journal of Applied Polymer Science, 2002, 83, 1025-1035.	1.3	36
39	Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives. I. Adhesive tensile strength. Journal of Applied Polymer Science, 2002, 83, 719-725.	1.3	36
40	Miscibility and adhesive properties of EVA-based hot-melt adhesives. II. Peel strength. Journal of Applied Polymer Science, 2002, 83, 726-735.	1.3	14
41	Effects of miscibility and viscoelasticity on shear creep resistance of natural-rubber-based pressure-sensitive adhesives., 2000, 75, 1535-1545.		34
42	Miscibility between natural rubber and tackifiers. II. Phase diagrams of the blends of natural rubber and petroleum resins. Journal of Applied Polymer Science, 1998, 67, 221-229.	1.3	8
43	Effects of miscibility on probe tack of naturalâ€rubberâ€based pressureâ€sensitive adhesives. Journal of Applied Polymer Science, 1998, 70, 771-776.	1.3	25
44	Effects of miscibility on peel strength of natural-rubber-based pressure-sensitive adhesives. , 1998, 70, 777-784.		29
45	Miscibility between natural rubber and tackifiers. I. Phase diagrams of the blends of natural rubber with rosin and terpene resins. Journal of Applied Polymer Science, 1997, 64, 2191-2197.	1.3	13