Andrey Goryachev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134263/publications.pdf Version: 2024-02-01

ANDREY CORVACHEV

#	Article	IF	CITATIONS
1	Coupling electrochemical CO2 conversion with CO2 capture. Nature Catalysis, 2021, 4, 952-958.	34.4	272
2	Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media. Applied Catalysis B: Environmental, 2020, 261, 118225.	20.2	53
3	Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions. Catalysis Science and Technology, 2020, 10, 5593-5601.	4.1	35
4	Catalytic Hydrogenation of Renewable Levulinic Acid to Î ³ -Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. ACS Sustainable Chemistry and Engineering, 2020, 8, 5903-5919.	6.7	35
5	Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochimica Acta, 2020, 336, 135713.	5.2	30
6	A Titanium Metal–Organic Framework with Visibleâ€Lightâ€Responsive Photocatalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 13468-13472.	13.8	84
7	Efficient and Highly Transparent Ultraâ€Thin Nickelâ€Iron Oxyâ€hydroxide Catalyst for Oxygen Evolution Prepared by Successive Ionic Layer Adsorption and Reaction. ChemPhotoChem, 2019, 3, 1050-1054.	3.0	6
8	On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes. Physical Chemistry Chemical Physics, 2018, 20, 14242-14250.	2.8	14
9	Stability of CoP _{<i>x</i>} Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water. ChemElectroChem, 2018, 5, 1230-1239.	3.4	35
10	Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO ₂ (110) Model Electrodes. ACS Catalysis, 2017, 7, 2403-2411.	11.2	111
11	Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion. ACS Catalysis, 2017, 7, 5121-5128.	11.2	26
12	Synchrotron based operando surface Xâ€ray scattering study towards structure–activity relationships of model electrocatalysts. ChemistrySelect, 2016, 1, 1104-1108.	1.5	7
13	ZrO ₂ Is Preferred over TiO ₂ as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS Catalysis, 2016, 6, 5462-5472.	11.2	169
14	A simple and flexible route to large-area conductive transparent graphene thin-films. Synthetic Metals, 2015, 201, 67-75.	3.9	14
15	Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO ₂ –MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process. ACS Catalysis, 2015, 5, 6005-6015.	11.2	95
16	Basicity of Stereoregulating Electron-Donor Compounds in Ziegler–Natta Catalysts: A Study by Infrared Spectroscopy and Chemical Exchange Reactions. Journal of Physical Chemistry C, 2014, 118, 28572-28579.	3.1	5