Kittisak Choojun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1342365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of magnesium alkyls supported by 1,5,9-trimesityldipyrromethene and 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]pent-2-ene. A comparative study. Chemical Science, 2012, 3, 3445.	7.4	74
2	Ethyl 2-hydroxy-2-methylpropanoate derivatives of magnesium and zinc. The effect of chelation on the homo- and copolymerization of lactide and $\hat{I}\mu$ -caprolactone. Dalton Transactions, 2014, 43, 2781-2788.	3.3	31
3	Molecular Dynamics and Ligand Exchange in Magnesium Complexes: Evidence for both Dissociative and Associative Ligand Exchange. Angewandte Chemie - International Edition, 2013, 52, 3264-3266.	13.8	22
4	BDIâ^—MgX(L) where X = Bu and O Bu and L = THF, py and DMAP. The rates of kinetic exchange of L where BDIâ^—= CH{C(Bu)N-2,6- Pr2C6H3}2. Polyhedron, 2016, 103, 235-240.	2.2	20
5	THF Exchange and Molecular Dynamics in the Series (BDI)MgX(THF), Where X = Bu ^{<i>n</i>} , NEt ₂ , and OBu ^{<i>t</i>} and BDI = 2-[(2,6-Diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]pent-2-ene. Inorganic Chemistry, 2013, 52, 11302-11310.	4.0	13
6	TMPZnN(SiMe3)2, [TMPZn(μ-O Pr)]2 and TMPZn[OCMe2C(O)OEt]. Their role in the ring-opening of rac-lactide and ε-caprolactone where TMPÂ=Â1,5,9-trimesityldipyrromethene. Journal of Organometallic Chemistry, 2016, 812, 56-65.	1.8	10
7	High photocatalytic performance of 3D porous-structured TiO2@natural rubber hybrid sheet on the removal of indigo carmine dye in water. SN Applied Sciences, 2019, 1, 1.	2.9	7
8	Effect of cobalt complex precursors on reactivity of cationic cobalt catalysts: Cyclohexane dehydrogenation. Catalysis Communications, 2019, 125, 108-113.	3.3	7
9	TMPMg Bu(L), where LÂ= THF, 2-MeTHF, pyridine and dimethylaminopyridine and TMPÂ= 1,5,9-trimesityldipyrromethene: Reaction with lactide and ε-caprolactone. Journal of Organometallic Chemistry, 2017, 842, 74-81.	1.8	6
10	Deoxygenation of heptanoic acid to hexene over cobalt-based catalysts: A model study for α-olefin production from renewable fatty acid. Applied Catalysis A: General, 2020, 602, 117644.	4.3	6
11	Preparation and Photocatalytic Activities of TiO ₂ -rGO Nanocomposite Catalysts for MB Dye Degradation over Sunlight Irradiation. Materials Science Forum, 0, 936, 47-52.	0.3	5
12	Linear long-chain α-olefins from hydrodeoxygenation of methyl palmitate over copper phyllosilicate catalysts. Applied Catalysis A: General, 2022, 635, 118555.	4.3	5
13	Synthesis of Nanocrystalline Cobalt Ferrite by the Sonochemical Method in Highly Basic Aqueous Solution. Key Engineering Materials, 0, 751, 368-373.	0.4	4
14	Reversible Hydrogenation–Dehydrogenation of Acetylpyridine-Pd-MIL-101(Cr) for Chemical Hydrogen Storage. Industrial & Engineering Chemistry Research, 2020, 59, 17671-17679.	3.7	3
15	Effect of Synthesized Ag Nanoparticles by Using the Different Amounts of Polyvinylpyrrolidone for Ag-Natural Rubber Hybrid Sheets and their Antibacterial Properties. Key Engineering Materials, 2017, 751, 270-276.	0.4	2
16	Preparation, Characterization and Photocatalytic Properties of Rubber-TiO ₂ -rGO Composite Sheets for Dye Decomposition in Wastewater. Key Engineering Materials, 0, 751, 738-744.	0.4	2
17	Investigation of the Influences of Reaction Temperature and Time on the Chemical Reduction of Graphene Oxide by Conventional Method Using Vitamin C as a Reducing Agent. Materials Science Forum, 0, 909, 225-230.	0.3	1
18	Removal of Methylene Blue Dye Using Metal-Free g-C ₃ N ₄ Photocatalyst over Natural Sunlight Irradiation. Materials Science Forum, 0, 975, 115-120.	0.3	1

#	Article	IF	CITATIONS
19	Highly stable Pd ²⁺ species anchoring on ethylenediamine-grafted-MIL-101(Cr) as a robust oxidation catalyst. Catalysis Science and Technology, 2022, 12, 1824-1836.	4.1	1
20	Higher alcohol production from ethanol over occluded [Mg4(OH)4]4+ clusters in MgO/KNaX. Applied Catalysis A: General, 2022, 632, 118502.	4.3	1
21	Direct conversion of glycerol to <i>n</i> -propanol over a tandem catalytic dehydration–hydrogenation system. Catalysis Science and Technology, 0, , .	4.1	1