Syahrul Imran Abu Bakar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1342363/publications.pdf

Version: 2024-02-01

74 papers 2,641 citations

32 h-index 197818 49 g-index

77 all docs

77 docs citations

77 times ranked

1870 citing authors

#	Article	IF	CITATIONS
1	Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8232-8247.	3.5	3
2	Synthesis of new 1,2-disubstituted benzimidazole analogs as potent inhibitors of \hat{l}^2 -Glucuronidase and in silico study. Arabian Journal of Chemistry, 2022, 15, 103505.	4.9	5
3	A Comprehensive Analysis of Human CYP3A4 Crystal Structures as a Potential Tool for Molecular Docking-Based Site of Metabolism and Enzyme Inhibition Studies. Journal of Computational Biophysics and Chemistry, 2022, 21, 259-285.	1.7	5
4	Development and Optimization of Nanoemulsion from Ethanolic Extract of Centella asiatica (NanoSECA) Using D-Optimal Mixture Design to Improve Blood-Brain Barrier Permeability. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-18.	1.2	12
5	Computational Screening of Styryl Lactone Compounds Isolated from Goniothalamus Species to Identify Potential Inhibitors for Dengue Virus. Journal of Computational Biophysics and Chemistry, 2022, 21, 821-843.	1.7	3
6	Synthesis, \hat{l}^2 -glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Molecular Diversity, 2021, 25, 995-1009.	3.9	7
7	Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin –induced diabetic albino wistar rats. Bioorganic Chemistry, 2021, 110, 104808.	4.1	20
8	Biocatalytic modifications of ethynodiol diacetate by fungi, anti-proliferative activity, and acetylcholineterase inhibitory of its transformed products. Steroids, 2021, 171, 108832.	1.8	0
9	Virtual Screening-Based Identification of Potent DENV-3 RdRp Protease Inhibitors via In-House Usnic Acid Derivative Database. Journal of Computational Biophysics and Chemistry, 2021, 20, 797-814.	1.7	16
10	Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules, 2020, 25, 3353.	3.8	10
11	Medroxyprogesterone derivatives from microbial transformation as anti-proliferative agents and acetylcholineterase inhibitors (combined in vitro and in silico approaches). Steroids, 2020, 164, 108735.	1.8	1
12	Aryl-oxadiazole Schiff bases: Synthesis, \hat{l} ±-glucosidase in vitro inhibitory activity and their in silico studies. Arabian Journal of Chemistry, 2020, 13, 4904-4915.	4.9	27
13	Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorganic Chemistry, 2020, 99, 103819.	4.1	6
14	Goniolanceolatins A–H, Cytotoxic Bis-styryllactones from <i>Goniothalamus lanceolatus</i> . Journal of Natural Products, 2019, 82, 2430-2442.	3.0	11
15	Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorganic and Medicinal Chemistry, 2019, 27, 4081-4088.	3.0	45
16	Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorganic Chemistry, 2019, 92, 103235.	4.1	20
17	Synthesis of Novel Triazinoindole-Based Thiourea Hybrid: A Study on α-Glucosidase Inhibitors and Their Molecular Docking. Molecules, 2019, 24, 3819.	3.8	18
18	Synthesis, $\hat{l}\pm$ -amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Medicinal Chemistry Research, 2019, 28, 2010-2022.	2.4	14

#	Article	IF	Citations
19	Synthesis of oxadiazole-coupled-thiadiazole derivatives as a potent \hat{l}^2 -glucuronidase inhibitors and their molecular docking study. Bioorganic and Medicinal Chemistry, 2019, 27, 3145-3155.	3.0	13
20	Thiazole Based Carbohydrazide Derivatives as \hat{l}_{\pm} -Amylase Inhibitor and Their Molecular Docking Study. Heteroatom Chemistry, 2019, 2019, 1-8.	0.7	19
21	Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorganic Chemistry, 2019, 85, 109-116.	4.1	25
22	Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential. Arabian Journal of Chemistry, 2019, 12, 2973-2982.	4.9	20
23	Antiglycation and antioxidant potential of novel imidazo[4,5-b]pyridine benzohydrazones. Arabian Journal of Chemistry, 2019, 12, 3118-3128.	4.9	19
24	Evaluation of a Series of 9,10-Anthraquinones as Antiplasmodial Agents. Letters in Drug Design and Discovery, 2019, 16, 353-363.	0.7	3
25	α-Glucosidase Inhibition and Docking Studies of 5-Deoxyflavonols and Dihydroflavonols Isolated from Abutilon pakistanicum. Current Organic Chemistry, 2019, 23, 1857-1866.	1.6	1
26	Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 2018, 78, 17-23.	4.1	15
27	Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 2018, 77, 586-592.	4.1	88
28	Synthesis: Small library of hybrid scaffolds of benzothiazole having hydrazone and evaluation of their \hat{I}^2 -glucuronidase activity. Bioorganic Chemistry, 2018, 77, 47-55.	4.1	14
29	Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorganic Chemistry, 2018, 78, 201-209.	4.1	65
30	Oxindole based oxadiazole hybrid analogs: Novel \hat{l}_{\pm} -glucosidase inhibitors. Bioorganic Chemistry, 2018, 76, 273-280.	4.1	53
31	Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorganic and Medicinal Chemistry, 2018, 26, 3654-3663.	3.0	9
32	Synthesis, \hat{l} ±-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 2018, 80, 36-42.	4.1	50
33	Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorganic Chemistry, 2017, 71, 192-200.	4.1	37
34	Synthesis of 2-phenyl-1H-imidazo [4,5-b] pyridine as type 2 diabetes inhibitors and molecular docking studies. Medicinal Chemistry Research, 2017, 26, 916-928.	2.4	14
35	Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017, 72, 248-255.	4.1	75
36	Synthesis of indole analogs as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic Chemistry, 2017, 72, 323-332.	4.1	20

#	Article	IF	Citations
37	Synthesis and biological evaluation of indole derivatives as \hat{l} ±-amylase inhibitor. Bioorganic Chemistry, 2017, 73, 121-127.	4.1	33
38	Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2017, 126, 1021-1033.	5.5	34
39	Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.	5.5	37
40	3,4-Dimethoxybenzohydrazide derivatives as antiulcer: Molecular modeling and density functional studies. Bioorganic Chemistry, 2017, 75, 235-241.	4.1	7
41	Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorganic Chemistry, 2017, 75, 78-85.	4.1	24
42	Synthesis, \hat{l}_{\pm} -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 2017, 74, 30-40.	4.1	72
43	Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 2017, 74, 179-186.	4.1	80
44	Synthesis of a series of new 6-nitrobenzofuran-2-carbohydrazide derivatives with cytotoxic and antioxidant activity. New Horizons in Translational Medicine, 2017, 4, 23-30.	1.0	3
45	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	4.1	75
46	Synthesis of novel disulfide and sulfone hybrid scaffolds as potent \hat{l}^2 -glucuronidase inhibitor. Bioorganic Chemistry, 2016, 68, 15-22.	4.1	10
47	Synthesis, <i>In vitro</i> and Docking Studies of New Flavone Ethers as <i>α</i> â€Glucosidase Inhibitors. Chemical Biology and Drug Design, 2016, 87, 361-373.	3.2	63
48	Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorganic Chemistry, 2016, 66, 117-123.	4.1	71
49	Synthesis, \hat{I}^2 -glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.	4.1	66
50	In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2016, 68, 80-89.	4.1	12
51	Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorganic Chemistry, 2016, 68, 90-104.	4.1	19
52	Syntheses of new 3-thiazolyl coumarin derivatives, in \hat{A} vitro \hat{I}_{\pm} -glucosidase inhibitory activity, and molecular modeling studies. European Journal of Medicinal Chemistry, 2016, 122, 196-204.	5.5	78
53	Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3696-3704.	3.0	58
54	Identification of bisindolylmethane $\hat{a} \in \text{``hydrazone hybrids as novel inhibitors of } \hat{l}^2$ -glucuronidase, DFT, and in silico SAR intimations. RSC Advances, 2016, 6, 3276-3289.	3.6	29

#	Article	IF	Citations
55	Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis. RSC Advances, 2016, 6, 33733-33742.	3.6	49
56	Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorganic Chemistry, 2016, 66, 80-87.	4.1	51
57	Synthesis, \hat{l} ±-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorganic Chemistry, 2016, 65, 100-109.	4.1	47
58	Synthesis of 6-chloro-2-Aryl-1H-imidazo [4,5-b] pyridine derivatives: Antidiabetic, antioxidant, \hat{l}^2 -glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 2016, 65, 48-56.	4.1	45
59	Thiadiazole derivatives as New Class of \hat{l}^2 -glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1909-1918.	3.0	25
60	Synthesis of novel inhibitors of \hat{l}^2 -glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6, 3003-3012.	3.6	46
61	Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 2016, 25, 225-234.	2.4	20
62	A Review of Bisindolylmethane as an Important Scaffold for Drug Discovery. Current Medicinal Chemistry, 2015, 22, 4412-4433.	2.4	59
63	Synthesis of benzimidazole derivatives as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic Chemistry, 2015, 61, 36-44.	4.1	48
64	Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3285-3289.	2.2	79
65	Novel quinoline derivatives as potent in vitro \hat{l} ±-glucosidase inhibitors: in silico studies and SAR predictions. MedChemComm, 2015, 6, 1826-1836.	3.4	58
66	Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. European Journal of Medicinal Chemistry, 2015, 92, 387-400.	5.5	155
67	Synthesis of new oxadiazole derivatives as î±-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4155-4162.	3.0	67
68	Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7211-7218.	3.0	23
69	Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7394-7404.	3.0	42
70	Synthesis of novel flavone hydrazones: In-vitro evaluation of \hat{l}_{\pm} -glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 2015, 105, 156-170.	5.5	120
71	Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorganic Chemistry, 2015, 62, 83-93.	4.1	53
72	Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorganic Chemistry, 2015, 63, 24-35.	4.1	37

#	Article	IF	CITATIONS
73	Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity. Molecules, 2014, 19, 11722-11740.	3.8	70
74	4-[5-(2-Methoxyphenyl)-1,3,4-oxadiazol-2-yl]benzohydrazide. MolBank, 2014, 2014, M826.	0.5	13