Taiji Adachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134230/publications.pdf

Version: 2024-02-01

331 papers 6,241 citations

36 h-index 79698 73 g-index

347 all docs

347 docs citations

times ranked

347

6621 citing authors

#	Article	IF	CITATIONS
1	Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011, 472, 51-56.	27.8	1,771
2	Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials, 2006, 27, 3964-3972.	11.4	278
3	Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 2006, 28, 1154-1165.	5.7	213
4	Trabecular Surface Remodeling Simulation for Cancellous Bone Using Microstructural Voxel Finite Element Models. Journal of Biomechanical Engineering, 2001, 123, 403-409.	1.3	147
5	Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Composites Part A: Applied Science and Manufacturing, 2006, 37, 2248-2256.	7.6	132
6	Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. Journal of Biomechanics, 2002, 35, 1541-1551.	2.1	126
7	Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. Journal of Biomechanics, 2009, 42, 1088-1094.	2.1	125
8	External Mechanical Cues Trigger the Establishment of the Anterior-Posterior Axis in Early Mouse Embryos. Developmental Cell, 2013, 27, 131-144.	7.0	125
9	Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. Journal of Biomechanics, 2009, 42, 1989-1995.	2.1	120
10	Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation. Composites Science and Technology, 2009, 69, 1726-1734.	7.8	111
11	TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nature Neuroscience, 2013, 16, 1556-1566.	14.8	93
12	Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7736-7741.	7.1	82
13	Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integrative Biology (United Kingdom), 2012, 4, 1198-1206.	1.3	76
14	Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomechanics and Modeling in Mechanobiology, 2015, 14, 413-425.	2.8	76
15	Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells. Journal of Biomechanics, 2005, 38, 1895-1901.	2.1	75
16	Relaxationâ€expansion model for selfâ€driven retinal morphogenesis. BioEssays, 2012, 34, 17-25.	2.5	72
17	Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis. Science Advances, 2018, 4, eaau1354.	10.3	69
18	Osteocyte calcium signaling response to bone matrix deformation. Journal of Biomechanics, 2009, 42, 2507-2512.	2.1	68

#	Article	IF	CITATIONS
19	Topography Design Concept of a Tissue Engineering Scaffold for Controlling Cell Function and Fate Through Actin Cytoskeletal Modulation. Tissue Engineering - Part B: Reviews, 2014, 20, 609-627.	4.8	63
20	In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes. Nature Biomedical Engineering, 2019, 3, 558-570.	22.5	57
21	Simulation of Trabecular Surface Remodeling based on Local Stress Nonuniformity JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 1997, 40, 782-792.	0.3	55
22	Mechano-adaptive sensory mechanism of α-catenin under tension. Scientific Reports, 2016, 6, 24878.	3.3	55
23	Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2669-2682.	3.4	53
24	Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis. Biomechanics and Modeling in Mechanobiology, 2013, 12, 627-644.	2.8	53
25	Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation. PLoS Genetics, 2016, 12, e1005802.	3.5	51
26	Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1733-1746.	2.8	50
27	Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochemical and Biophysical Research Communications, 2020, 521, 806-813.	2.1	50
28	Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading. Journal of the Mechanics and Physics of Solids, 2008, 56, 1794-1805.	4.8	49
29	Three-dimensional vertex model for simulating multicellular morphogenesis. Biophysics and Physicobiology, 2015, 12, 13-20.	1.0	48
30	Effect of tensile force on the mechanical behavior of actin filaments. Journal of Biomechanics, 2011, 44, 1776-1781.	2.1	46
31	Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells. Journal of Biomechanics, 2009, 42, 2540-2548.	2.1	44
32	Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching. Scientific Reports, 2018, 8, 2386.	3.3	44
33	Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells. Journal of Biomechanics, 2007, 40, 1246-1255.	2.1	43
34	Mode I fatigue delamination of Zanchor-reinforced CF/epoxy laminates. International Journal of Fatigue, 2010, 32, 37-45.	5.7	42
35	Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework. Biomechanics and Modeling in Mechanobiology, 2013, 12, 987-996.	2.8	42
36	Directional dependence of osteoblastic calcium response to mechanical stimuli. Biomechanics and Modeling in Mechanobiology, 2003, 2, 73-82.	2.8	38

#	Article	IF	Citations
37	Mode I type delamination fracture toughness of YBCO coated conductor with additional Cu layer. Physica C: Superconductivity and Its Applications, 2011, 471, 1071-1074.	1.2	38
38	Global distribution of intense lightning discharges and their seasonal variations. Journal Physics D: Applied Physics, 2008, 41, 234011.	2.8	37
39	Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 900-908.	3.1	37
40	Fluid pressure response in poroelastic materials subjected to cyclic loading. Journal of the Mechanics and Physics of Solids, 2009, 57, 1815-1827.	4.8	36
41	Control of highly migratory cells by microstructured surface based on transient change in cell behavior. Biomaterials, 2010, 31, 8539-8545.	11.4	36
42	Roles of Heparan Sulfate Sulfation in Dentinogenesis. Journal of Biological Chemistry, 2012, 287, 12217-12229.	3.4	36
43	Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Frontiers in Bioengineering and Biotechnology, 2019, 7, 288.	4.1	36
44	Estimation of bone permeability considering the morphology of lacuno-canalicular porosity. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 240-248.	3.1	34
45	Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Scientific Reports, 2017, 7, 13969.	3.3	34
46	Forceful mastication activates osteocytes and builds a stout jawbone. Scientific Reports, 2019, 9, 4404.	3.3	34
47	In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Science Advances, 2020, 6, eaax0938.	10.3	34
48	Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Medical Engineering and Physics, 2005, 27, 305-311.	1.7	31
49	Asymmetric intercellular communication between bone cells: Propagation of the calcium signaling. Biochemical and Biophysical Research Communications, 2009, 389, 495-500.	2.1	31
50	Strain field in actin filament network in lamellipodia of migrating cells: Implication for network reorganization. Journal of Biomechanics, 2009, 42, 297-302.	2.1	30
51	Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. Journal of Biomechanics, 2010, 43, 3162-3167.	2.1	30
52	Apical contractility in growing epithelium supports robust maintenance of smooth curvatures against cell-division-induced mechanical disturbance. Journal of Biomechanics, 2013, 46, 1705-1713.	2.1	30
53	Multiscale modeling and mechanics of filamentous actin cytoskeleton. Biomechanics and Modeling in Mechanobiology, 2012, 11, 291-302.	2.8	29
54	Two-Dimensional Quantitative Analysis of Preferential Alignment of BAp c-axis for Isolated Human Trabecular Bone Using Microbeam X-ray Diffractometer with a Transmission Optical System. Materials Transactions, 2007, 48, 343-347.	1.2	28

#	Article	IF	CITATIONS
55	Uniform Stress State in Bone Structure With Residual Stress. Journal of Biomechanical Engineering, 1998, 120, 342-347.	1.3	27
56	Effects of a Fixation Screw on Trabecular Structural Changes in a Vertebral Body Predicted by Remodeling Simulation. Annals of Biomedical Engineering, 2003, 31, 733-740.	2.5	27
57	Procedures for the Quantification of Whole-Tissue Immunofluorescence Images Obtained at Single-Cell Resolution during Murine Tubular Organ Development. PLoS ONE, 2015, 10, e0135343.	2.5	27
58	Computational simulation of deformation behavior of 2D-lattice continuum. International Journal of Mechanical Sciences, 1998, 40, 857-866.	6.7	26
59	Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation. Biomechanics and Modeling in Mechanobiology, 2014, 13, 851-860.	2.8	25
60	Electron energy loss spectroscopy studies of the Siâ€SiO2interface. Applied Physics Letters, 1979, 35, 199-201.	3.3	24
61	Computational simulation of three-dimensional neck propagation in polymeric specimens under tension and hybrid identification of constitutive equation. International Journal of Mechanical Sciences, 1997, 39, 913-923.	6.7	22
62	Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration â€"Assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of ratsâ€". Dental Materials Journal, 2010, 29, 673-681.	1.8	22
63	A Novel Method for Measuring Tension Generated in Stress Fibers by Applying External Forces. Biophysical Journal, 2011, 101, 53-60.	0.5	22
64	Characteristics of motility-based filtering of adherent cells on microgrooved surfaces. Biomaterials, 2012, 33, 395-401.	11.4	22
65	Real-time TIRF observation of vinculin recruitment to stretched \hat{l}_{\pm} -catenin by AFM. Scientific Reports, 2018, 8, 1575.	3.3	21
66	Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter. PLoS Biology, 2018, 16, e2004426.	5.6	21
67	Local Disassembly of Actin Stress Fibers Induced by Selected Release of Intracellular Tension in Osteoblastic Cell. Journal of Biomechanical Science and Engineering, 2006, 1, 204-214.	0.3	20
68	Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Reports, 2020, 31, 107637.	6.4	20
69	Analysis of mesoscopic stress states with delamination and their relation to critical current under bending deformation in Bi2223/Ag superconducting composite tapes. Superconductor Science and Technology, 2005, 18, S356-S363.	3. 5	19
70	Modeling cell apoptosis for simulating three-dimensional multicellular morphogenesis based on a reversible network reconnection framework. Biomechanics and Modeling in Mechanobiology, 2016, 15, 805-816.	2.8	19
71	Polarized cellular mechanoresponse system for maintaining radial size in developing epithelial tubes. Development (Cambridge), 2019, 146, .	2.5	19
72	Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture. Scientific Reports, 2021, 11, 13204.	3.3	19

#	Article	IF	CITATIONS
73	Simulation Study on Local and Integral Mechanical Quantities at Single Trabecular Level as Candidates of Remodeling Stimuli. Journal of Biomechanical Science and Engineering, 2006, 1, 124-135.	0.3	18
74	Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis. Interface Focus, 2015, 5, 20140095.	3.0	17
75	Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review. Cellular and Molecular Bioengineering, 2011, 4, 327-339.	2.1	16
76	Modeling myosin-dependent rearrangement and force generation in an actomyosin network. Journal of Theoretical Biology, 2011, 281, 65-73.	1.7	16
77	Spontaneous anterior arch fracture of the atlas following C1 laminectomy without fusion: A report of three cases and finite element analysis. Journal of Orthopaedic Science, 2016, 21, 306-315.	1.1	16
78	Electrical Conductivity of Molten Chargeâ€Asymmetric Salts: , , and Systems. Journal of the Electrochemical Society, 1986, 133, 1162-1166.	2.9	15
79	Changes in the Fabric and Compliance Tensors of Cancellous Bone due to Trabecular Surface Remodeling, Predicted by a Digital Image-based Model. Computer Methods in Biomechanics and Biomedical Engineering, 2004, 7, 187-192.	1.6	15
80	Coupling between axial stretch and bending/twisting deformation of actin filaments caused by a mismatched centroid from the center axis. International Journal of Mechanical Sciences, 2010, 52, 329-333.	6.7	14
81	Mechanical role of the spatial patterns of contractile cells in invagination of growing epithelial tissue. Development Growth and Differentiation, 2017, 59, 444-454.	1.5	14
82	Simultaneous observation of calcium signaling response and membrane deformation due to localized mechanical stimulus in single osteoblast-like cells. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 43-50.	3.1	13
83	Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan. PLoS ONE, 2020, 15, e0233491.	2.5	13
84	Three-Dimensional Lattice Continuum Model of Cancellous Bone for Structural and Remodeling Simulation JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 1999, 42, 470-480.	0.3	12
85	Regulatory relationship between tactile sensation at the vermilion of the lips and lip-closing force. Journal of Oral Rehabilitation, 2011, 38, 579-587.	3.0	12
86	Quantitative analysis of extension–torsion coupling of actin filaments. Biochemical and Biophysical Research Communications, 2012, 420, 710-713.	2.1	12
87	Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mechanica, 2014, 225, 2833-2840.	2.1	12
88	High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2353-2360.	2.8	12
89	Effect of fatigue loading on critical current in stainless steel–laminated DI-BSCCO superconducting composite tape. Physica C: Superconductivity and Its Applications, 2010, 470, 1373-1376.	1.2	11
90	Asymmetric lip-closing forces in children with repaired unilateral cleft lip and/or palate. Journal of Oral Rehabilitation, 2011, 38, 921-928.	3.0	11

#	Article	IF	Citations
91	Spatiotemporal coordinated hierarchical properties of cellular protrusion revealed by multiscale analysis. Integrative Biology (United Kingdom), 2012, 4, 875-888.	1.3	11
92	Single-Cell Manipulation and DNA Delivery Technology Using Atomic Force Microscopy and Nanoneedle. Journal of Nanoscience and Nanotechnology, 2014, 14, 57-70.	0.9	11
93	Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 474-483.	1.6	11
94	Capturing microscopic features of bone remodeling into a macroscopic model based on biological rationales of bone adaptation. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1697-1708.	2.8	10
95	Epithelial tissue folding pattern in confined geometry. Biomechanics and Modeling in Mechanobiology, 2020, 19, 815-822.	2.8	10
96	Mechanical Regulation of Actin Network Dynamics in Migrating Cells. Journal of Biomechanical Science and Engineering, 2010, 5, 186-207.	0.3	9
97	Simulations of dynamics of actin filaments by remodeling them in shearflows. Computers in Biology and Medicine, 2010, 40, 876-882.	7.0	9
98	Interfacial fatigue crack propagation in microscopic model composite using bifiber shear specimens. Composites Part A: Applied Science and Manufacturing, 2012, 43, 239-246.	7.6	9
99	In vitro tubulogenesis of Madin–Darby canine kidney (MDCK) spheroids occurs depending on constituent cell number and scaffold gel concentration. Journal of Theoretical Biology, 2017, 435, 110-115.	1.7	9
100	Modulation of <i>Sost </i> Gene Expression Under Hypoxia in Three-Dimensional Scaffold-Free Osteocytic Tissue. Tissue Engineering - Part A, 2021, 27, 1037-1043.	3.1	9
101	Efficacy of the Wolverine cutting balloon on a circumferential calcified coronary lesion: Bench test using a three-dimensional printer and computer simulation with the finite element method. Cardiovascular Intervention and Therapeutics, 2022, 37, 78-88.	2.3	9
102	Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1261-1266.	1.2	8
103	Dynamic coupling between actin network flow and turnover revealed by flow mapping in the lamella of crawling fragments. Biochemical and Biophysical Research Communications, 2009, 390, 797-802.	2.1	8
104	Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale. Biomechanics and Modeling in Mechanobiology, 2011, 10, 495-503.	2.8	8
105	Three-dimensional modulation of cortical plasticity during pseudopodial protrusion of mouse leukocytes. Biochemical and Biophysical Research Communications, 2013, 438, 594-599.	2.1	8
106	New simulation model for bone formation markers in osteoporosis patients treated with once-weekly teriparatide. Bone Research, 2014, 2, 14043.	11.4	8
107	Theoretical concept of cortical to cancellous bone transformation. Bone Reports, 2020, 12, 100260.	0.4	8
108	In situ observation of interfacial crack propagation in GF/epoxy model composite using bifiber specimens in mode I and mode II loading. Composites Science and Technology, 2008, 68, 2678-2689.	7.8	7

#	Article	IF	Citations
109	Functional Adaptation of the Fibrocartilage and Bony Trabeculae at the Attachment Sites of the Anterior Cruciate Ligament. Clinical Anatomy, 2020, 33, 988-996.	2.7	7
110	Characterization of self-organized osteocytic spheroids using mouse osteoblast-like cells. Journal of Biomechanical Science and Engineering, 2020, 15, 20-00227-20-00227.	0.3	7
111	Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method. MCB Molecular and Cellular Biomechanics, 2009, 6, 161-73.	0.7	7
112	Breeding of four-leaf white clover (Trifolium repens L.) through 60Co gamma-ray irradiation. Plant Biotechnology Reports, 2009, 3, 191-197.	1.5	6
113	Change in fatigue property and its relation to critical current for YBCO coated conductor with additional Cu layer. Physica C: Superconductivity and Its Applications, 2009, 469, 1476-1479.	1.2	6
114	Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochemical and Biophysical Research Communications, 2017, 484, 372-377.	2.1	6
115	Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study. PLoS ONE, 2018, 13, e0206056.	2.5	6
116	Talin is required to increase stiffness of focal molecular complex in its early formation process. Biochemical and Biophysical Research Communications, 2019, 518, 579-583.	2.1	6
117	An energy landscape approach to understanding variety and robustness in tissue morphogenesis. Biomechanics and Modeling in Mechanobiology, 2020, 19, 471-479.	2.8	6
118	Uniaxially fixed mechanical boundary condition elicits cellular alignment in collagen matrix with induction of osteogenesis. Scientific Reports, 2021, 11, 9009.	3.3	6
119	Preliminary Study on Mechanical Bone Remodeling Permitting Residual Stress. JSME International Journal Series A-Solid Mechanics and Material Engineering, 1994, 37, 87-95.	0.1	5
120	Computational prediction of instability propagation in glassy polymers. Archives of Computational Methods in Engineering, 1998, 5, 167-198.	10.2	5
121	\hat{l}^2 -Catenin as a Tension Transmitter Revealed by AFM Nanomechanical Testing. Cellular and Molecular Bioengineering, 2015, 8, 14-21.	2.1	5
122	Mobility of Molecular Motors Regulates Contractile Behaviors of Actin Networks. Biophysical Journal, 2019, 116, 2161-2171.	0.5	5
123	Mechanics-based Simulations for Understanding Multicellular Tissue Morphogenesis. Seibutsu Butsuri, 2014, 54, 031-034.	0.1	5
124	Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 126, 105027.	3.1	5
125	Effect of Actin Filament on Deformation-Induced Ca2+ Response in Osteoblast-Like Cells. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2001, 44, 914-919.	0.3	4
126	Quantitative evaluation of strain field in the lamella region of cellular fragments from fish keratocytes. Journal of Biomechanics, 2006, 39, S244.	2.1	4

#	Article	IF	Citations
127	Modulation of adhesion microenvironment using mesh substrates triggers self-organization and primordial germ cell-like differentiation in mouse ES cells. APL Bioengineering, 2019, 3, 016102.	6.2	4
128	Comparative gene expression analysis for pre-osteoblast MC3T3-E1 cells under non-adhesive culture toward osteocyte differentiation. Journal of Bioscience and Bioengineering, 2021, 132, 651-656.	2.2	4
129	Lattice Continuum Model for Bone Remodeling Considering Microstructural Optimality of Trabecular Architecture. , 1999, , 43-54.		3
130	Observation of chondrocyte aggregate formation and internal structure on micropatterned fibroin-coated surface. Bio-Medical Materials and Engineering, 2010, 20, 55-63.	0.6	3
131	Effect of Actomyosin Contractility on Lamellipodial Protrusion Dynamics on a Micropatterned Substrate. Cellular and Molecular Bioengineering, 2011, 4, 389-398.	2.1	3
132	Numerical analysis of arterial contraction regulated by smooth muscle stretch and intracellular calcium ion concentration. Journal of Biomechanical Science and Engineering, 2014, 9, JBSE0002-JBSE0002.	0.3	3
133	Probing Actin Filament and Binding Protein Interaction Using an Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2014, 14, 5654-5657.	0.9	3
134	Electrochemical Polymerization of PEDOT/Biomolecule Composite Films on Microelectrodes for the Measurement of Extracellular Field Potential. Electrochemistry, 2016, 84, 354-357.	1.4	3
135	Mechanosensitive kinetic preference of actin-binding protein to actin filament. Physical Review E, 2016, 93, 042403.	2.1	3
136	Continuum modeling for neuronal lamination during cerebral morphogenesis considering cell migration and tissue growth. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 799-805.	1.6	3
137	Wolverine cutting balloon in the treatment of stent underexpansion in heavy coronary calcification: bench test using a three-dimensional printer and computer simulation with the finite-element method. Cardiovascular Intervention and Therapeutics, 2021, , 1.	2.3	3
138	Computational Design and Simulation of Tissue Engineering Scaffolds. , 2008, , 113-127.		3
139	Controlling macroscale cell alignment in self-organized cell sheets by tuning the microstructure of adhesion-limiting micromesh scaffolds. Materials Today Advances, 2021, 12, 100194.	5.2	3
140	Preliminary Study on Mechanical Bone Remodeling Permitting Residual Stress Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 1022-1029.	0.2	2
141	Shape Optimization Based on Traction Method Using voxel-FEM. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 426-433.	0.2	2
142	Influence of delamination location on mesoscopic stress state and critical current under bending deformation in Bi2223/Ag superconducting composite tapes. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1205-1210.	1.2	2
143	Direct measurement of mechanical properties of Bi2223 filament using Ag alloy removed tape. Physica C: Superconductivity and Its Applications, 2007, 463-465, 863-866.	1.2	2
144	Continuum dynamics on a vector bundle for a directed medium. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 325209.	2.1	2

#	Article	IF	Citations
145	Brownian dynamics simulation study on force–velocity relation in actin-based membrane protrusion. Computational Particle Mechanics, 2015, 2, 329-337.	3.0	2
146	Finite element formulation and analysis for an arterial wall with residual and active stresses. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1143-1159.	1.6	2
147	Large magnitude of force leads to NO-mediated cell shrinkage in single osteocytes implying an initial apoptotic response. Journal of Biomechanics, 2021, 117, 110245.	2.1	2
148	Finite Element Method for Elastic Cosserat Continuum and Its Application to Deformation Behavior of Materials with Microstructure Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60, 191-197.	0.2	1
149	Mechanical Remodeling of Bone with Tissue Structure Considering Residual Stress Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60, 2921-2927.	0.2	1
150	Approach Behavior of Binding Proteins Toward Actin Filament: Brownian Dynamics Simulation. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1119-1127.	0.2	1
151	Geometrical range of microscopic stress distribution change due to fibre array irregularities for thermally and transversely loaded CF/epoxy composites. Plastics, Rubber and Composites, 2010, 39, 99-106.	2.0	1
152	Role of the Actin–Myosin Catch Bond on Actomyosin Aggregate Formation. Cellular and Molecular Bioengineering, 2013, 6, 3-12.	2.1	1
153	Real-Time Monitoring of Changes in Microtubule Mechanical Properties in Response to Microtubule-Destabilizing Drug Treatment. Journal of Nanoscience and Nanotechnology, 2013, 13, 2087-2090.	0.9	1
154	A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment. Analytical Sciences, 2016, 32, 1207-1211.	1.6	1
155	Three-Dimensional Vertex Simulation on Smooth Surface Maintenance of Growing Epithelial Tissue Based on Intercellular Mechano-Feedback. Biophysical Journal, 2016, 110, 308a.	0.5	1
156	Nanolithography of Amyloid Precursor Protein Cleavage with $\langle I \rangle \hat{I}^2 \langle I \rangle$ -Secretase by Atomic Force Microscopy. Journal of Biomedical Nanotechnology, 2016, 12, 546-553.	1.1	1
157	Local Stiffness of Osteocyte Using Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2017, 17, 5755-5758.	0.9	1
158	Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Research, 2021, 53, 102352.	0.7	1
159	Estimation of Changes in Mechanical Bone Quality by Multi-scale Analysis with Remodeling Simulation. IFMBE Proceedings, 2014, , 48-51.	0.3	1
160	Bone Adaptation. Frontiers of Biomechanics, 2018, , .	0.1	1
161	Computer simulation of orthodontic tooth movement using FE analysis. , 2010, , 143-144.		1
162	OSTEOBLASTIC MECHANOSENSITIVITY TO LOCALIZED MECHANICAL STIMULUS DEPENDS ON ORIENTATION OF CYTOSKELETAL ACTIN FIBERS. , 2005, , 55-64.		1

#	Article	IF	CITATIONS
163	Simulation Study on Dynamics of Resin-Air Interface during Resin-Air Flows between Filaments Using Phase-Field Navier-Stokes Model. Journal of the Japan Society for Composite Materials, 2010, 36, 94-103.	0.2	1
164	Birth of Earth Pressure Balanced shield method and its applications in Japan., 2013,, 1235-1242.		1
165	Model and Simulation of Bone Remodeling Considering Residual Stress., 1996,, 3-21.		1
166	Design Concept of Topographical and Mechanical Properties of Synthetic Extracellular Matrix to Control Cell Functions and Fates Through Actin Cytoskeletal Modulation. Frontiers of Biomechanics, 2015, , 159-186.	0.1	1
167	Computational Biomechanics of Bone Adaptation by Remodeling. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 231-257.	0.6	1
168	Pluripotency state of mouse ES cells determines their contribution to self-organized layer formation by mesh closure on microstructured adhesion-limiting substrates. Biochemical and Biophysical Research Communications, 2022, 590, 97-102.	2.1	1
169	Effect of chemically induced osteogenesis supplements on multicellular behavior of osteocytic spheroids. Biochemical and Biophysical Research Communications, 2022, 622, 79-85.	2.1	1
170	Parameter Identification for Respiratory Dynamics by Personalized Simulation and Experiment Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1991, 57, 1252-1259.	0.2	0
171	Parameter Identification for Respiratory Dynamics by Personalized Simulation and Experiment. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1992, 35, 170-178.	0.2	O
172	Mechanical Remodeling of Bone Structure Considering Residual Stress. JSME International Journal Series A-Solid Mechanics and Material Engineering, 1996, 39, 297-305.	0.1	0
173	Molecular design of a "neutral metal―composed of a single component molecule. Synthetic Metals, 2001, 120, 1087-1088.	3.9	O
174	Surface Remodeling Simulation of Trabecular Bone Using Microstructural Finite Element Models. , 1999, , 309-320.		0
175	Cell Micro-Patterning by Atom Beam Exposure. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2003, 69, 1782-1788.	0.2	O
176	Change in Mechanical Properties of Bone-Scaffold Structure Predicted by 3D Computational Simulation for Bone Regeneration. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2003, 2003.14, 67-68.	0.0	0
177	Design Method of Porous Scaffold Using Computational Simulation for Bone Regeneration. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 1201-1207.	0.2	0
178	Design Method of Porous Scaffold Microstructure by Computational Simulation of Bone Regeneration. Journal of the Japan Society for Precision Engineering, 2005, 71, 1483-1487.	0.1	0
179	Effects of Spatial Distribution of Defects on Bending Deformation and Critical Current in Bi2223/Ag Superconducting Composite Tapes. Materials Science Forum, 2007, 539-543, 919-924.	0.3	0

S15A3 Multiscale Modeling and Simulation of Actin Filament Dynamics (Mutli-scale simulations for) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
181	Two-Dimensional Quantitative Analysis of Preferential Alignment of Biological Apatite c-axis for Isolated Human Trabecular Bone Using Microbeam X-ray Diffractometer with a Transmission Optical System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 57-62.	0.4	0
182	2P-045 Stiffness Evaluation of Actin Filament by Molecular Dynamics Analysis (The 46th Annual Meeting) Tj ETQq	0 8.9 rgBT	/Qverlock 10
183	1P-177 Thermodynamics study on torsion induced inhibition of cofilin binding to actin filament(The) Tj ETQq1 1 C).784314 r 0.1	gBT /Overloo
184	A Thermodynamic Model Describing the Mechanosensitivity of Actin-cofilin Binding. Biophysical Journal, 2009, 96, 123a-124a.	0.5	0
185	2P-009 Effects of tensile force on mechanical properties of actin filament(Protein:Structure,The 47th) Tj ETQq1 1	0,784314	rgBT /Overlo
186	1P-156 Perturbation of Actomyosin Interaction Modulates Actin Network Dynamics in Migrating Cells(Cell biology, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S87.	0.1	0
187	1P221 Modeling and simulation of dynamic reconstructing network of stress fibers with mechanical sensing through focal adhesions(Cell biology,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq1 1 (). ⊼&1 4314 r	gBT /Overlo
188	1P200 Spatial scale-dependent correlations between cell peripheral activity and shape(Cell biology,The) Tj ETQq0	0.0 rgBT /0	Oyerlock 10
189	3P035 Tensile Force Suppresses Torsional Motions of Individual Actin Subunits(Protein: Structure) Tj ETQq1 1 0.7 S151.	'84314 rgE 0.1	BT /Overlock O
190	Application of Bioimaging to Osteocyte Biology. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 170-178.	0.8	0
191	Thermodynamic Model Study on the Modulation of Binding Affinity between Actin Filament and its Regulatory Proteins in Response to Mechanical Stresses. Biophysical Journal, 2010, 98, 154a.	0.5	O
192	Intimacy Between Actin Network Flow and Turnover in the Lamella of Crawling Fragments. Biophysical Journal, 2010, 98, 162a.	0.5	0
193	Quantitative Analysis of Cell Edge Dynamics and Cell Shape in Non-Polarized Fish Epidermal Keratocytes. Biophysical Journal, 2010, 98, 162a.	0.5	O
194	Simulation of Membrane Protrusion on Cellular Scale using Coarse-Grained Brownian Ratchet Model. Biophysical Journal, 2011, 100, 305a.	0.5	0
195	3D1558 Extension-torsion coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling behavior of single actin filament(3D Protein: Structure & Coupling be	'84314 rgE	3T ₀ /Overlock
196	Atomistic mechano-chemical modeling of kinesins. Proceedings of SPIE, 2011, , .	0.8	0
197	1 PT 148 Analysis of the mechanical behavior of \hat{l}^2 -catenin using AFM(The 50th Annual Meeting of the) Tj ETQq $1\ 1$	0,784314	rgBT /Overlo
198	Role of Actin Cytoskeletal Structure for Cell Migration on Micro-Structured Surfaces. Biophysical Journal, 2012, 102, 220a.	0.5	0

#	Article	IF	CITATIONS
199	Molecular Dynamics Analysis of Coupling Behaviors Between Extension and Torsion of Actin Filaments. Biophysical Journal, 2012, 102, 372a-373a.	0.5	O
200	Modeling and Simulation of Myosin-Dependent Rearrangement and Force Generation in an Actomyosin Network. Biophysical Journal, 2012, 102, 375a.	0.5	0
201	2SEA-04 Computational biophysics on epithelial tissue deformation: from molecular to tissue scale (2SEA Biophysical views in structural cell biology, Symposium, The 51th Annual Meeting of the) Tj ETQq1 1 $^{\circ}$	0.7 &4 B14 ı	rgB T /Overloc
202	Cytokine expression in gingival hyperplasia induced by cyclosporine A in mice. Journal of Oral and Maxillofacial Surgery, 2014, 72, e97-e98.	1.2	0
203	A Novel Osteoblast/Osteocyte Selection Method in Primary Isolated Chick Bone Cells by Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2015, 15, 3923-3927.	0.9	0
204	A Novel Graphene Oxide-Based Protein Interaction Measurement Using Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2015, 15, 1188-1190.	0.9	0
205	Evaluation of Kinesin Head–Microtubule Binding Stability Changes Influenced by Microtubule-Binding Molecules. Journal of Nanoscience and Nanotechnology, 2016, 16, 7186-7190.	0.9	0
206	Overview: In Silico Approaches to Understand Bone Adaptation. Frontiers of Biomechanics, 2018, , 1-11.	0.1	0
207	Comparison of Mechanical Quantities as Bone Remodeling Stimuli. Frontiers of Biomechanics, 2018, , 131-144.	0.1	0
208	Trabecular Surface Remodeling Simulation of Cancellous Bone Using Image-Based Voxel Finite Element Models. Frontiers of Biomechanics, 2018, , 145-161.	0.1	0
209	Functional Adaptation of Cancellous Bone in Human Proximal Femur. Frontiers of Biomechanics, 2018, , 163-175.	0.1	0
210	3D Trabecular Remodeling in Human Proximal Femur: Approach to Understanding Wolff's Law. Frontiers of Biomechanics, 2018, , 177-185.	0.1	0
211	Trabecular Structural Changes in a Vertebral Body with a Fixation Screw. Frontiers of Biomechanics, 2018, , 187-203.	0.1	0
212	Microscopic Fluid Flow Analysis in an Osteocyte Canaliculus. Frontiers of Biomechanics, 2018, , 13-24.	0.1	0
213	Macroscopic Fluid Flow Analysis in a Poroelastic Trabecula. Frontiers of Biomechanics, 2018, , 25-44.	0.1	0
214	Estimation of Bone Permeability for Poroelastic Analysis. Frontiers of Biomechanics, 2018, , 45-63.	0.1	0
215	Modeling Trabecular Bone Adaptation Induced by Flow Stimuli to Osteocytes. Frontiers of Biomechanics, 2018, , 65-81.	0.1	0
216	Effects of Local Bending Load on Trabecular Bone Adaptation. Frontiers of Biomechanics, 2018, , 83-90.	0.1	0

#	Article	IF	CITATIONS
217	Cancellous Bone Adaptation Predicted by Remodeling Simulations. Frontiers of Biomechanics, 2018, , 91-101.	0.1	0
218	Trabecular Surface Remodeling Toward Uniform Local Stress State. Frontiers of Biomechanics, 2018, , 103-119.	0.1	0
219	Spatial and Temporal Regulation of Cancellous Bone Structure by Trabecular Surface Remodeling. Frontiers of Biomechanics, 2018, , 121-129.	0.1	О
220	In Silico Experiments to Explore Metabolic Bone Diseases and Their Drug Treatment. Seibutsu Butsuri, 2021, 61, 174-176.	0.1	0
221	Three-dimensional culture technology: Self-organized spheroid culture drives osteocytogenesis., 2021,,.		О
222	112 Simulation Study on Stem Shape Design of a Hip Joint Based on Uniform Surface Stress Criterion. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2001, 2001, 31-32.	0.0	0
223	1A42 Stem Design of Artificial Hip Joint Based on Stress Uniformity at Bone-Stem Interface. Proceedings of the JSME Bioengineering Conference and Seminar, 2001, 2001.12, 27-28.	0.0	О
224	Computational Prediction of Change in Stiffness of Bone-Scaffold Structure in Regeneration Process. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2001, 2001.13, 112-113.	0.0	0
225	Application of traction method to design of artificial hip joint stem using the voxel based FEM. The Proceedings of the Computational Mechanics Conference, 2002, 2002.15, 37-38.	0.0	O
226	Stem Shape Design of Artificial Hip Joint Using the Voxel Based FEM. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 441-442.	0.0	0
227	Shape optimization based on traction method using Voxel-FEM. The Proceedings of the JSME Annual Meeting, 2003, 2003.7, 1-2.	0.0	O
228	Three-dimensional computational simulation of trabecular pattern formation in cancellous bone using reaction-diffusion system. The Proceedings of the JSME Annual Meeting, 2003, 2003.7, 153-154.	0.0	0
229	骨ã®å½¢æ^·å†ç"Ÿã®è¨`ç®—ãƒã,ã,ªãƒ¡ã,«ãƒ‹ã,¯ã,¹. Journal of the Society of Biomechanisms, 2003, 27, 173-179.	0.0	0
230	Effect of internal structural size of scaffold on regenerated trabecular structure evaluated by bone regeneration simulation. The Proceedings of the Computational Mechanics Conference, 2003, 2003.16, 315-316.	0.0	0
231	OS7(3)-9(OS07W0402) Elastic Properties of Single Trabeculae Measured by Micro-Three-Point Bending Test. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003, 37.	0.0	0
232	OS07W0402 Elastic properties of single trabeculae measured by micro-three-point bending test. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _OS07W0402OS07W0402.	0.0	0
233	Optimum Design of 3D Porous Scaffold Microstructure by Computational Simulation of Bone Regeneration. The Proceedings of the JSME Annual Meeting, 2003, 2003.7, 165-166.	0.0	О
234	Simulation study on change in mechanical property of cancellous bone due to trabecular microstructural changes., 2003,, 1833-1835.		0

#	Article	IF	CITATIONS
235	Modeling of Mechanosensory System in Osteocyte Network. The Proceedings of the Computational Mechanics Conference, 2004, 2004.17, 185-186.	0.0	0
236	Evaluation of Axial Strain in Stress Fibers Inducing Cytoskeletal Reorganization in Osteoblastic Cells (Micro- and Nano-biomechanics). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2004, 2004.1, 227-228.	0.0	О
237	443 Computational simulation for optimal design of porous scaffold microstructure for cancellous bone regeneration. Proceedings of the JSME Bioengineering Conference and Seminar, 2005, 2004.17, 385-386.	0.0	O
238	1224 Observation of cancellous bone microstructure in regeneration process. The Proceedings of the JSME Annual Meeting, 2005, 2005.5, 189-190.	0.0	0
239	A214 Manufacturing of Porous Scaffold for Bone Regeneration using X-ray CT Images. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2005, 2005.16, 115-116.	0.0	O
240	Computational simulation of trabecular surface remodeling using voxel finite element method. WIT Transactions on State-of-the-art in Science and Engineering, 2005, , 39-62.	0.0	0
241	410 Computational Simulation for Trabecular Remodeling Considering Morphological Characteristics of Lacuno-Canalicular System. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2006, 2005.18, 239-240.	0.0	O
242	209 Influence of mechanical factors on bone matrix fiber alignment in cancellous bone regeneration process. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2006, 2005.18, 77-78.	0.0	0
243	1007 Calcium Response and Actin Structure Dynamics in Keratocytes Crawling on a Micropatterned Substrate. The Proceedings of the JSME Annual Meeting, 2007, 2007.5, 215-216.	0.0	O
244	2203 Multiscale Modeling and Simulation of Trabecular Bone Remodeling. The Proceedings of the Computational Mechanics Conference, 2007, 2007.20, 411-412.	0.0	0
245	ROLE OF MECHANICAL STRAIN IN THE MODULATION OF ACTIN STRUCTURE DYNAMICS IN MOTILE CELLS(1A3) Tj Emerging Science and Technology in Biomechanics, 2007, 2007.3, S19.	ETQq1 1 (0.0	
246	0941 Theoretical Analysis of Interstitial Fluid Flow in Trabecula as Poroelastic Materials. The Proceedings of the JSME Annual Meeting, 2007, 2007.5, 183-184.	0.0	0
247	A STUDY ON MECHANICAL BEHAVIOR OF SINGLE ACTIN FILAMENT THROUGH CONTINUUM MODELING(1A3) Tj Energing Science and Technology in Biomechanics, 2007, 2007.3, S18.	TQq1 1 0.7 0.0	784314 rg <mark>8</mark> O
248	Construction of 3D Morphology Model Based on CT-images and Mechanical Analysis Based on Elastic Anisotropy Caused by Crystallographic Orientation of Biological Apatite in Trabecular Bone. Materia Japan, 2007, 46, 834-834.	0.1	0
249	442 Dual Observation and Analysis of Actin Dynamics and Calcium Oscillation in Crawling Fish Keratocytes. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2007, 2006.19, 384-385.	0.0	O
250	CYTOSKELETAL REASSEMBLING AND CALCIUM SIGNALING RESPONSES TO MECHANICAL PERTURBATION IN OSTEOBLASTIC CELLS. , 2007, , 49-59.		0
251	234 Simulation of three-dimensional trabecular bone remodeling considering osteocytic responses to interstitial fluid-induced shear stresses. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2008, 2007.20, 305-306.	0.0	О
252	338 Change in crawling direction of fish keratocytes induced by substrate deformation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2008, 2007.20, 339-340.	0.0	0

#	Article	IF	CITATIONS
253	422 Mechanical analysis of trabecula considering lacuna-canalicular network. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2008, 2007.20, 343-344.	0.0	O
254	Evaluation of Mechanical and Biodegradable Properties on Composite Scaffolds Composed of Three-Dimensional Fabric Structure. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 868-874.	0.2	0
255	744 Computational statistical mechanics of cooperative actin-cofilin binding induced by torsion of actin filament. The Proceedings of the Computational Mechanics Conference, 2008, 2008.21, 854-855.	0.0	O
256	OS0616 Poroelastic Analysis of Interstitial Fluid Flow in Trabecula under Cyclic Bending Loading. The Proceedings of the Materials and Mechanics Conference, 2008, 2008, _OS0616-1OS0616-2	0.0	0
257	2014 Modeling of actin filament branching for analysis of actin network dynamics. The Proceedings of the Computational Mechanics Conference, 2009, 2009.22, 769-770.	0.0	0
258	124 Computer simulation of orthodontic tooth movement using image-based model of jaw bone. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2009, 2008.21, 47-48.	0.0	0
259	OS1014 Estimation of Trabecular Bone Permeability Based on Observation of Lacuno-canalicular Morphology. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 788-789.	0.0	0
260	321 Dependence of Actin Network Dynamics on Actomyosin Interaction in Migrating Cells. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2009, 2008.21, 133-134.	0.0	0
261	S0201-3-5 Evaluation of Cell Protrusion Dynamics Using Micropatterning Technique. The Proceedings of the JSME Annual Meeting, 2009, 2009.5, 33-34.	0.0	0
262	J0206-1-2 Simulation of dynamic rearrangements of actomyosin network. The Proceedings of the JSME Annual Meeting, 2010, 2010.6, 77-78.	0.0	0
263	0903 Simulation of Cancellous Bone Remodeling Considering Osteocytic Responses to Interstitial Fluid Flow. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 145.	0.0	0
264	105 Analysis of Resin Flows around Filaments using Diffuse Interface Method combined with Immersed Boundary Method. The Proceedings of the Computational Mechanics Conference, 2010, 2010.23, 35-36.	0.0	0
265	0614 Effects of Modulating Actomyosin Contractility on Cytoskeletal Actin Structure Dynamics and Cell Migration Behavior. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 99.	0.0	0
266	1114 Thermodynamic relation of binding affinity of actin-regulatory protein with mechanical stress of actin filament. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 200.	0.0	0
267	2112 Repairing simulation of damaged trabecula with osteocytes apoptosis. The Proceedings of the Computational Mechanics Conference, 2010, 2010.23, 286-287.	0.0	0
268	8E-10 Evaluation of changes in mechanical properties of trabecular bone by bone remodeling simulation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 93-94.	0.0	0
269	A201 Equilibration of cofilin-decorated actin filament using molecular dynamics simulation. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2012, 2012.23, 95-96.	0.0	0
270	A202 Single-molecule force spectroscopy of \hat{I}^2 -catenin using AFM. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2012, 2012.23, 97-98.	0.0	0

#	Article	IF	CITATIONS
271	2409 Multiscale Mechanical Simulation of Trabecular Bone Considering its Morphological Change and Material Anisotropy. The Proceedings of the Computational Mechanics Conference, 2012, 2012.25, 528-529.	0.0	O
272	BC-JP-6 Molecular dynamics simulations of an actin filament. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _BC-JP-6-1BC-JP-6-1.	0.0	0
273	BC-JP-2 Bone Quality Evaluation Based on Bone Remodeling and Multi-scale Simulation. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _BC-JP-2-1BC-JP-2-5.	0.0	0
274	OS1-1-3 Multiscale computational mechanobiology on tissue morphogenesis. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2012, 2012.4, 123-124.	0.0	0
275	7B43 Evaluation of morphological changes and anisotropic load-supporting function in osteoporotic trabecular bone by bone remodeling simulation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _7B43-17B43-2	0.0	0
276	1E07 Study on mechanical behaviors of amino residues in actin filament as a mechano-sensor using molecular dynamics simulation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 155-156.	0.0	0
277	J021013 BMU movement analyzed by trabecular and osteonal remodeling simulation. The Proceedings of Mechanical Engineering Congress Japan, 2013, 2013, _J021013-1J021013-3.	0.0	0
278	3D07 In vitro experimental system for observation of cell cycles in optic-cup morphogenesis. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 565-566.	0.0	0
279	J021011 Energy landscape between adjacent subunits in cofilin-decorated actin filament. The Proceedings of Mechanical Engineering Congress Japan, 2013, 2013, _J021011-1J021011-3.	0.0	0
280	OS0713 Finite element analysis for the morphological change of a vascular sheet induced by its growth. The Proceedings of the Materials and Mechanics Conference, 2013, 2013, _OS0713-1OS0713-3	0.0	0
281	1E11 Energy between cofilin and actin in cofilin-decorated actin filament under tensile force. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 123-124.	0.0	0
282	1E12 Influence of mechanical stimulus on mouse ES cell differentiation: Investigation based on mRNA expression levels. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 125-126.	0.0	0
283	S0210101 Contribution of Cell Proliferation and Apical Contraction on Epithelial Tissue Deformation Examined by Using a Multi-cellular Dynamics Simulation. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _S0210101S0210101	0.0	0
284	J0270101 Interaction measurement of Wnt signal receptor and its regulators using AFM. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _J0270101J0270101	0.0	0
285	2E24 Mechanical properties of cell cortex in mouse leukocyte migration. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 449-450.	0.0	0
286	J0240102 Investigation of conditions of SMD simulation for alpha-helical proteins. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _J0240102J0240102	0.0	0
287	Spatiotemporal Properties of a Cell Shape Change Revealed by Multiscale Analysis. Seibutsu Butsuri, 2014, 54, 221-225.	0.1	0
288	1E21 Analysis of the nanomechanical behaviors of \hat{l}_{\pm} -catenin under tensile loads. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 135-136.	0.0	0

#	Article	IF	Citations
289	S0210102 Observation of invagination process in multicellular tissue morphogenesis from mES cells. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _S0210102S0210102	0.0	O
290	21am2-E3 Role of spatial patterns of apical constricted cells in epithelial tissue deformations. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2014, 2014.6, _21am2-E321am2-E3	0.0	0
291	1F33 Cortical Bone Remodeling Simulation Considering Signaling Systems. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 191-192.	0.0	0
292	NETWORK MODELS FOR GLASSY POLYMER AND PREDICTION OF INSTABILITY PROPAGATION. Zairyo/Journal of the Society of Materials Science, Japan, 1997, 46, 125-136.	0.2	0
293	Multiscale Analysis of Cell Peripheral Motility. Frontiers of Biomechanics, 2015, , 73-86.	0.1	0
294	Multiscale Mechanochemical Interactions Between Cell Membrane and Actin Filaments. Frontiers of Biomechanics, 2015, , 87-105.	0.1	0
295	Actin Network Flow and Turnover Are Coupled in Migrating Cells. Frontiers of Biomechanics, 2015, , 27-39.	0.1	0
296	Regulation of Actin Cytoskeleton Dynamics in Migrating Cells. Frontiers of Biomechanics, 2015, , 11-25.	0.1	0
297	Cell Migration in Engineered Microstructured Surfaces. Frontiers of Biomechanics, 2015, , 139-158.	0.1	0
298	Evaluation of Actin Curvature Dependent Actin-Arp2/3 Interaction Change Using AFM and Graphene Oxide Sheets. Science of Advanced Materials, 2014, 6, 2453-2458.	0.7	0
299	1C11 Unfolding of α-catenin depending on mechanical stability of structural domains. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 97-98.	0.0	0
300	J0220202 AFM interaction measurement for AJ components molecules involving conformational changes. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _J0220202J0220202	0.0	0
301	1C41 Influence of spatially patterned mechanical cell activities on the tissue invagination. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 125-126.	0.0	0
302	M710 Force curve analysis method for AFM molecular interaction measurement. The Proceedings of Conference of Kansai Branch, 2015, 2015.90, 358.	0.0	0
303	1C12 Interaction analysis between Wnt antagonists and its receptor by using AFM. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 99-100.	0.0	0
304	2A44 Contribution of Focal Adhesion in Cell Migration on Microstructured Surfaces. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 337-338.	0.0	0
305	J0220201 Fluorescence imaging and morphometry of osteocytes within tissue. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _J0220201J0220201	0.0	0
306	GS4-3 Mechanical roles of \hat{l}^2 -catenin for AJ-mediated force transmission (GS4: Molecular Biomechanics). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 164.	0.0	0

#	Article	IF	CITATIONS
307	M304 Observation of cellular behaviors in morphogenesis of optic vesicle derived from mES cells. The Proceedings of Conference of Kansai Branch, 2015, 2015.90, 298.	0.0	0
308	OS5-8 AFM INTERACTION MEASUREMENT BETWEEN WNT SIGNALING MOLECULES AND THEIR RECEPTOR(OS5:) Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 96.	Tj ETQq0 (0.0	O 0 rgBT /Ov O
309	J0210204 Influence of the balance between RANKL and OPG expression rates on the functional adaptation capacity of trabeculae. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _J0210204J0210204	0.0	0
310	GS1-11 THE EFFECTS OF DISTRIBUTION OF ADHESION PROTEINS ON SENSING MICROGROOVED STRUCTURE IN MIGRATING CELLS(GS1: Cell and Tissue Biomechanics II). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 125.	0.0	0
311	J0210105 Mathematical modeling of apical constriction adjustment for maintaining smooth surface of growing epithelial tissue. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _J0210105J0210105	0.0	O
312	2H14 Effects of remodeling signals on bone functional adaptation. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _2H14-12H14-4	0.0	0
313	Consideration of the experimental approach to elucidate the morphological change of osteocytes in bone tissue. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, J0280102.	0.0	O
314	2D42 AFM molecular imaging of vinculin-binding to \hat{l}_{\pm} -catenin. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _2D42-12D42-5	0.0	0
315	Imaging analysis of formation for epithelial cell aggregates due to mechanical environment. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, S0210102.	0.0	0
316	2D21 Simulation of morphological change in epithelial tissue considering feedback between constriction force and shape at cell level. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _2D21-12D21-5	0.0	0
317	2D41 Mechano-adaptive mechanism of α-catenin as a tension-sensory molecule. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _2D41-12D41-4	0.0	0
318	Nanofishing and structural imaging of tension-sensor protein employing atomic force microscopy. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2016, 2016.27, A204.	0.0	0
319	Mechanical Effects of Cellular Activities During Optic-cup Morphogenesis. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, J0230104.	0.0	0
320	The analysis of nitric oxide production behavior in mouse isolated osteocytes. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, S0210206.	0.0	0
321	Bone Metabolism and Remodeling Simulation at Cancellous Bone Scale. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, J0230102.	0.0	O
322	Fabrication of orientated myoblast cell sheets by modulating cell-substrate adhesion. The Proceedings of Mechanical Engineering Congress Japan, 2018, 2018, J0220102.	0.0	0
323	Facilitated osteogenic differentiation of mouse pre-osteoblast cells in three-dimensional tissue engineered constructs. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2019, 2019.30, 2A24.	0.0	O
324	Pre-osteoblast cells in three-dimensional spheroids evoke in vitro osteocytogenesis. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.32, 1A21.	0.0	0

#	Article	IF	Citations
325	Modeling Mechano-chemical Couplings in Bone Adaptation by Remodeling. MCB Molecular and Cellular Biomechanics, 2019, 16, 88-88.	0.7	0
326	Induction of cell orientation in cell sheets using adhesion limiting substrates The Proceedings of Mechanical Engineering Congress Japan, 2019, 2019, J02802.	0.0	0
327	Site-Dependence of Mechanosensitivity in Isolated Osteocytes. IFMBE Proceedings, 2009, , 2000-2004.	0.3	0
328	Title is missing!. , 2020, 15, e0233491.		0
329	Title is missing!. , 2020, 15, e0233491.		0
330	Title is missing!. , 2020, 15, e0233491.		0
331	Title is missing!. , 2020, 15, e0233491.		0