
Lucie H Clapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1342228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
2	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
3	Terlipressin for norepinephrine-resistant septic shock. Lancet, The, 2002, 359, 1209-1210.	6.3	274
4	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	2.7	269
5	Differential Effects of Stable Prostacyclin Analogs on Smooth Muscle Proliferation and Cyclic AMP Generation in Human Pulmonary Artery. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 194-201.	1.4	211
6	Vasopressin: Mechanisms of action on the vasculature in health and in septic shock. Critical Care Medicine, 2007, 35, 33-40.	0.4	206
7	Both membrane stretch and fatty acids directly activate large conductance Ca ²⁺ â€activated K ⁺ channels in vascular smooth muscle cells. FEBS Letters, 1992, 297, 24-28.	1.3	193
8	The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature, 2004, 427, 853-858.	13.7	185
9	Smooth Muscle Proliferation and Role of the Prostacyclin (IP) Receptor in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1161-1170.	2.5	124
10	Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: Treprostinil is a potent DP1 and EP2 agonist. Biochemical Pharmacology, 2012, 84, 68-75.	2.0	124
11	Regulation of one type of Ca 2+ current in smooth muscle cells by diacylglycerol and acetylcholine. FASEB Journal, 1988, 2, 2497-2504.	0.2	110
12	Modulation of calcium movements by nitroprusside in isolated vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 1991, 418, 462-470.	1.3	109
13	Outward currents in rabbit pulmonary artery cells dissociated with a new technique. Experimental Physiology, 1991, 76, 677-693.	0.9	107
14	Endothelialâ€dependent relaxant actions of carbachol and substance P in arterial smooth muscle. British Journal of Pharmacology, 1986, 87, 713-723.	2.7	106
15	The Molecular Composition of K _{ATP} Channels in Human Pulmonary Artery Smooth Muscle Cells and Their Modulation by Growth. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 135-143.	1.4	90
16	Acetylcholine increases voltage-activated Ca2+ current in freshly dissociated smooth muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2092-2096.	3.3	80
17	Role of KATP channels in sepsis. Cardiovascular Research, 2006, 72, 220-230.	1.8	76
18	Differential effects of vasopressin and norepinephrine on vascular reactivity in a long-term rodent model of sepsis*. Critical Care Medicine, 2007, 35, 2337-2343.	0.4	73

#	Article	IF	CITATIONS
19	The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins and Other Lipid Mediators, 2015, 120, 56-71.	1.0	69
20	Inhibition of Phosphodiesterase 2 Augments cGMP and cAMP Signaling to Ameliorate Pulmonary Hypertension. Circulation, 2014, 130, 496-507.	1.6	63
21	Effects of the adenylyl cyclase inhibitor SQ22536 on iloprost-induced vasorelaxation and cyclic AMP elevation in isolated guinea-pig aorta. British Journal of Pharmacology, 1999, 126, 845-847.	2.7	60
22	IP receptor-dependent activation of PPARγ by stable prostacyclin analogues. Biochemical and Biophysical Research Communications, 2007, 360, 821-827.	1.0	59
23	The diverse effects of noradrenaline and other stimulants on 86Rb and 42K efflux in rabbit and guineaâ€pig arterial muscle Journal of Physiology, 1984, 355, 43-63.	1.3	56
24	NO contributes to EDHF-like responses in rat small arteries: a role for NO stores. Cardiovascular Research, 2003, 57, 207-216.	1.8	53
25	A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 729-734.	3.3	53
26	Abnormal Activation of K+Channels Underlies Relaxation to Bacterial Lipopolysaccharide in Rat Aorta. Biochemical and Biophysical Research Communications, 1996, 224, 184-190.	1.0	49
27	Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism. Cardiovascular Research, 2006, 69, 107-115.	1.8	45
28	Calcium Modulation of Vascular Smooth Muscle ATP-Sensitive K + Channels. Circulation Research, 2000, 87, 1019-1025.	2.0	44
29	Substrate selectivity and sensitivity to inhibition by FK506 and cyclosporin A of calcineurin heterodimers composed of the l^{2} catalytic subunit. FEBS Journal, 2002, 269, 3540-3548.	0.2	44
30	Evidence that Ca2+-activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost. European Journal of Pharmacology, 1998, 356, 215-224.	1.7	41
31	Potassium channels in the vasculature. Current Opinion in Nephrology and Hypertension, 1998, 7, 83-98.	1.0	40
32	Role of prostanoid IP and EP receptors in mediating vasorelaxant responses to PGI2 analogues in rat tail artery: Evidence for Gi/o modulation via EP3 receptors. European Journal of Pharmacology, 2011, 654, 258-265.	1.7	40
33	Do Anionic Phospholipids Serve as Cofactors or Second Messengers for the Regulation of Activity of Cloned ATP-Sensitive K + Channels?. Circulation Research, 2003, 93, 646-655.	2.0	38
34	A comparative study of PGI2 mimetics used clinically on the vasorelaxation of human pulmonary arteries and veins, role of the DP-receptor. Prostaglandins and Other Lipid Mediators, 2013, 107, 48-55.	1.0	37
35	Assembly Limits the Pharmacological Complexity of ATP-sensitive Potassium Channels. Journal of Biological Chemistry, 2002, 277, 13717-13723.	1.6	33
36	Ca ²⁺ /calcineurin regulation of cloned vascular K _{ATP} channels: crosstalk with the protein kinase A pathway. British Journal of Pharmacology, 2009, 157, 554-564.	2.7	33

#	Article	IF	CITATIONS
37	The pore-forming subunit of the KATP channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro. British Journal of Pharmacology, 2005, 144, 367-375.	2.7	32
38	Temporal variation in endotoxin-induced vascular hyporeactivity in a rat mesenteric artery organ culture model. British Journal of Pharmacology, 2001, 133, 351-360.	2.7	28
39	Reversal of life-threatening, drug-related potassium-channel syndrome by glibenclamide. Lancet, The, 2005, 365, 1873-1875.	6.3	28
40	Functional Expression of Inward Rectifier Potassium Channels in Cultured Human Pulmonary Smooth Muscle Cells: Evidence for a Major Role of Kir2.4 Subunits. Journal of Membrane Biology, 2006, 213, 19-29.	1.0	27
41	International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E ₂ Receptors (EP1–4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacological Reviews, 2020, 72, 910-968.	7.1	26
42	Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology. Circulation Genomic and Precision Medicine, 2018, 11, e001813.	1.6	24
43	Prostanoid EP2 Receptors Are Up-Regulated in Human Pulmonary Arterial Hypertension: A Key Anti-Proliferative Target for Treprostinil in Smooth Muscle Cells. International Journal of Molecular Sciences, 2018, 19, 2372.	1.8	24
44	Exploring the enzymatic degradation of poly(glycerol adipate). European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 377-386.	2.0	24
45	The molecular site of action of KATP channel inhibitors determines their ability to inhibit iNOS-mediated relaxation in rat aorta. Cardiovascular Research, 2002, 56, 154-163.	1.8	23
46	Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A. British Journal of Pharmacology, 2003, 139, 122-128.	2.7	22
47	Differential actions of the prostacyclin analogues treprostinil and iloprost and the selexipag metabolite, MRE-269 (ACT-333679) in rat small pulmonary arteries and veins. Prostaglandins and Other Lipid Mediators, 2013, 106, 1-7.	1.0	21
48	Substance P, like acetylcholine, augments one type of Ca2+ current in isolated smooth muscle cells. Pflugers Archiv European Journal of Physiology, 1989, 413, 565-567.	1.3	19
49	Augmentation by intracellular ATP of the delayed rectifier current independently of the glibenclamideâ€sensitive Kâ€current in rabbit arterial myocytes. British Journal of Pharmacology, 1994, 111, 972-974.	2.7	19
50	Nuclear translocation of calcineurin Aβ but not calcineurin Aα by platelet-derived growth factor in rat aortic smooth muscle. American Journal of Physiology - Cell Physiology, 2007, 292, C2213-C2225.	2.1	18
51	Dual regulation of M current in gastric smooth muscle cells: β-adrenergic-muscarinic antagonism. Pflugers Archiv European Journal of Physiology, 1990, 417, 291-302.	1.3	17
52	Adverse Events of Prostacyclin Mimetics in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2019, 8, 481.	1.0	14
53	BK Large Conductance Ca2+-Activated K+ Channel-Deficient Mice are not Resistant to Hypotension and Display Reduced Survival Benefit Following Polymicrobial Sepsis. Shock, 2011, 35, 485-491.	1.0	13
54	Bronchodilation induced by PGE 2 is impaired in Group III pulmonary hypertension. British Journal of Pharmacology, 2020, 177, 161-174.	2.7	13

#	Article	IF	CITATIONS
55	Properties of the ATP-sensitive K+ current activated by levcromakalim in isolated pulmonary arterial myocytes. Journal of Membrane Biology, 1994, 140, 205-13.	1.0	12
56	Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Cardiovascular Research, 1995, 30, 460-468.	1.8	12
57	VARIABLE EFFECTS OF INHIBITING INOS AND CLOSING THE VASCULAR ATP-SENSITIVE POTASSIUM CHANNEL (VIA ITS PORE-FORMING AND SULFONYLUREA RECEPTOR SUBUNITS) IN ENDOTOXIC SHOCK. Shock, 2009, 31, 535-541.	1.0	12
58	Ex vivo relaxations of pulmonary arteries induced by prostacyclin mimetics are highly dependent of the precontractile agents. Prostaglandins and Other Lipid Mediators, 2015, 121, 46-52.	1.0	12
59	Inotropic Effects of Prostacyclins on the Right Ventricle Are Abolished in Isolated Rat Hearts With Right-Ventricular Hypertrophy and Failure. Journal of Cardiovascular Pharmacology, 2017, 69, 1-12.	0.8	11
60	The BK Channel. Circulation Research, 2003, 93, 893-895.	2.0	10
61	Neurotransmitter Regulation of Ionic Channels in Freshly Dissociated Smooth Muscle Cells. Annals of the New York Academy of Sciences, 1988, 527, 346-359.	1.8	8
62	Prostacyclins have no direct inotropic effect on isolated atrial strips from the normal and pressureâ€overloaded human right heart. Pulmonary Circulation, 2017, 7, 339-347.	0.8	8
63	Selexipag in the management of pulmonary arterial hypertension: an update. Drug, Healthcare and Patient Safety, 2019, Volume 11, 55-64.	1.0	8
64	Altered cyclooxygenase-1 and enhanced thromboxane receptor activities underlie attenuated endothelial dilatory capacity of omental arteries in obesity. Life Sciences, 2019, 239, 117039.	2.0	6
65	Pharmacology of the single isomer, esuberaprost (beraprost-314d) on pulmonary vascular tone, IP receptors and human smooth muscle proliferation in pulmonary hypertension. Biochemical Pharmacology, 2019, 166, 242-252.	2.0	6
66	Calcium Channels and Vasodilation. Advances in Molecular and Cell Biology, 1994, , 21-41.	0.1	5
67	Inhibition of vascular adenosine triphosphate-sensitive potassium channels by sympathetic tone during sepsis. Critical Care Medicine, 2012, 40, 1261-1268.	0.4	5
68	Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-III pulmonary hypertension patients. Prostaglandins and Other Lipid Mediators, 2020, 146, 106388.	1.0	5
69	Stoking Up BK _{Ca} Channels in Hemorrhagic Shock. Circulation Research, 2007, 101, 436-438.	2.0	4
70	Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension. , 2020, , 31-61.		4
71	Opportunities to Replace the Use of Animals in Sepsis Research. ATLA Alternatives To Laboratory Animals, 2005, 33, 641-648.	0.7	3
72	The Role of the K2P Channels TASKâ€1, TREKâ€1 and TREKâ€2 in the Use of Treprostinil Therapy in Pulmonary Arterial Hypertension. FASEB Journal, 2018, 32, 567.6.	0.2	3

#	Article	IF	CITATIONS
73	Prostanoid receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	3
74	Endothelium-derived hyperpolarization factor (EDHF) is up-regulated in a pig model of acute liver failure. Scandinavian Journal of Gastroenterology, 2007, 42, 356-365.	0.6	2
75	Attenuated vascular responsiveness to K+ channel openers in diabetes mellitus: the differential role of reactive oxygen species. General Physiology and Biophysics, 2013, 32, 527-534.	0.4	2
76	Prostanoid receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	2
77	Prostanoid receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
78	RALINEPAG REDUCES PULMONARY VASCULAR RESISTANCE (PVR) IN A PHASE 2 STUDY CONFIRMING PRECLINICAL FINDINGS ON PROSTACYCLIN (IP) RECEPTORS IN HUMAN TISSUES. Chest, 2018, 154, 990A-991A.	0.4	1
79	Synthetic routes to treprostinil N-acyl methylsulfonamide. Tetrahedron Letters, 2020, 61, 151428.	0.7	1
80	The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Frontiers in Pharmacology, 2021, 12, 705421.	1.6	1
81	Impact of treprostinil on dynamin-related protein 1 (DRP1) and mitochondrial fragmentation in pulmonary arterial hypertension (PAH) , 2018, , .		1
82	Different calcium mobilisation pathways underlie the changes in vascular reactivity to norepinephrine and vasopressin in septic shock. Journal of Infection, 2008, 57, 429-430.	1.7	0
83	ATP-Sensitive K+ Channels in the Pulmonary Vasculature. , 1993, , 129-139.		0
84	Differential action of beraprost isomers on prostacyclin (IP) receptors and $\mbox{PPAR}\hat{l}^2$ in pulmonary arteries. , 2015, , .		0
85	The non-prostanoid IP receptor agonist, APD811 (ralinepag) has potent antiproliferative and vasorelaxant properties in human pulmonary artery. , 2017, , .		0
86	EP4 agonists have reduced bronchodilation activity in patients with Group III pulmonary hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR20-2.	0.0	0
87	Prostanoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	Ο