
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1341928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Assessment of Indigo Carmine Dye in Lithium Metal Polymer Technology. Molecules, 2021, 26, 3079.	3.8	11
2	Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Interfaces, 2021, 13, 28281-28294.	8.0	21
3	Influence of the Polyacrylic Acid Binder Neutralization Degree on the Initial Electrochemical Behavior of a Silicon/Graphite Electrode. ACS Applied Materials & Interfaces, 2021, 13, 28304-28323.	8.0	21
4	(Invited) Tuning the Formation and Structure of the Silicon Electrode/Electrolyte Interphase in Superconcentrated Ionic Liquids. ECS Meeting Abstracts, 2021, MA2021-02, 224-224.	0.0	0
5	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie, 2020, 132, 542-546.	2.0	28
6	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie - International Edition, 2020, 59, 534-538.	13.8	124
7	Lithium-ion batteries $\hat{a} \in$ Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	7.8	401
8	Preface—JES Focus Issue on Challenges in Novel Electrolytes, Organic Materials, and Innovative Chemistries for Batteries in Honor of Michel Armand. Journal of the Electrochemical Society, 2020, 167, 070001.	2.9	0
9	Playing with the p-Doping Mechanism to Lower the Carbon Loading in n-Type Insertion Organic Electrodes: First Feasibility Study with Binder-Free Composite Electrodes. Journal of the Electrochemical Society, 2020, 167, 070540.	2.9	7
10	Editors' Choice—Understanding the Superior Cycling Performance of Si Anode in Highly Concentrated Phosphonium-Based Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2020, 167, 120520.	2.9	23
11	(Invited) Surface Characterisation of Ni-Rich NMC Materials Stored in Various Environments. ECS Meeting Abstracts, 2020, MA2020-02, 2-2.	0.0	0
12	A Multi-Analytical Approach for the Surface Reactivity Characterisation of Pristine NMC811: Towards Gassing Comprehension. ECS Meeting Abstracts, 2020, MA2020-02, 808-808.	0.0	0
13	Effect of Surface Chemical Bonding States on Lithium Intercalation Properties of Surfaceâ€Modified Lithium Cobalt Oxide. Batteries and Supercaps, 2019, 2, 454-463.	4.7	18
14	Full Organic Aqueous Battery Based on TEMPO Small Molecule with Millimeter-Thick Electrodes. Chemistry of Materials, 2019, 31, 1869-1880.	6.7	42
15	New KRb ₂ Sb ₄ BO ₁₃ and Rb ₃ Sb ₄ BO ₁₃ compounds prepared by Rb ⁺ /K ⁺ ion exchange from the K ₃ Sb ₄ BO ₁₃ ion conductor, CrystEngComm, 2019, 21, 594-601.	2.6	2
16	Intermixed Cation–Anion Aqueous Battery Based on an Extremely Fast and Long ycling Diâ€Block Bipyridinium–Naphthalene Diimide Oligomer. Advanced Energy Materials, 2019, 9, 1803688.	19.5	22
17	Cascadeâ€₹ype Prelithiation Approach for Liâ€lon Capacitors. Advanced Energy Materials, 2019, 9, 1900078.	19.5	37
18	Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study. ACS Applied Materials & Interfaces, 2019, 11, 18368-18376.	8.0	40

DOMINIQUE G GUYOMARD

#	Article	IF	CITATIONS
19	CMC-citric acid Cu(II) cross-linked binder approach to improve the electrochemical performance of Si-based electrodes. Electrochimica Acta, 2019, 304, 495-504.	5.2	24
20	Evolution of LiFePO4 thin films interphase with electrolyte. Journal of Power Sources, 2018, 382, 45-55.	7.8	8
21	Peculiar Li-storage mechanism at graphene edges in turbostratic carbon black and their application in high energy Li-ion capacitor. Journal of Power Sources, 2018, 378, 628-635.	7.8	13
22	Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 6719-6729.	8.0	77
23	Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1701988.	19.5	41
24	Anodic oxidation of p-phenylenediamines in battery grade electrolytes. Electrochimica Acta, 2018, 262, 276-281.	5.2	7
25	Carbon black dispersions in surfactant-based microemulsion. Journal of Materials Research, 2018, 33, 1301-1307.	2.6	4
26	A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Siâ€Based Electrodes for Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701787.	19.5	80
27	Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nature Communications, 2018, 9, 4401.	12.8	101
28	Photo-Polymerized Organic Host Network of Ionogels for Lithium Batteries: Effects of Mesh Size and of Ethylene Oxide Content. ECS Transactions, 2018, 86, 163-178.	0.5	2
29	A primed current collector for high performance carbon-coated LiFePO4 electrodes with no carbon additive. Journal of Power Sources, 2018, 406, 7-17.	7.8	22
30	Photo-Polymerized Organic Host Network of Ionogels for Lithium Batteries: Effects of Mesh Size and of Ethylene Oxide Content. Journal of the Electrochemical Society, 2018, 165, A3179-A3185.	2.9	9
31	LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 2254-2263.	6.7	69
32	PEOâ€Silsesquioxane Flexible Membranes: Organicâ€Inorganic Solid Electrolytes with Controlled Homogeneity and Nanostructure. ChemistrySelect, 2017, 2, 2088-2093.	1.5	9
33	Lithium nâ€Đoped Polyaniline as a Highâ€Performance Electroactive Material for Rechargeable Batteries. Angewandte Chemie - International Edition, 2017, 56, 1553-1556.	13.8	99
34	Investigating the crystal structures of alkali and alkaline-earth metal salts of 2,5-(dianilino)terephthalic acid. CrystEngComm, 2017, 19, 6787-6796.	2.6	5
35	How silicon electrodes can be calendered without altering their mechanical strength and cycle life. Journal of Power Sources, 2017, 371, 136-147.	7.8	38
36	Carbonate and Ionic Liquid Mixes as Electrolytes To Modify Interphases and Improve Cell Safety in Silicon-Based Li-Ion Batteries. Chemistry of Materials, 2017, 29, 8132-8146.	6.7	15

#	Article	IF	CITATIONS
37	Interest of molecular functionalization for electrochemical storage. Nano Research, 2017, 10, 4175-4200.	10.4	11
38	Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an anode material for Li-ion batteries. New Journal of Chemistry, 2017, 41, 10555-10560.	2.8	15
39	A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochimica Acta, 2017, 258, 453-466.	5.2	124
40	High-Capacity Retention of Si Anodes Using a Mixed Lithium/Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolyte. ACS Energy Letters, 2017, 2, 1804-1809.	17.4	38
41	Some Directions Out of Usual Paths for Performance Improvement of Batteries. Electrochemistry, 2017, 85, 621-621.	1.4	0
42	Fabrication and performance of electrochemically grafted thiophene silicon nanoparticle anodes for Li-ion batteries. Journal of Power Sources, 2016, 324, 97-105.	7.8	6
43	Solvation, exchange and electrochemical intercalation properties of disodium 2,5-(dianilino)terephthalate. CrystEngComm, 2016, 18, 6076-6082.	2.6	14
44	Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochimica Acta, 2016, 215, 276-288.	5.2	47
45	Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes. Journal of Power Sources, 2016, 330, 92-103.	7.8	15
46	A dual–ion battery using diamino–rubicene as anion–inserting positive electrode material. Electrochemistry Communications, 2016, 72, 64-68.	4.7	56
47	Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS. Nano Letters, 2016, 16, 7381-7388.	9.1	45
48	Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration. Chemistry of Materials, 2016, 28, 2557-2572.	6.7	116
49	Mechanism of Silicon Electrode Aging upon Cycling in Full Lithiumâ€Ion Batteries. ChemSusChem, 2016, 9, 841-848.	6.8	67
50	Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries. Journal of Materials Chemistry A, 2016, 4, 6131-6139.	10.3	97
51	Understanding the Structure of Electrodes in Li-Ion Batteries: A Numerical Study. Journal of the Electrochemical Society, 2015, 162, A1485-A1492.	2.9	28
52	Engineered Electronic Contacts for Composite Electrodes in Li Batteries Using Thiophene-Based Molecular Junctions. Chemistry of Materials, 2015, 27, 4057-4065.	6.7	11
53	Suspensions of carbon nanofibers in organic medium: rheo-electrical properties. Physical Chemistry Chemical Physics, 2015, 17, 32316-32327.	2.8	19
54	An In Situ Multiscale Study of Ion and Electron Motion in a Lithiumâ€Ion Battery Composite Electrode. Advanced Energy Materials, 2015, 5, 1400903.	19.5	16

#	Article	IF	CITATIONS
55	NMR quantitative analysis of solid electrolyte interphase on aged Li-ion battery electrodes. Electrochimica Acta, 2015, 155, 391-395.	5.2	14
56	Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. Journal of Power Sources, 2015, 280, 533-549.	7.8	201
57	Ink-jet printed porous composite LiFePO 4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 2015, 287, 261-268.	7.8	95
58	A rechargeable lithium/quinone battery using a commercial polymer electrolyte. Electrochemistry Communications, 2015, 55, 22-25.	4.7	33
59	A film maturation process for improving the cycle life of Si-based anodes for Li-ion batteries. Electrochemistry Communications, 2015, 61, 102-105.	4.7	19
60	Electrochemical Interfaces in Electrochemical Energy Storage Systems. Journal of the Electrochemical Society, 2015, 162, Y13-Y13.	2.9	2
61	Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase. Journal of Power Sources, 2015, 299, 231-240.	7.8	15
62	Surfactant for Enhanced Rheological, Electrical, and Electrochemical Performance of Suspensions for Semisolid Redox Flow Batteries and Supercapacitors. ChemPlusChem, 2015, 80, 396-401.	2.8	52
63	Formulation of flowable anolyte for redox flow batteries: Rheo-electrical study. Journal of Power Sources, 2015, 274, 424-431.	7.8	49
64	Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. Journal of Power Sources, 2015, 274, 1085-1090.	7.8	105
65	Electronic vs Ionic Limitations to Electrochemical Performance in Li ₄ Ti ₅ O ₁₂ -Based Organic Suspensions for Lithium-Redox Flow Batteries. Journal of the Electrochemical Society, 2014, 161, A693-A699.	2.9	44
66	Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties. Advanced Energy Materials, 2014, 4, 1301570.	19.5	86
67	From Si wafers to cheap and efficient Si electrodes for Li-ion batteries. Journal of Power Sources, 2014, 256, 32-36.	7.8	34
68	Elucidation of the Na _{2/3} FePO ₄ and Li _{2/3} FePO ₄ Intermediate Superstructure Revealing a Pseudouniform Ordering in 2D. Journal of the American Chemical Society, 2014, 136, 9144-9157.	13.7	67
69	Control of LiFePO4 air-aging through the use of electrolyte additive. Electrochemistry Communications, 2014, 38, 138-141.	4.7	7
70	Redirected charge transport arising from diazonium grafting of carbon coated LiFePO ₄ . Physical Chemistry Chemical Physics, 2014, 16, 22745-22753.	2.8	11
71	Critical Role of Silicon Nanoparticles Surface on Lithium Cell Electrochemical Performance Analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS Spectroscopies. Journal of Physical Chemistry C, 2014, 118, 17318-17331.	3.1	89
72	Numerical and Experimental Study of Suspensions Containing Carbon Blacks Used as Conductive Additives in Composite Electrodes for Lithium Batteries. Langmuir, 2014, 30, 2660-2669.	3.5	32

#	Article	IF	CITATIONS
73	Improvement of Electrode/Electrolyte Interfaces in High-Voltage Spinel Lithium-Ion Batteries by Using Glutaric Anhydride as Electrolyte Additive. Journal of Physical Chemistry C, 2014, 118, 4634-4648.	3.1	83
74	Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors. Advanced Energy Materials, 2014, 4, 1301718.	19.5	64
75	Abnormal operando structural behavior of sodium battery material: Influence of dynamic on phase diagram of NaxFePO4. Electrochemistry Communications, 2014, 38, 104-106.	4.7	38
76	Interphase Evolution at Two Promising Electrode Materials for Liâ€ion Batteries: LiFePO ₄ and LiNi _{1/2} Mn _{1/2} O ₂ . ChemPhysChem, 2014, 15, 1922-1938.	2.1	16
77	Degradation diagnosis of aged Li4Ti5O12/LiFePO4 batteries. Journal of Power Sources, 2014, 267, 744-752.	7.8	21
78	Synergistic Effect in Carbon Coated LiFePO ₄ for High Yield Spontaneous Grafting of Diazonium Salt. Structural Examination at the Grain Agglomerate Scale. Journal of the American Chemical Society, 2013, 135, 11614-11622.	13.7	25
79	Covalent vs. non-covalent redox functionalization of C–LiFePO4 based electrodes. Journal of Power Sources, 2013, 232, 246-253.	7.8	15
80	Multiscale electronic transport in Li1+xNi1/3â^'uCo1/3â^'vMn1/3â^'wO2: a broadband dielectric study from 40 Hz to 10 GHz. Physical Chemistry Chemical Physics, 2013, 15, 19790.	2.8	30
81	Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. Physical Chemistry Chemical Physics, 2013, 15, 14476.	2.8	145
82	Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR. Journal of Power Sources, 2013, 224, 50-58.	7.8	28
83	Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell. Electrochemistry Communications, 2013, 33, 72-75.	4.7	59
84	Structural changes of a Li/S rechargeable cell in Lithium Metal Polymer technology. Journal of Power Sources, 2013, 241, 249-254.	7.8	25
85	Nanoscale compositional changes during first delithiation of Si negative electrodes. Journal of Power Sources, 2013, 227, 237-242.	7.8	25
86	An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries. Journal of Power Sources, 2013, 239, 308-314.	7.8	78
87	A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy and Environmental Science, 2013, 6, 2145.	30.8	274
88	NMR monitoring of electrode/electrolyte interphase in the case of air-exposed and carbon coated LiFePO 4. Journal of Power Sources, 2013, 243, 682-690.	7.8	13
89	Nanosiliconâ€Based Thick Negative Composite Electrodes for Lithium Batteries with Graphene as Conductive Additive. Advanced Energy Materials, 2013, 3, 1351-1357.	19.5	66
90	Toward the Aqueous Processing of Li ₄ Ti ₅ O ₁₂ : A Comparative Study with LiFePO ₄ . Journal of the Electrochemical Society, 2012, 159, A1083-A1090.	2.9	17

#	Article	IF	CITATIONS
91	Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon–LiFePO4 nanocomposites. Journal of Materials Chemistry, 2012, 22, 24057.	6.7	31
92	Influence of adsorbed polar molecules on the electronic transport in a composite material Li1.1V3O8–PMMA for lithium batteries. Physical Chemistry Chemical Physics, 2012, 14, 9500.	2.8	12
93	Brownian Dynamics Simulations of Colloidal Suspensions Containing Polymers as Precursors of Composite Electrodes for Lithium Batteries. Langmuir, 2012, 28, 10713-10724.	3.5	36
94	Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: A MAS NMR and TEM/EELS study. Journal of Power Sources, 2012, 215, 170-178.	7.8	39
95	New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method. Journal of Power Sources, 2012, 220, 180-184.	7.8	93
96	In situ redox functionalization of composite electrodes for high power–high energy electrochemical storage systems via a non-covalent approach. Energy and Environmental Science, 2012, 5, 5379-5386.	30.8	37
97	Multiscale electronic transport mechanism and true conductivities in amorphous carbon–LiFePO ₄ nanocomposites. Journal of Materials Chemistry, 2012, 22, 2641-2649.	6.7	63
98	CMC as a binder in LiNi0.4Mn1.6O4 5V cathodes and their electrochemical performance for Li-ion batteries. Electrochimica Acta, 2012, 62, 77-83.	5.2	96
99	Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries. Journal of Power Sources, 2012, 202, 262-268.	7.8	48
100	Quantitative MAS NMR characterization of the LiMn1/2Ni1/2O2 electrode/electrolyte interphase. Solid State Nuclear Magnetic Resonance, 2012, 42, 51-61.	2.3	41
101	The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 6201.	6.7	317
102	Elucidating the LiFePO4 air aging mechanism to predict its electrochemical performance. Journal of Materials Chemistry, 2011, 21, 18575.	6.7	21
103	Improvement of intermetallics electrochemical behavior by playing with the composite electrode formulation. Journal of Materials Chemistry, 2011, 21, 5076.	6.7	42
104	Multiscale Dynamics of Ionic Liquids Confined in Ionogel Membrane for Lithium Batteries. AIP Conference Proceedings, 2011, , .	0.4	1
105	Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR. Electrochemical Society Interface, 2011, 20, 61-67.	0.4	37
106	Carbon nanofibers improve both the electronic and ionic contributions of the electrochemical performance of composite electrodes. Journal of Power Sources, 2011, 196, 8494-8499.	7.8	29
107	Relationship between surface chemistry and electrochemical behavior of LiNi1/2Mn1/2O2 positive electrode in a lithium-ion battery. Journal of Power Sources, 2011, 196, 4791-4800.	7.8	42
108	More on the reactivity of olivine LiFePO4 nano-particles with atmosphere at moderate temperature. Journal of Power Sources, 2011, 196, 2155-2163.	7.8	39

#	Article	IF	CITATIONS
109	Solidâ€State Electrode Materials with Ionicâ€Liquid Properties for Energy Storage: the Lithium Solidâ€State Ionicâ€Liquid Concept Advanced Functional Materials, 2011, 21, 4073-4078.	14.9	84
110	Capacity fading on cycling nano size grains of Li1.1V3O8, electrochemical investigation. Electrochimica Acta, 2010, 55, 3979-3986.	5.2	18
111	Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. Journal of Power Sources, 2010, 195, 2835-2843.	7.8	109
112	Aging of the LiFePO4 positive electrode interface in electrolyte. Journal of Power Sources, 2010, 195, 7415-7425.	7.8	58
113	Operando discrimination of fast and slow active grains within a cycling electrode for lithium battery. Electrochemistry Communications, 2010, 12, 561-564.	4.7	3
114	Moisture driven aging mechanism of LiFePO4 subjected to air exposure. Electrochemistry Communications, 2010, 12, 238-241.	4.7	50
115	Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO[sub 4] Composite Electrodes. Journal of the Electrochemical Society, 2010, 157, A1347.	2.9	61
116	Structure and Stability of Sodium Intercalated Phases in Olivine FePO ₄ . Chemistry of Materials, 2010, 22, 4126-4128.	6.7	436
117	Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO[sub 4] Composite Electrodes. Journal of the Electrochemical Society, 2010, 157, A885.	2.9	153
118	Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering. Physical Chemistry Chemical Physics, 2010, 12, 3815.	2.8	39
119	Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. Physical Chemistry Chemical Physics, 2010, 12, 220-226.	2.8	36
120	Silicon Composite Electrode with High Capacity and Long Cycle Life. Electrochemical and Solid-State Letters, 2009, 12, A215.	2.2	261
121	Design of Aqueous Processed Thick LiFePO[sub 4] Composite Electrodes for High-Energy Lithium Battery. Journal of the Electrochemical Society, 2009, 156, A133.	2.9	128
122	Hierarchical and Resilient Conductive Network of Bridged Carbon Nanotubes and Nanofibers for High-Energy Si Negative Electrodes. Electrochemical and Solid-State Letters, 2009, 12, A76.	2.2	55
123	A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries. Advanced Functional Materials, 2009, 19, 2749-2758.	14.9	49
124	Ultrafast synthesis of Li1+αV3O8 gel precursors for lithium battery applications. Solid State Ionics, 2009, 180, 1511-1516.	2.7	9
125	Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochimica Acta, 2009, 54, 1240-1248.	5.2	108
126	Shaping of advanced ceramics: The case of composite electrodes for lithium batteries. Journal of the European Ceramic Society, 2009, 29, 925-929.	5.7	9

#	Article	IF	CITATIONS
127	Characterization of interphases appearing on LiNi0.5Mn0.5O2 using 7Li MAS NMR. Journal of Power Sources, 2009, 189, 557-560.	7.8	26
128	Aging of the LiNi[sub 1â^•2]Mn[sub 1â^•2]O[sub 2] Positive Electrode Interface in Electrolyte. Journal of the Electrochemical Society, 2009, 156, C180.	2.9	49
129	Lowering interfacial chemical reactivity of oxide materials for lithium batteries. A molecular grafting approach. Journal of Materials Chemistry, 2009, 19, 4771.	6.7	25
130	Characterization of the surface of positive electrodes for Li-ion batteries using 7Li MAS NMR. Ionics, 2008, 14, 203-207.	2.4	20
131	Engineering advanced Li1.2V3O8 composite electrodes for lithium batteries. Ionics, 2008, 14, 433-440.	2.4	7
132	Stability of LiFePO4 in water and consequence on the Li battery behaviour. lonics, 2008, 14, 583-587.	2.4	49
133	Editorial—11th EuroConference on the Science and Technology of Ionics. Ionics, 2008, 14, 269-269.	2.4	0
134	Unique control of bulk reactivity by surface phenomena in a positive electrode of lithium battery. Electrochemistry Communications, 2008, 10, 1897-1900.	4.7	12
135	Uncommon potential hysteresis in the Li/Li2xVO(H2â^'xPO4)2 (0≤â‰⊉) system. Electrochimica Acta, 2008, 53, 4564-4572.	5.2	6
136	Detection of surface layers using 7Li MAS NMR. Journal of Materials Chemistry, 2008, 18, 4266.	6.7	45
137	Is LiFePO[sub 4] Stable in Water?. Electrochemical and Solid-State Letters, 2008, 11, A4.	2.2	98
138	Air Exposure Effect on LiFePO[sub 4]. Electrochemical and Solid-State Letters, 2008, 11, A12.	2.2	98
139	Propagation of Surface-Assisted Side Reactions, A Main Cause for Capacity Fading of Vanadium Oxide Nanograins. Electrochemical and Solid-State Letters, 2007, 10, A184.	2.2	19
140	Effects of the Solvent Concentration (Solid Loading) on the Processing and Properties of the Composite Electrode. Journal of the Electrochemical Society, 2007, 154, A235.	2.9	57
141	On the Origin of the Pre-plasticizer Effect of the Composite Electrode for Lithium Batteries. Electrochemical and Solid-State Letters, 2007, 10, A122.	2.2	15
142	Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. Solid State Ionics, 2007, 178, 1297-1303.	2.7	38
143	On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9, 2801-2806.	4.7	291
144	Supercapacitor behavior of new substituted manganese dioxides. Journal of Power Sources, 2007, 165, 651-655.	7.8	69

#	Article	IF	CITATIONS
145	Aluminum substituted manganese oxides for lithium battery applications. Journal of Power Sources, 2007, 165, 625-629.	7.8	6
146	Relationships between processing, morphology and discharge capacity of the composite electrode. Journal of Power Sources, 2007, 174, 716-719.	7.8	34
147	Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode. Journal of the Electrochemical Society, 2006, 153, A679.	2.9	110
148	Synthesis of Li1+αV3O8via a Gel Precursor: Part II, from Xerogel to the Anhydrous Material. Chemistry of Materials, 2006, 18, 629-636.	6.7	19
149	Electron energy loss spectroscopy analysis of lithium deintercalated Li5/3â^'xTi7/3CrO7. Journal of Physics and Chemistry of Solids, 2006, 67, 1295-1298.	4.0	3
150	Preparation of nanowires of M substituted manganese dioxides (M=Al, Co, Ni) by the electrochemical–hydrothermal method. Journal of Physics and Chemistry of Solids, 2006, 67, 1315-1319.	4.0	11
151	Formation of Li1+nV3O8/β-Li1/3V2O5/C nanocomposites by carboreduction and resulting improvements of the capacity retention. Journal of Physics and Chemistry of Solids, 2006, 67, 1312-1314.	4.0	7
152	Study of Li1+xV3O8 by band structure calculations and spectroscopies. Journal of Physics and Chemistry of Solids, 2006, 67, 1238-1242.	4.0	11
153	Electrochemical synthesis of new substituted manganese oxides for lithium battery applications. Journal of Power Sources, 2006, 157, 443-447.	7.8	20
154	Novel architecture of composite electrode for optimization of lithium battery performance. Journal of Power Sources, 2006, 157, 438-442.	7.8	21
155	Improvement of the lithium insertion properties of Li1.1V3O8. Solid State Ionics, 2006, 177, 311-315.	2.7	57
156	Li interaction into a phyllomanganate of Rancieite type: Electrochemical behavior and XAS study. Journal of Physics and Chemistry of Solids, 2006, 67, 1303-1307.	4.0	4
157	Optimizing lithium battery performance from a tailor-made processing of the positive composite electrode. Journal of Physics and Chemistry of Solids, 2006, 67, 1275-1280.	4.0	35
158	Formation of Li[sub 1+n]V[sub 3]O[sub 8]â^•β-Li[sub 1â^•3]V[sub 2]O[sub 5]â^•C Nanocomposites by Carboreduction and the Resulting Improvement in Li Capacity Retention. Journal of the Electrochemical Society, 2006, 153, A295.	2.9	20
159	Atypical Li[sub 1.1]V[sub 3]O[sub 8] Prepared by a Novel Synthesis Route. Electrochemical and Solid-State Letters, 2006, 9, A16.	2.2	14
160	Characterization of Lithium Battery Materials During their Functioning in Using Dispersive XAS. Physica Scripta, 2005, , 346.	2.5	4
161	A combined X-ray and neutron Rietveld study of the chemically lithiated electrode materials Li2.7V3O8 and Li4.8V3O8. Journal of Solid State Chemistry, 2005, 178, 22-27.	2.9	33
162	Sol—Gel Synthesis of Li1+αV3O8. Part 1. From Precursors to Xerogel ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
163	Synthesis and characterisation of new nanostructured manganese oxides for lithium batteries. Ionics, 2005, 11, 24-28.	2.4	2
164	The Origin of Capacity Fading upon Lithium Cycling in Li[sub 1.1]V[sub 3]O[sub 8]. Journal of the Electrochemical Society, 2005, 152, A1660.	2.9	84
165	Tailoring the Binder of Composite Electrode for Battery Performance Optimization. Electrochemical and Solid-State Letters, 2005, 8, A17.	2.2	44
166	Sol Gel Synthesis of Li1+αV3O8. 1. From Precursors to Xerogel. Chemistry of Materials, 2005, 17, 2276-2283.	6.7	37
167	Improved composite electrode and lithium battery performance From smart use of the polymers and their properties. Materials Research Society Symposia Proceedings, 2004, 835, K10.3.1.	0.1	1
168	Improvement of lithium battery performance through composite electrode microstructure optimization. Ionics, 2004, 10, 443-449.	2.4	6
169	New Composite Electrode Architecture and Improved Battery Performance from the Smart Use of Polymers and Their Properties. Advanced Materials, 2004, 16, 553-557.	21.0	93
170	7Li and51V MAS NMR Study of the Electrochemical Behavior of Li1+xV3O8. Chemistry of Materials, 2004, 16, 2725-2733.	6.7	31
171	Li1+αV3O8Gel and Xerogel: a New Insight. Chemistry of Materials, 2004, 16, 4867-4869.	6.7	10
172	On a new calcium vanadate: synthesis, structure and Li insertion behavior. Journal of Solid State Chemistry, 2003, 172, 116-122.	2.9	22
173	MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology, and lithium insertion behavior. Journal of Power Sources, 2003, 119-121, 226-231.	7.8	85
174	New alkaline earth substituted lithium trivanadates: synthesis, characterization and lithium insertion behavior. Journal of Materials Chemistry, 2003, 13, 1827.	6.7	9
175	Influence of the morphology on the Li insertion properties of Li1.1V3O8. Journal of Materials Chemistry, 2003, 13, 921.	6.7	69
176	Nanofibrous α-, β-, γ- and αâ‹Î³-Manganese Dioxides Prepared by the Hydrothermal-Electrochemical Technique. Journal of the Electrochemical Society, 2003, 150, D135.	2.9	36
177	X-ray Absorption Spectroscopy study of lithium insertion mechanism in Li1.2V3O8. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
178	Study of structural defects in ?-MnO2 by Raman spectroscopy. Journal of Raman Spectroscopy, 2002, 33, 223-228.	2.5	261
179	Effect of synthesis conditions on the morphology of MnO2 ($\hat{1}$ ±-, $\hat{1}$ ² -, $\hat{1}$ ³ -) synthesized by the hydrothermal-electrochemical method. Ionics, 2002, 8, 161-171.	2.4	13
180	Ni2V2O7 thin films for negative electrode application of rechargeable microbatteries. Thin Solid Films, 2002, 402, 215-221.	1.8	20

#	Article	IF	CITATIONS
181	Lithium insertion/deinsertion properties of new layered vanadium oxides obtained by oxidation of the precursor H2V3O8. Electrochimica Acta, 2002, 47, 1153-1161.	5.2	20
182	Influence of structural parameters on proton insertion in Î ³ -MnO2. Electrochimica Acta, 2002, 48, 11-20.	5.2	13
183	Influence of the Cr Content on the Electrochemical Behavior of the LiCr[sub y]Mn[sub 2â^'y]O[sub 4] (Oâ‰y͡â‰⊉) Compounds: III. Galvanostatic Study of Bulk and Superficial Processes. Journal of the Electrochemical Society, 2001, 148, A826.	2.9	21
184	Influence of the Cr Content on the Li Deinsertion Behavior of the LiCr[sub y]Mn[sub 2â^'y]O[sub 4]â€,(0â‰9⁄ã‰≇) Compounds: I. Separation of Bulk and Superficial Processes at High Voltage. Journal of the Electrochemical Society, 2001, 148, A812.	2.9	43
185	Influence of the Cr Content on the Electrochemical Behavior of the LiCr[sub y]Mn[sub 2â^y]O[sub 4] (0â‰ख़ऀ‰ॿऀ) Compounds: II. Cyclovoltammetric Study of Bulk and Superficial Processes. Journal of the Electrochemical Society, 2001, 148, A819.	2.9	16
186	Interleaved oxovanadium cations in the rancieite manganese oxide δâ€MnO2. Journal of Materials Chemistry, 2001, 11, 652-656.	6.7	8
187	LiMBO3 (M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics, 2001, 139, 37-46.	2.7	198
188	Synthesis of nanocrystalline layered manganese oxides by the electrochemical reduction of AMnO4 (A) Tj ETQq0 C	0 _{rg} BT /C 7.8	Verlock 10
189	Electrochemical synthesis, characterization and lithium intercalation properties of e-MxV2O5+y.nH2O (M=Nill, Cull or MnIV). Journal of Physics and Chemistry of Solids, 2001, 62, 1447-1455.	4.0	13
190	Influence of structural defects on the insertion behavior of Î ³ -MnO2: comparison of H+ and Li+. Solid State Ionics, 2001, 140, 223-232.	2.7	25
191	K2[Te4O8(OH)10]: synthesis, crystal structure and thermal behavior. Solid State Sciences, 2001, 3, 93-101.	3.2	12
192	A New Layered Vanadium Oxide Prepared by Electrochemical Transformation of a Solid Precursor. Journal of the Electrochemical Society, 2001, 148, A258.	2.9	6
193	Electrochemical Synthesis of Beta- and Gamma-Manganese Dioxides under Hydrothermal Conditions. Electrochemical and Solid-State Letters, 2001, 4, D1.	2.2	23
194	One-Step Electrochemical Synthesis of α-MnO[sub 2] and αâ‹Î³-MnO[sub 2] Compounds for Lithium Batteries. Electrochemical and Solid-State Letters, 2001, 4, A180.	2.2	43
195	Li2Mn(VO3)4·2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties. Solid State Ionics, 2000, 133, 161-170.	2.7	10
196	New layered vanadium oxides MyH1 â^' yV3O8·nH2O (M = Li, Na, K) obtained by oxidation of the precursor H2V3O8. Journal of Materials Chemistry, 2000, 10, 2805-2810.	6.7	13
197	Negative and positive electrode materials for lithium-ion batteries. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1999, 2, 603-610.	0.1	0
198	γ-MnO2 for Li batteries. Journal of Power Sources, 1999, 81-82, 656-660.	7.8	40

DOMINIQUE G GUYOMARD

#	Article	IF	CITATIONS
199	e-V2O5: Relationships between synthesis conditions, material characteristics and lithium intercalation behavior. Journal of Power Sources, 1999, 81-82, 666-669.	7.8	19
200	Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes. Solid State Ionics, 1999, 126, 337-348.	2.7	40
201	Î ³ -MnO2 for Li batteries. Journal of Power Sources, 1999, 81-82, 661-665.	7.8	23
202	Electrochemically synthesized vanadium oxides as lithium insertion hosts. Electrochimica Acta, 1999, 45, 197-214.	5.2	147
203	New Amorphous Mixed Transition Metal Oxides and Their Li Derivatives:Â Synthesis, Characterization, and Electrochemical Behavior. Chemistry of Materials, 1999, 11, 2948-2959.	6.7	50
204	Electrochemical reduction of noble metal compounds in ethylene glycol. Solid State Sciences, 1999, 1, 47-51.	0.7	73
205	Electrolytic V2O5: Synthesis, Characterization and Lithium Insertion Behavior. Materials Research Society Symposia Proceedings, 1999, 575, 31.	0.1	1
206	Cobalt Lithium Orthoborate, LiCoBO3. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 1561-1563.	0.4	13
207	'Chimie douce' synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs. Li. Solid State Ionics, 1998, 107, 123-133.	2.7	54
208	Synthesis, Characterization and lithium Intercalation behavior of electrodeposited V ₂ O ₅ . Molecular Crystals and Liquid Crystals, 1998, 311, 75-80.	0.3	4
209	Electrochemical study of the lithium insertion mechanism into Li ₄ Ti ₅ O ₁₂ . Molecular Crystals and Liquid Crystals, 1998, 311, 63-68.	0.3	8
210	Selfâ€Discharge of LiMn2 O 4/C Liâ€lon Cells in Their Discharged State: Understanding by Means of Threeâ€Electrode Measurements. Journal of the Electrochemical Society, 1998, 145, 194-209.	2.9	424
211	The 2D Rancieite-type manganic acid and its Li-exchanged derivative: A new synthetic route for a better cycling behavior. Molecular Crystals and Liquid Crystals, 1998, 311, 57-62.	0.3	0
212	New amorphous oxides as high capacity negative electrodes for lithium batteries: the LixMVO4 (M = Ni,) Tj ETQq	0 0 0 g rgBT	Qverlock 10
213	The amorphous oxides MnV2O6 + δ (0 < δ < 1) as high capacity negative electrode materials for lithium batteries. Journal of Power Sources, 1997, 68, 698-703.	7.8	52
214	The Cr-Substituted Spinel Mn Oxides LiCryMn2â^'yO4(0≟≪): Rietveld Analysis of the Structure Modifications Induced by the Electrochemical Lithium Deintercalation. Journal of Solid State Chemistry, 1997, 132, 372-381.	2.9	103
215	Intercalation chemistry. Current Opinion in Solid State and Materials Science, 1996, 1, 260-267.	11.5	8

Synthesis, Structures, Magnetic Properties, and Phase Transition of Manganese(II) Divanadate: Mn2V2O7. Journal of Solid State Chemistry, 1996, 121, 214-224. 216 2.9 64

#	Article	IF	CITATIONS
217	K2Mn3(OH)2(VO4)2, a New Two-Dimensional Potassium Manganese(II) Hydroxyvanadate. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 284-286.	0.4	10
218	K2Mn(VO3)4, a New Three-Dimensional Potassium Manganese(II) Polyvanadate. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 283-284.	0.4	4
219	Hydrothermal Synthesis and Structure of Mn2VO(PO4)2 · H2O. Journal of Solid State Chemistry, 1995, 115, 76-82.	2.9	7
220	Synthesis and Structure of NaMn3(PO4)(HPO4)2, an Unoxidized Variant of the Alluaudite Structure Type. Journal of Solid State Chemistry, 1995, 115, 240-246.	2.9	41
221	Cation Substitution in the Alluaudite Structure Type: Synthesis and Structure of AgMn3(PO4)(HPO4)2. Journal of Solid State Chemistry, 1995, 117, 206-212.	2.9	38
222	High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries. Journal of Power Sources, 1995, 54, 92-98.	7.8	102
223	The Li1+xMn2O4C system Materials and electrochemical aspects. Journal of Power Sources, 1995, 54, 103-108.	7.8	103
224	The 2D Rancieite-type manganic acid and its alkali-exchanged derivatives: Part I — Chemical characterization and thermal behavior. Solid State Ionics, 1995, 80, 299-306.	2.7	58
225	The 2D Rancieite-type manganic acid and its alkali-exchanged derivatives: Part II — Electrochemical behavior. Solid State Ionics, 1995, 80, 307-316.	2.7	45
226	Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 â^' yO4 (0 â‰專 â‰摔Tj	ETQq0 0 (2.7) rgBT /Overlo
227	Lithium intercalation-deintercalation reactions using matrixes with the sulvanite structure: Dimensionality lowering of the host-structure. Materials Research Bulletin, 1995, 30, 959-966.	5.2	7
228	Rocking-chair or lithium-ion rechargeable lithium batteries. Advanced Materials, 1994, 6, 408-412.	21.0	67
229	The carbon/Li1+xMn2O4 system. Solid State Ionics, 1994, 69, 222-237.	2.7	334
230	New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69, 293-305.	2.7	235
231	Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2 O 4. Journal of the Electrochemical Society, 1994, 141, 1421-1431.	2.9	694
232	The Li1+xMn2O4/C rocking-chair system: a review. Electrochimica Acta, 1993, 38, 1221-1231.	5.2	392
233	An update of the Li metal-free rechargeable battery based on Li1+χMn2O4 cathodes and carbon anodes. Journal of Power Sources, 1993, 44, 689-700.	7.8	49
	Rechargeable Lil + x Mn2 Q 4 / Carbon Cells with a New Electrolyte Composition: P	otentiosta	tic Studies

Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition: Potentiostatic Studies and Application to Practical Cells. Journal of the Electrochemical Society, 1993, 140, 3071-3081.

#	Article	IF	CITATIONS
235	Low Temperature LiMn2 O 4 Spinel Films for Secondary Lithium Batteries. Journal of the Electrochemical Society, 1992, 139, 1845-1849.	2.9	120
236	Evaluation of the Kinetic Parameters of the Sodium Insertion in Sodium Molybdates by Impedance Spectroscopy. Journal of the Electrochemical Society, 1992, 139, 2359-2362.	2.9	3
237	Li Metalâ€Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization. the Electrochemical Society, 1992, 139, 937-948.	Journal of	577
238	Lithium molybdenum nitride (LiMoN2): the first metallic layered nitride. Chemistry of Materials, 1992, 4, 928-937.	6.7	124
239	Chemical and electrochemical insertion of Na into the spinel λ-MnO2 phase. Solid State Ionics, 1992, 57, 113-120.	2.7	50
240	The potassium niobyl cyclotetrasilicate K2(NbO)2Si4O12. Journal of Solid State Chemistry, 1992, 98, 128-132.	2.9	30
241	Li Metalâ€Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes  ( O â9 Journal of the Electrochemical Society, 1991, 138, 2864-2868.	‰ â €‰xâ€ 2.9	€‰â‰ ₿ € <mark>%</mark>
242	Preparation and crystal structure of Na3SbO(PO4)2. Journal of Solid State Chemistry, 1991, 90, 367-372.	2.9	17
243	K ₂ (NbO) ₂ Si ₄ O ₁₂ : A new material for non-linear optics. Ferroelectrics, 1991, 124, 61-66.	0.6	23
244	In situ modification of the energetic structure of the n-GaP/NH3 junction in the presence of solvated electrons. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 246, 29-42.	0.1	14
245	: A new type of M2(XO4)3 framework related to garnet and nasicon. Journal of Solid State Chemistry, 1988, 77, 102-111.	2.9	13
246	New mixed-valence antimony phosphates: α- and β-SbIIISbV(P2O7)2. Journal of Solid State Chemistry, 1988, 75, 217-224.	2.9	19
247	A Photoelectrochemical Cell Based on an Apparently Supraâ€Bandâ€Edge Reaction:. Journal of the Electrochemical Society, 1987, 134, 1144-1148.	2.9	1
248	Taking advantage of liquid ammonia to control the surface modification of silicon electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216, 101-114.	0.1	15
249	Erratum on the Determination of the Shift Between the Potential Scales in Liquid Ammonia Solution and in Aqueous Solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 225, 263-265.	0.1	2
250	Mise au Principes de base de l'électrochimie des semi-conducteurs. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1986, 83, 355-391.	0.2	11
251	Behavior of n-type and p-type silicon in anhydrous liquid ammonia. The solvated electron generation: a supra-band-edge reaction. The Journal of Physical Chemistry, 1984, 88, 3826-3833.	2.9	6
252	Photoelectrochemical characterization of the p-Cu2O-non aqueous electrolyte junction. Electrochimica Acta, 1984, 29, 459-465.	5.2	10

#	Article	IF	CITATIONS
253	Photoelectrochemical Behavior of Pâ€Type Si Single Crystals in Liquid Ammonia and in Liquid Ammoniate of Sodium Iodide. Journal of the Electrochemical Society, 1982, 129, 1998-2003.	2.9	12
254	Characterisation of silicon electrodes in absolute anhydrous solvent. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138, 435-442.	0.1	5
255	Photoelectrochemical behavior of the junction: Cu2O/liquid ammoniate of sodium iodide (Nal·3.3NH3). Solar Energy Materials and Solar Cells, 1981, 4, 435-441.	0.4	6
256	Photoelectrochemical behaviour of CdS/Nal·3.3NH3 (Liquid sodium iodide ammoniate) junctions: Utilization in solar energy conversion. Solar Cells, 1981, 4, 157-167.	0.6	1
257	XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries. ACS Applied Energy Materials, 0, , .	5.1	17