Melik Ziya Turker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1341748/publications.pdf

Version: 2024-02-01

20 papers 1,086 citations

623734 14 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

2200 citing authors

#	Article	IF	CITATIONS
1	Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 2016, 11, 977-985.	31.5	467
2	Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nature Communications, 2018, 9, 4141.	12.8	126
3	Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles. Nature, 2018, 558, 577-580.	27.8	86
4	Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 2020, 26, 147-158.	7.0	59
5	Use of Ultrasmall Core-Shell Fluorescent Silica Nanoparticles for Image-Guided Sentinel Lymph Node Biopsy in Head and Neck Melanoma. JAMA Network Open, 2021, 4, e211936.	5.9	59
6	Melanocortin-1 Receptor-Targeting Ultrasmall Silica Nanoparticles for Dual-Modality Human Melanoma Imaging. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4379-4393.	8.0	40
7	Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Science Advances, 2019, 5, eaax5208.	10.3	36
8	Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled $\hat{l}\pm$ -melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials, 2020, 241, 119858.	11.4	35
9	Ultrasmall Renally Clearable Silica Nanoparticles Target Prostate Cancer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43879-43887.	8.0	27
10	Ultrasmall PEGylated and Targeted Core–Shell Silica Nanoparticles Carrying Methylene Blue Photosensitizer. ACS Biomaterials Science and Engineering, 2020, 6, 256-264.	5.2	23
11	Molecular Engineering of Ultrasmall Silica Nanoparticle–Drug Conjugates as Lung Cancer Therapeutics. Clinical Cancer Research, 2020, 26, 5424-5437.	7.0	21
12	Block Copolymer Directed Nanostructured Surfaces as Templates for Confined Surface Reactions. Macromolecules, 2017, 50, 542-549.	4.8	18
13	Early Formation Pathways of Surfactant Micelle Directed Ultrasmall Silica Ring and Cage Structures. Journal of the American Chemical Society, 2018, 140, 17343-17348.	13.7	18
14	High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles. ACS Nano, 2019, 13, 1795-1804.	14.6	17
15	A Genomic Profile of Local Immunity in the Melanoma Microenvironment Following Treatment with $\hat{l}\pm$ Particle-Emitting Ultrasmall Silica Nanoparticles. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 459-473.	1.0	13
16	Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clinical Cancer Research, 2022, 28, 2938-2952.	7.0	11
17	Inner and Outer Surface Functionalizations of Ultrasmall Fluorescent Silica Nanorings As Shown by High-Performance Liquid Chromatography. Chemistry of Materials, 2019, 31, 5519-5528.	6.7	8
18	Molecular Engineering of Surface Functional Groups Enabling Clinical Translation of Nanoparticle–Drug Conjugates. Chemistry of Materials, 2022, 34, 5344-5355.	6.7	8

#	Article	lF	CITATIONS
19	Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. Journal of Physical Chemistry C, 2019, 123, 23246-23254.	3.1	7
20	Bimodal Morphology Transition Pathway in the Synthesis of Ultrasmall Fluorescent Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 9582-9589.	3.1	6