Won Bo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1341577/publications.pdf

Version: 2024-02-01

147726 133188 4,152 138 31 59 citations h-index g-index papers 140 140 140 5612 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 2018, 13, 1048-1056.	15.6	695
2	Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. Journal of Chemical Physics, 2011, 134, 204904.	1.2	284
3	Optoelectronic Synapse Based on IGZOâ€Alkylated Graphene Oxide Hybrid Structure. Advanced Functional Materials, 2018, 28, 1804397.	7.8	280
4	Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. Journal of Chemical Physics, 2011, 134, 204905.	1.2	210
5	Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array. Advanced Materials, 2017, 29, 1702902.	11.1	148
6	Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. Journal of the American Chemical Society, 2017, 139, 10887-10896.	6.6	110
7	Polymerâ€Clay Nanocomposite Solidâ€State Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation. Advanced Energy Materials, 2020, 10, 2003114.	10.2	99
8	Architectural Engineering of Rod–Coil Compatibilizers for Producing Mechanically and Thermally Stable Polymer Solar Cells. ACS Nano, 2014, 8, 10461-10470.	7.3	82
9	Supramolecular Diblock Copolymers:  A Field-Theoretic Model and Mean-Field Solution. Macromolecules, 2007, 40, 693-702.	2.2	80
10	Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 763-768.	6.6	76
11	Unveiling the Impact of Fe Incorporation on Intrinsic Performance of Reconstructed Water Oxidation Electrocatalyst. ACS Energy Letters, 2021, 6, 4345-4354.	8.8	67
12	Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules, 2011, 44, 9852-9862.	2.2	66
13	Moving bed adsorption process with internal heat integration for carbon dioxide capture. International Journal of Greenhouse Gas Control, 2013, 17, 13-24.	2.3	65
14	Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nature Communications, 2019, 10, 864.	5.8	62
15	Controlling the Orientation of Block Copolymer Thin Films using Thermally-Stable Gold Nanoparticles with Tuned Surface Chemistry. Macromolecules, 2011, 44, 9356-9365.	2.2	57
16	Three-Dimensional Multilayered Nanostructures with Controlled Orientation of Microdomains from Cross-Linkable Block Copolymers. ACS Nano, 2011, 5, 6164-6173.	7.3	56
17	Widom Delta of Supercritical Gas–Liquid Coexistence. Journal of Physical Chemistry Letters, 2018, 9, 1734-1738.	2.1	55
18	Anomalous Phase Sequences in Lyotropic Liquid Crystals. Physical Review Letters, 2007, 99, 187801.	2.9	50

#	Article	IF	CITATION
19	Phase Morphologies in Reversibly Bonding Supramolecular Triblock Copolymer Blends. Macromolecules, 2007, 40, 8445-8454.	2.2	47
20	Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter, 2009, 5, 92-97.	1.2	43
21	Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chemical Engineering Science, 2018, 181, 68-78.	1.9	43
22	Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect. Chemistry of Materials, 2019, 31, 5264-5273.	3.2	40
23	Donor–Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells. ACS Nano, 2021, 15, 19970-19980.	7.3	38
24	Novel Phase Morphologies in a Microphase-Separated Dendritic Polymer Melt. Macromolecules, 2009, 42, 849-859.	2.2	37
25	Entangled Polymer Melts: Relation between Plateau Modulus and Stress Autocorrelation Function. Macromolecules, 2009, 42, 6270-6276.	2.2	37
26	Promoting alkali and alkaline-earth metals on MgO for enhancing CO ₂ capture by first-principles calculations. Physical Chemistry Chemical Physics, 2014, 16, 24818-24823.	1.3	37
27	Vertical Orientation of Nanodomains on Versatile Substrates through Selfâ€Neutralization Induced by Starâ€Shaped Block Copolymers. Advanced Functional Materials, 2015, 25, 5414-5419.	7.8	37
28	Molecular Design of "Graft―Assembly for Ordered Microphase Separation of P3HT-Based Rod–Coil Copolymers. Macromolecules, 2013, 46, 8472-8478.	2.2	36
29	Mechanistic Study on the Shape Transition of Block Copolymer Particles Driven by Length-Controlled Nanorod Surfactants. Chemistry of Materials, 2018, 30, 8669-8678.	3.2	36
30	Gas-Phase Carbonylation of Dimethyl Ether on the Stable Seed-Derived Ferrierite. ACS Catalysis, 2020, 10, 5135-5146.	5 . 5	35
31	Thickness Dependent Ordering in Laterally Confined Monolayers of Spherical-Domain Block Copolymers. Macromolecules, 2007, 40, 5791-5800.	2.2	33
32	Phase Behavior of Star-Shaped Polystyrene- <i>block</i> -poly(methyl methacrylate) Copolymers. Macromolecules, 2014, 47, 5295-5302.	2.2	32
33	Self-Consistent Field Theory of Gaussian Ring Polymers. Macromolecules, 2012, 45, 3263-3269.	2.2	27
34	A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials. Advanced Materials, 2018, 30, e1802997.	11.1	27
35	Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals. Journal of Solid State Chemistry, 2019, 269, 396-400.	1.4	25
36	Root causality analysis at early abnormal stage using principal component analysis and multivariate Granger causality. Chemical Engineering Research and Design, 2020, 135, 113-125.	2.7	25

#	Article	IF	CITATIONS
37	Anionâ€Rectifying Polymeric Single Lithium″on Conductors. Advanced Functional Materials, 2022, 32, 2107753.	7.8	25
38	Design of liquid-crystalline foods via field theoretic computer simulations. Trends in Food Science and Technology, 2006, 17, 220-226.	7.8	24
39	Self-consistent field theory for lipid-based liquid crystals: Hydrogen bonding effect. Journal of Chemical Physics, 2008, 128, 074504.	1.2	24
40	Graft Architectured Rod–Coil Copolymers Based on Alternating Conjugated Backbone: Morphological and Optical Properties. Macromolecules, 2015, 48, 5563-5569.	2.2	23
41	Controlled Assembly of Icosahedral Colloidal Clusters for Structural Coloration. Chemistry of Materials, 2020, 32, 9704-9712.	3.2	23
42	Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention. Journal of Chemical Information and Modeling, 2021, 61, 5804-5814.	2.5	23
43	Practical Microkinetic Modeling Approach for Methanol Synthesis from Syngas over a Cu-Based Catalyst. Industrial & Description of the Catalyst. Industrial &	1.8	22
44	Motion-Programmed Bar-Coating Method with Controlled Gap for High-Speed Scalable Preparation of Highly Crystalline Organic Semiconductor Thin Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47153-47161.	4.0	22
45	Fastâ€Charging Lithium–Sulfur Batteries Enabled via Lean Binder Content. Small, 2020, 16, e2004372.	5.2	21
46	Assemblies of Colloidal CdSe Tetrapod Nanocrystals with Lengthy Arms for Flexible Thin-Film Transistors. Nano Letters, 2017, 17, 2433-2439.	4.5	20
47	Aspect-Ratio Effect of Nanorod Compatibilizers in Conducting Polymer Blends. ACS Macro Letters, 2014, 3, 398-404.	2.3	19
48	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments. Advanced Materials, 2022, 34, e2108900.	11.1	19
49	Universality, Scaling, and Collapse in Supercritical Fluids. Journal of Physical Chemistry Letters, 2020, 11, 451-455.	2.1	18
50	Monte Carlo simulations on the local density inhomogeneities of sub- and supercritical carbon dioxide: Statistical analysis based on the Voronoi tessellation. Journal of Supercritical Fluids, 2017, 119, 36-43.	1.6	17
51	Comprehensive framework for underground pipeline management with reliability and cost factors using Monte Carlo simulation. Journal of Loss Prevention in the Process Industries, 2020, 63, 104035.	1.7	17
52	Modularly aromatic-knit graphitizable phenolic network as a tailored platform for electrochemical applications. Energy and Environmental Science, 2021, 14, 3203-3215.	15.6	17
53	Pyrrolidiniumâ€PEG Ionic Copolyester: Liâ€Ion Accelerator in Polymer Network Solidâ€State Electrolytes. Advanced Energy Materials, 2021, 11, 2102660.	10.2	17
54	Lateral Buckling of High Aspect Ratio Janus Nanowalls. Advanced Functional Materials, 2012, 22, 3723-3728.	7.8	16

#	Article	IF	Citations
55	Probabilistic characterization of the Widom delta in supercritical region. Journal of Chemical Physics, 2018, 149, 014502.	1.2	16
56	Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME. Catalysts, 2020, 10, 655.	1.6	16
57	Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules, 2021, 54, 4219-4226.	2.2	16
58	An improved CO2 adsorption efficiency for the zeolites impregnated with the amino group: A molecular simulation approach. International Journal of Greenhouse Gas Control, 2013, 19, 350-357.	2.3	15
59	Molecular dynamics simulation on the local density distribution and solvation structure of supercritical CO 2 around naphthalene. Journal of Supercritical Fluids, 2017, 130, 364-372.	1.6	15
60	Prediction of the Crystal Morphology of \hat{l}^2 -HMX using a Generalized Interfacial Structure Analysis Model. Crystal Growth and Design, 2018, 18, 2349-2357.	1.4	15
61	Topological Characterization of Rigid–Nonrigid Transition across the Frenkel Line. Journal of Physical Chemistry Letters, 2018, 9, 6524-6528.	2.1	15
62	A corresponding-state framework for the structural transition of supercritical fluids across the Widom delta. Journal of Chemical Physics, 2019, 150, 154503.	1.2	15
63	Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy. Nano Letters, 2020, 20, 8704-8710.	4.5	15
64	Robust design of ambient-air vaporizer based on time-series clustering. Computers and Chemical Engineering, 2018, 118, 236-247.	2.0	14
65	Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using the Reactive Force Field. ACS Omega, 2021, 6, 16009-16015.	1.6	14
66	Toward residual-layer-free nanoimprint lithography in large-area fabrication. Korea Australia Rheology Journal, 2014, 26, 39-48.	0.7	13
67	Molecular dynamics study on microstructures of diblock copolymer melts with soft potential and potential recovery. Physical Review E, 2016, 94, 032501.	0.8	13
68	Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach. Journal of Alloys and Compounds, 2017, 727, 1237-1242.	2.8	13
69	1D hypo-crystals: A novel concept for the crystallization of stereo-irregular polymers. Materials Today, 2020, 40, 26-37.	8.3	13
70	Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. Science Advances, 2021, 7, eabi5419.	4.7	13
71	"Two-Phase―Thermodynamics of the Frenkel Line. Journal of Physical Chemistry Letters, 2018, 9, 4550-4554.	2.1	12
72	Multicompartment Model of an Ethylene–Vinyl Acetate Autoclave Reactor: A Combined Computational Fluid Dynamics and Polymerization Kinetics Model. Industrial & Engineering Chemistry Research, 2019, 58, 16459-16471.	1.8	12

#	Article	IF	Citations
73	Topological extension of the isomorph theory based on the Shannon entropy. Physical Review E, 2019, 100, 012118.	0.8	12
74	Microkinetic modeling of DME synthesis from methanol over H-zeolite catalyst: Associative vs. dissociative pathways. Catalysis Today, 2021, 375, 314-323.	2.2	12
75	Recent progress on Al distribution over zeolite frameworks: Linking theories and experiments. Korean Journal of Chemical Engineering, 2021, 38, 1117-1128.	1.2	12
76	Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference. Reliability Engineering and System Safety, 2021, 216, 107998.	5.1	12
77	Thermoelectric transport properties of Pb doped SnSe alloys (PbxSn1-xSe): DFT-BTE simulations. Journal of Solid State Chemistry, 2019, 270, 413-418.	1.4	11
78	Phase Behavior of 18-Arm Star-Shaped Polystyrene-block-poly(methyl methacrylate) Copolymers with Different Second Block Initiations. Macromolecules, 2018, 51, 2750-2755.	2.2	10
79	Integrated Process Design and Optimization of Nitrogen Recovery in Natural Gas Processing. Industrial & Engineering Chemistry Research, 2019, 58, 1658-1674.	1.8	10
80	Topological generalization of the rigid-nonrigid transition in soft-sphere and hard-sphere fluids. Physical Review E, 2019, 99, 052603.	0.8	10
81	Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules, 2021, 54, 7572-7581.	2.2	10
82	Folding of Sequence-Controlled Graft Copolymers to Subdomain-Defined Single-Chain Nanoparticles. Macromolecules, 2021, 54, 8829-8838.	2.2	10
83	Material Optimization for a High Power Thermoelectric Generator in Wearable Applications. Applied Sciences (Switzerland), 2017, 7, 1015.	1.3	9
84	Inherently Safer Process Design of Natural Gas Liquefaction Processes through Multiobjective Optimization—Part I. With Inherent Safety Indexes. Industrial & Designeering Chemistry Research, 2019, 58, 4186-4198.	1.8	9
85	Kinetic modeling for direct synthesis of dimethyl ether from syngas over a hybrid Cu/ZnO/Al2O3/ferrierite catalyst. Catalysis Today, 2022, 388-389, 323-328.	2.2	9
86	CFD modeling for the prediction of molecular weight distribution in the LDPE autoclave reactor: Effects of non-ideal mixing. Chemical Engineering Journal, 2022, 427, 131829.	6.6	9
87	In Situ Supramolecular Polymerization of Micellar Nanoobjects Induced by Polymerization. ACS Macro Letters, 2022, 11, 149-155.	2.3	9
88	Inhomogeneity of block copolymers at the interface of an immiscible polymer blend. Physical Review E, 2018, 97, 042502.	0.8	8
89	Process fault diagnosis via the integrated use of graphical lasso and Markov random fields learning & Lamp; inference. Computers and Chemical Engineering, 2019, 125, 460-475.	2.0	8
90	Development of surrogate model using CFD and deep neural networks to optimize gas detector layout. Korean Journal of Chemical Engineering, 2019, 36, 325-332.	1.2	8

#	Article	IF	Citations
91	Effects of ionic liquids and silica nanoparticles on the ionic conductivities, mechanical properties, and rheological properties of sodium-containing solid polymer electrolytes. Journal of Power Sources, 2022, 518, 230748.	4.0	8
92	A highly efficient and transparent luminescent solar concentrator based on a nanosized metal cluster luminophore anchored on polymers. Journal of Materials Chemistry C, 2022, 10, 4402-4410.	2.7	8
93	Conformation Dynamics of Single Polymer Strands in Solution. Advanced Materials, 0, , 2202353.	11.1	8
94	Orientation and position of cylindrical-shaped gold nanoparticles at liquid-liquid interfaces. Applied Physics Letters, 2013, 103, .	1.5	7
95	Isolated Mesoporous Microstructures Prepared by Stress Localization-Induced Crack Manipulation. ACS Nano, 2016, 10, 9259-9266.	7.3	7
96	Efficient Process Monitoring via the Integrated Use of Markov Random Fields Learning and the Graphical Lasso. Industrial & Engineering Chemistry Research, 2018, 57, 13144-13155.	1.8	7
97	Robust Design of Multicomponent Working Fluid for Organic Rankine Cycle. Industrial & Engineering Chemistry Research, 2019, 58, 4154-4167.	1.8	7
98	Active microrheology of a bulk metallic glass. Science Advances, 2020, 6, eaba8766.	4.7	7
99	Quantitative risk assessment integrated with dynamic process simulation for reactor section in heavy oil desulfurization process. Journal of Loss Prevention in the Process Industries, 2020, 66, 104158.	1.7	7
100	Magnetic Field-Induced Self-Assembly of Conjugated Block Copolymers and Nanoparticles at the Air–Water Interface. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8266-8273.	4.0	7
101	Structure of poly(styreneâ€∢i>bâ€ethyleneâ€∢i>altâ€propylene) diblock copolymer micelles in binary solvent mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 22-31.	2.4	6
102	Interfacial Structure Analysis for the Morphology Prediction of Adipic Acid Crystals from Aqueous Solution. Crystal Growth and Design, 2017, 17, 1088-1095.	1.4	6
103	Mechano-responsive lateral buckling of miniaturized beams standing on flexible substrates. Soft Matter, 2017, 13, 8357-8361.	1.2	6
104	Driving Conformational Transitions in the Feature Space of Autoencoder Neural Network. Journal of Physical Chemistry C, 2018, 122, 23224-23229.	1.5	6
105	Function transformation of polymeric films through morphing of surface shapes. Chemical Engineering Journal, 2022, 434, 134665.	6.6	6
106	Differences in DNA Probe-Mediated Aggregation Behavior of Gold Nanomaterials Based on Their Geometric Appearance. Langmuir, 2018, 34, 14869-14874.	1.6	5
107	Plane-Selective Coating of Li ₂ SnO ₃ on Li[Ni _{<i>x</i>} Co _{1–<i>x</i>}]O ₂ for High Power Li ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 7096-7102.	2.1	5
108	Reply to Comment on "Entangled Polymer Melts: Relation between Plateau Modulus and Stress Autocorrelation Function― Macromolecules, 2010, 43, 3984-3985.	2.2	4

#	Article	IF	CITATIONS
109	Ultralightweight Strain-Responsive 3D Graphene Network. Journal of Physical Chemistry C, 2019, 123, 9884-9893.	1.5	4
110	Molecular dynamics study on lithiumâ€ion transport in PEO branched nanopores with PYR ₁₄ TFSI ionic liquid., 2022, 1, .		4
111	Modeling of a methanol synthesis process to utilize CO2 in the exhaust gas from an engine plant. Korean Journal of Chemical Engineering, 2022, 39, 1989-1998.	1.2	4
112	Searching for an Optimal Multiâ€Metallic Alloy Catalyst by Active Learning Combined with Experiments (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	11.1	4
113	Nanowalls: Lateral Buckling of High Aspect Ratio Janus Nanowalls (Adv. Funct. Mater. 17/2012). Advanced Functional Materials, 2012, 22, 3530-3530.	7.8	3
114	Response to "Comment on †Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics†[J. Chem. Phys. 139, 217101 (2013)]. Journal of Chemical Physics, 2013, 139, 217102.	1.2	3
115	The formation and control of highly crumpled metal surfaces on a photocurable viscous liquid. Soft Matter, 2016, 12, 6507-6511.	1.2	3
116	Effect of lattice relaxation on thermal conductivity of fcc-based structures: an efficient procedure of molecular dynamics simulation. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 055011.	0.8	3
117	Self-assembly of rod–coil diblock copolymer–nanoparticle composites in thin films: dissipative particle dynamics. Soft Matter, 2021, 17, 2384-2391.	1.2	3
118	Direct utilization of CO2 via methanol synthesis for natural gas fields with high CO2 concentration. Journal of Natural Gas Science and Engineering, 2021, 96, 104308.	2.1	3
119	Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean Journal of Chemical Engineering, 0, , .	1.2	3
120	Numerical studies on the thermal tuning of domain size in supramolecular diblock copolymer melts. Macromolecular Research, 2011, 19, 483-486.	1.0	2
121	Molecular Dynamics Study of Diffusion Behaviors of CO2 and N2 Confined to a Uni-directional Zeolite Structure. Computer Aided Chemical Engineering, 2014, 33, 1717-1722.	0.3	2
122	Perovskite Thin Films: Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array (Adv. Mater. 40/2017). Advanced Materials, 2017, 29, .	11.1	2
123	Enhanced sampling of cylindrical microphase separation via a shell-averaged bond-orientational order parameter. Soft Matter, 2020, 16, 659-667.	1.2	2
124	Development of augmented virtual reality-based operator training system for accident prevention in a refinery. Korean Journal of Chemical Engineering, 2021, 38, 1566-1577.	1.2	2
125	Aligned structures of mesogenic motifs in epoxy resin and their thermal conductivities. Nanoscale Advances, 2022, 4, 1970-1978.	2.2	2
126	Mechanistic kinetic modeling for catalytic conversion of DME to gasoline-range hydrocarbons over nanostructured ZSM-5. Catalysis Science and Technology, 2022, 12, 4798-4810.	2.1	2

#	Article	IF	CITATIONS
127	Molecular dynamics study of the role of friction on the thermal rupture of linear alternate copolymers. Macromolecular Research, 2011, 19, 1192-1194.	1.0	1
128	Cellular Networks: A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870343.	11.1	1
129	Efficient Conduction in Thin Film Transistors Consisting of Colloidal Nanocrystals: Effect of Nanocrystal Geometry. Advanced Theory and Simulations, 2018, 1, 1800120.	1.3	1
130	Quantitative and Probabilistic approach for Underground Pipeline management Optimization. Computer Aided Chemical Engineering, 2018, 44, 1549-1554.	0.3	1
131	Phase behavior of disk-coil block copolymers under cylindrical confinement: Curvature-induced structural frustrations. Physical Review E, 2019, 100, 052502.	0.8	1
132	An Amine-Impregnated Zeolite for Enhancing CO ₂ Adsorption: A Monte Carlo Simulation Approach. Science of Advanced Materials, 2014, 6, 2582-2584.	0.1	1
133	Structure and Property of Alkylated Graphene Oxide Depending on the Chain Length: Grand Canonical Monte Carlo-Molecular Dynamics Approach. Journal of Physical Chemistry C, 2022, 126, 12178-12183.	1.5	1
134	Thermal rupture of linear alternate copolymers: A molecular dynamics study. Journal of Chemical Physics, 2011, 135, 084903.	1.2	0
135	Soft matter rheology: Theory and experiments. Korea Australia Rheology Journal, 2014, 26, 1-1.	0.7	0
136	Efficient Process Monitoring and Fault Isolation with the Integrated use of Markov Random Fields Learning and the Graphical Lasso. Computer Aided Chemical Engineering, 2018, 44, 589-594.	0.3	0
137	First-principles study of electronic transport coefficients of point-defective metallic species: aluminum and its bimetallic alloys. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 035009.	0.8	0
138	Dynamical time scales of friction dynamics in active microrheology of a model glass. Soft Matter, 2021, 17, 5162-5169.	1.2	0