Michel Barsoum

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1341212/michel-barsoum-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63,429 106 476 245 h-index g-index citations papers 6.6 8.22 74,789 498 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
476	MXene-based symmetric supercapacitors with high voltage and high energy density. <i>Materials Reports Energy</i> , 2022 , 2, 100078		O
475	Effect of Texturing on Thermal, Electric and Elastic Properties of MoAlB, Fe2AlB2, and Mn2AlB2. Journal of the European Ceramic Society, 2022 , 42, 3183-3183	6	0
474	Effect of vacancies on the electrochemical behavior of Mo-based MXenes in aqueous supercapacitors. <i>Journal of Power Sources</i> , 2022 , 525, 231064	8.9	2
473	Basal dislocations in MAX phases: Core structure and mobility. <i>Materialia</i> , 2022 , 21, 101310	3.2	1
472	High-Entropy Laminate Metal Carbide (MAX Phase) and Its Two-Dimensional Derivative MXene. <i>Chemistry of Materials</i> , 2022 , 34, 2098-2106	9.6	3
471	Isothermal Oxidation of Ti3Al0.6Ga0.4C2 MAX Phase Solid Solution in Air at 1000 LC to 1300 LC. Journal of the Electrochemical Society, 2022 , 169, 031510	3.9	
470	Anion Identity and Time Scale Affect the Cation Insertion Energy Storage Mechanism in Ti3C2Tx MXene Multilayers. <i>ACS Energy Letters</i> , 2022 , 7, 1828-1834	20.1	0
469	Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries. <i>Materials Today Energy</i> , 2022 , 101000	7	1
468	Effect of grain orientation on the compressive response of highly oriented MAX phase Ti3SiC2. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140869	5.3	2
467	On the origin of kinking in layered crystalline solids. <i>Materials Today</i> , 2021 , 43, 45-52	21.8	5
466	MXene polymer nanocomposites: a review. <i>Materials Today Advances</i> , 2021 , 9, 100120	7.4	37
465	Enhancing catalytic epoxide ring-opening selectivity using surface-modified Ti3C2T x MXenes. <i>2D Materials</i> , 2021 , 8, 035003	5.9	6
464	A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. <i>Matter</i> , 2021 , 4, 1224-1251	12.7	30
463	Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous RuIr borides. <i>Journal of Applied Electrochemistry</i> , 2021 , 51, 1101-1108	2.6	0
462	Formation mechanisms of Cr2AlB2, Cr3AlB4, and Fe2AlB2 MAB phases. <i>Materials Research Letters</i> , 2021 , 9, 323-328	7.4	2
461	Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries. <i>Cell Reports Physical Science</i> , 2021 , 2, 100480	6.1	5
460	Enhanced yield synthesis of bulk dense (M2/3Y1/3)2AlC (M = Cr, W, Mo) in-plane chemically ordered quaternary atomically laminated i-MAX phases and oxidation of (Cr2/3Y1/3)2AlC and (Mo2/3Y1/3)2AlC. <i>Journal of Alloys and Compounds</i> , 2021 , 867, 158930	5.7	O

(2020-2021)

459	MXenefhanganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge. <i>Energy Storage Materials</i> , 2021 , 38, 438-446	19.4	11
458	Thermal stability of the nanolayered Fe2AlB2 in nitrogen and argon atmospheres. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 733-739	3.8	2
457	On the rapid in situ oxidation of two-dimensional VCT MXene in culture cell media and their cytotoxicity. <i>Materials Science and Engineering C</i> , 2021 , 119, 111431	8.3	13
456	Synthesis, characterization and first principle modelling of the MAB phase solid solutions: (Mn1-xCrx)2AlB2 and (Mn1-xCrx)3AlB4. <i>Materials Research Letters</i> , 2021 , 9, 112-118	7.4	5
455	Tailored synthesis approach of (MoY)AlC i-MAX and its two-dimensional derivative MoCT MXene: enhancing the yield, quality, and performance in supercapacitor applications. <i>Nanoscale</i> , 2021 , 13, 311-	319	9
454	Applications of MAX phases and MXenes as catalysts. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19589-1	196312	10
453	Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene. <i>Electrochimica Acta</i> , 2021 , 370, 137665	6.7	12
452	Ten Years of Progress in the Synthesis and Development of MXenes. <i>Advanced Materials</i> , 2021 , 33, e21	03393	91
451	Synthesis, characterization, properties, first principles calculations, and X-ray photoelectron spectroscopy of bulk Mn5SiB2 and Fe5SiB2 ternary borides. <i>Journal of Alloys and Compounds</i> , 2021 , 888, 161377	5.7	1
450	Synthesis of new M-layer solid-solution 312 MAX phases (Ta1\(\text{MTix}\))3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes. <i>RSC Advances</i> , 2021 , 11, 3110-3114	3.7	6
449	Well-Dispersed Nanocomposites Using Covalently Modified, Multilayer, 2D Titanium Carbide (MXene) and In-Situ IlicklPolymerization. <i>Chemistry of Materials</i> , 2021 , 33, 1648-1656	9.6	14
448	Flexible Free-Standing MoO/TiCT MXene Composite Films with High Gravimetric and Volumetric Capacities. <i>Advanced Science</i> , 2021 , 8, 2003656	13.6	22
447	Ripplocations: A Progress Report. Frontiers in Materials, 2020 , 7,	4	7
446	Elementary processes governing VAlC chemical etching in HF RSC Advances, 2020, 10, 25266-25274	3.7	5
445	Characterization of ripplocation mobility in graphite. <i>Materials Research Letters</i> , 2020 , 8, 82-87	7.4	6
444	2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents. <i>CheM</i> , 2020 , 6, 616-630	16.2	119
443	Reaction paths and microstructures of nickel and Ti2AlC mixtures hot pressed and annealed in the 1050fl350 flC temperature range. <i>Journal of Alloys and Compounds</i> , 2020 , 828, 154193	5.7	4
442	On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. <i>2D Materials</i> , 2020 , 7, 025018	5.9	31

441	Dispersion and Stabilization of Alkylated 2D MXene in Nonpolar Solvents and Their Pseudocapacitive Behavior. <i>Cell Reports Physical Science</i> , 2020 , 1, 100042	6.1	19
440	Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation. <i>ACS Catalysis</i> , 2020 , 10, 5899-5908	13.1	13
439	Insights into the elastic properties of RE-i-MAX phases and their potential exfoliation into two-dimensional RE-i-MXenes. <i>Physical Review Materials</i> , 2020 , 4,	3.2	11
438	Elastic properties and hardness values of V2AlC and Cr2AlC single crystals. <i>Physical Review Materials</i> , 2020 , 4,	3.2	3
437	Magnetic properties of (Fe1IMmx)2AlB2 and the impact of substitution on the magnetocaloric effect. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1
436	On a Two-Dimensional MoS2/Mo2CTx Hydrogen Evolution Catalyst Obtained by the Topotactic Sulfurization of Mo2CTx MXene. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 124507	3.9	8
435	Terahertz Polarizers Based on 2D Ti 3 C 2 T z MXene: Spin Cast from Aqueous Suspensions. <i>Advanced Photonics Research</i> , 2020 , 1, 2070005	1.9	1
434	Two-Dimensional MXenes Mo2Ti2C3Tz and Mo2TiC2Tz: Microscopic Conductivity and Dynamics of Photoexcited Carriers. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1530-1539	6.1	14
433	Mechanical Exfoliation of Select MAX Phases and Mo Ce Al C Single Crystals to Produce MAXenes. <i>Small</i> , 2020 , 16, e1905784	11	15
432	MXene Tunable Lamellae Architectures for Supercapacitor Electrodes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 411-422	6.1	21
431	Terahertz Polarizers Based on 2D Ti3C2Tz MXene: Spin Cast from Aqueous Suspensions. <i>Advanced Photonics Research</i> , 2020 , 1, 2000084	1.9	4
430	Unique cellular network formation guided by heterostructures based on reduced graphene oxide - TiCT MXene hydrogels. <i>Acta Biomaterialia</i> , 2020 , 115, 104-115	10.8	15
429	Heat Capacity and Anisotropic Thermal Conductivity in Cr2AlC Single Crystals at High Temperature. Journal of Physical Chemistry C, 2020 , 124, 24017-24028	3.8	1
428	One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. <i>Applied Surface Science</i> , 2020 , 530, 147209	6.7	56
427	TiCT nanosheet wrapped core-shell MnO nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li-S batteries. <i>Nanoscale</i> , 2020 , 12, 24196-24205	7.7	9
426	Magnetic and magnetocaloric properties of Fe2AlB2 synthesized by single-step reactive hot pressing. <i>Scripta Materialia</i> , 2020 , 188, 244-248	5.6	8
425	X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 305-314	6	21
424	A progress report on the MAB phases: atomically laminated, ternary transition metal borides. <i>International Materials Reviews</i> , 2020 , 65, 226-255	16.1	48

(2019-2020)

423	Possible monoclinic distortion of Mo2GaC under high pressure. <i>Journal of Applied Physics</i> , 2020 , 127, 145103	2.5	1
422	Water Transport and Thermomechanical Properties of TiCT MXene Epoxy Nanocomposites. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	20
421	Magnesium-Ion Storage Capability of MXenes. ACS Applied Energy Materials, 2019, 2, 1572-1578	6.1	53
420	Electronic and optical characterization of 2D TiC and NbC (MXene) thin films. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 165301	1.8	46
419	MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. <i>Trends in Chemistry</i> , 2019 , 1, 656-669	14.8	164
418	Nylon-6/TiCT MXene Nanocomposites Synthesized by in Situ Ring Opening Polymerization of Caprolactam and Their Water Transport Properties. <i>ACS Applied Materials & Camp; Interfaces</i> , 2019 , 11, 20425-20436	9.5	30
417	Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds. <i>Chemistry of Materials</i> , 2019 , 31, 2476-2485	9.6	53
416	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. <i>Current Opinion in Solid State and Materials Science</i> , 2019 , 23, 149-163	12	178
415	Tuning Thermal Transport Through Atomically Thin Ti3C2Tz MXene by Current Annealing in Vacuum. <i>Advanced Functional Materials</i> , 2019 , 29, 1805693	15.6	17
414	Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2973-2981	6	19
413	On the Chemical Diversity of the MAX Phases. <i>Trends in Chemistry</i> , 2019 , 1, 210-223	14.8	227
412	Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes. <i>Journal of Catalysis</i> , 2019 , 371, 325-332	7-3	33
411	Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere. <i>Nature Communications</i> , 2019 , 10, 686	17.4	24
410	On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 LC. <i>Journal of Alloys and Compounds</i> , 2019 , 771, 1103-1110	5.7	7
409	Surface Erosion of Plasma-Facing Materials Using an Electrothermal Plasma Source and Ion Beam Micro-Trenches. <i>Fusion Science and Technology</i> , 2019 , 75, 621-635	1.1	5
408	Modelling in-plane magneto-transport in Cr2AlC. <i>Ceramics International</i> , 2019 , 45, 22956-22960	5.1	3
407	XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). <i>Applied Surface Science</i> , 2019 , 494, 1138-1147	6.7	28
406	Edge Capping of 2D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. <i>Angewandte Chemie</i> , 2019 , 131, 12785-12790	3.6	18

405	Edge Capping of 2D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12655-12660	16.4	119
404	Effect of Cationic Exchange on the Hydration and Swelling Behavior of Ti3C2Tz MXenes. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20044-20050	3.8	29
403	Mxene Photodetectors: Beyond Gold: Spin-Coated Ti3C2-Based MXene Photodetectors (Adv. Mater. 43/2019). <i>Advanced Materials</i> , 2019 , 31, 1970307	24	2
402	Beyond Gold: Spin-Coated Ti C -Based MXene Photodetectors. <i>Advanced Materials</i> , 2019 , 31, e1903271	24	73
401	Ripplocations: A universal deformation mechanism in layered solids. <i>Physical Review Materials</i> , 2019 , 3,	3.2	18
400	First-order Raman scattering of rare-earth containing i-MAX single crystals (Mo2/3RE1/3)2AlC (RE=Nd,Gd,Dy,Ho,Er). <i>Physical Review Materials</i> , 2019 , 3,	3.2	8
399	Mapping Hot Spots at Heterogeneities of Few-Layer TiC MXene Sheets. ACS Nano, 2019, 13, 3301-3309	16.7	16
398	2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. <i>Nanoscale Advances</i> , 2019 , 1, 395-402	5.1	61
397	A Tungsten-Based Nanolaminated Ternary Carbide: (W,Ti)C. <i>Inorganic Chemistry</i> , 2019 , 58, 1100-1106	5.1	5
396	Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2010-2017	6	24
395	Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 878-882	6	21
394	Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 868-877	6	29
393	Magnetic ordering in the nano-laminar ternary Mn2AlB2 using neutron and X-ray diffraction. Journal of Magnetism and Magnetic Materials, 2019 , 471, 468-474	2.8	13
392	Compressive deformation of MoAlB up to 1100 LC. Journal of Alloys and Compounds, 2019, 774, 1216-12	 227	19
391	Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. <i>Materials Research Letters</i> , 2018 , 6, 230-235	7.4	85
390	Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of In-Plane, Chemically Ordered MAX Phases. <i>Small</i> , 2018 , 14, e1703676	11	99
389	W-Based Atomic Laminates and Their 2D Derivative W C MXene with Vacancy Ordering. <i>Advanced Materials</i> , 2018 , 30, e1706409	24	145
388	Alkali-induced crumpling of TiCT (MXene) to form 3D porous networks for sodium ion storage. <i>Chemical Communications</i> , 2018 , 54, 4533-4536	5.8	101

(2018-2018)

387	Crystallographic evolution of MAX phases in proton irradiating environments. <i>Journal of Nuclear Materials</i> , 2018 , 502, 220-227	3.3	23
386	Pressure-induced shear and interlayer expansion in TiC MXene in the presence of water. <i>Science Advances</i> , 2018 , 4, eaao6850	14.3	45
385	Conductive transparent V 2 CT x (MXene) films. <i>FlatChem</i> , 2018 , 8, 25-30	5.1	80
384	The Ti3AlC2 MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n-Butane. <i>Angewandte Chemie</i> , 2018 , 130, 1501-1506	3.6	14
383	The Ti AlC MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n-Butane. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1485-1490	16.4	38
382	On the organization and thermal behavior of functional groups on Ti 3 C 2 MXene surfaces in vacuum. 2D Materials, 2018 , 5, 015002	5.9	146
381	Synthesis and characterization of the atomic laminate Mn2AlB2. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 5333-5340	6	29
380	Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. <i>Journal of Alloys and Compounds</i> , 2018 , 767, 474-482	5.7	25
379	Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite. <i>Physical Review Materials</i> , 2018 , 2,	3.2	9
378	Rare-earth (RE) nanolaminates Mo4RE4Al7C3 featuring ferromagnetism and mixed-valence states. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
377	Infiltration behavior of Cu and Ti fillers into Ti2AlC/Ti3AlC2 composites during tungsten inert gas (TIG)brazing. <i>Ceramics International</i> , 2018 , 44, 3282-3290	5.1	3
376	Low temperature solution synthesis of reduced two dimensional TiC MXenes with paramagnetic behaviour. <i>Nanoscale</i> , 2018 , 10, 22429-22438	7.7	41
375	Antibacterial properties of electrospun TiCT (MXene)/chitosan nanofibers RSC Advances, 2018, 8, 353	88 6,.3 53	9 € 7
374	Effect of Edge Charges on Stability and Aggregation of Ti3C2Tz MXene Colloidal Suspensions. Journal of Physical Chemistry C, 2018 , 122, 27745-27753	3.8	80
373	Anisotropic thermal expansions of select layered ternary transition metal borides: MoAlB, Cr2AlB2, Mn2AlB2, and Fe2AlB2. <i>Journal of Applied Physics</i> , 2018 , 124, 205108	2.5	20
372	Enhanced Thermal Boundary Conductance in Few-Layer Ti C MXene with Encapsulation. <i>Advanced Materials</i> , 2018 , 30, e1801629	24	35
371	Anion Adsorption, Ti3C2Tz MXene Multilayers, and Their Effect on Claylike Swelling. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 23172-23179	3.8	29
370	Variable range hopping and thermally activated transport in molybdenum-based MXenes. <i>Physical Review B</i> , 2018 , 98,	3.3	41

369	Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions. <i>Corrosion Science</i> , 2018 , 139, 444-453	6.8	25
368	Synthesis of Two-Dimensional Nb1.33C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2455-2460	5.6	93
367	Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. <i>ACS Applied Materials & District Research</i> , 9, 4296-4300	9.5	149
366	Alkylammonium Cation Intercalation into Ti3C2 (MXene): Effects on Properties and Ion-Exchange Capacity Estimation. <i>Chemistry of Materials</i> , 2017 , 29, 1099-1106	9.6	126
365	Microstructure and microindentation of Ti 3 SiC 2 Dritanium filler brazed joints by tungsten inert gas (TIG) process. <i>Ceramics International</i> , 2017 , 43, 7290-7294	5.1	7
364	Controlling the conductivity of Ti3C2 MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity. <i>RSC Advances</i> , 2017 , 7, 13097-13103	3.7	65
363	Rendering Ti3C2Tx (MXene) monolayers visible. <i>Materials Research Letters</i> , 2017 , 5, 322-328	7.4	26
362	First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC. <i>Journal of Raman Spectroscopy</i> , 2017 , 48, 631-638	2.3	25
361	Deformation of layered solids: Ripplocations not basal dislocations. <i>Scripta Materialia</i> , 2017 , 139, 166-	173 .6	28
360	Two-dimensional MoC MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. <i>Nature Communications</i> , 2017 , 8, 14949	17.4	334
359	Evidence for ferromagnetic ordering in the MAX phase (Cr0.96Mn0.04)2GeC. <i>Materials Research Letters</i> , 2017 , 5, 465-471	7.4	9
358	Magnetotransport in the MAX phases and their 2D derivatives: MXenes. <i>Materials Research Letters</i> , 2017 , 5, 365-378	7.4	37
357	Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 45295	2.9	78
356	Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2. <i>Acta Materialia</i> , 2017 , 131, 141-155	8.4	34
355	Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. <i>Materials Research Letters</i> , 2017 , 5, 391-398	7.4	96
354	Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 1211085 IIC temperature range. <i>Journal of Nuclear Materials</i> , 2017 , 484, 120-134	3.3	47
353	Synthesis and characterization of the mechanical properties of Ti3SiC2/Mg and Cr2AlC/Mg alloy		
	composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 705, 182-188	5.3	11

(2016-2017)

351	The {110} reflection in X-ray diffraction of MXene films: Misinterpretation and measurement via non-standard orientation. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 5395-5399	3.8	34
350	Isothermal and Cyclic Oxidation of MoAlB in Air from 1100°C to 1400°C. <i>Journal of the Electrochemical Society</i> , 2017 , 164, C930-C938	3.9	37
349	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. <i>Nature Energy</i> , 2017 , 2,	62.3	1071
348	Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. <i>Physical Review B</i> , 2017 , 95,	3.3	62
347	Atomic structure and lattice defects in nanolaminated ternary transition metal borides. <i>Materials Research Letters</i> , 2017 , 5, 235-241	7.4	58
346	Dynamic fracture behavior of a MAX phase Ti3SiC2. <i>Engineering Fracture Mechanics</i> , 2017 , 169, 54-66	4.2	12
345	Structure and thermal expansion of (Crx,V1\(\mathbb{N}\))n+1AlCn phases measured by X-ray diffraction. Journal of the European Ceramic Society, 2017 , 37, 15-21	6	18
344	2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. <i>Nano Energy</i> , 2016 , 30, 603-613	17.1	229
343	Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB. <i>Scientific Reports</i> , 2016 , 6, 26475	4.9	106
342	Evidence for Bulk Ripplocations in Layered Solids. <i>Scientific Reports</i> , 2016 , 6, 33451	4.9	55
341	Novel MAX resembling Phase Mo2Ga2C 2016 , 1010-1011		
340	Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 4143-4151	15.6	244
339	Two-Dimensional Nb-Based M4C3 Solid Solutions (MXenes). <i>Journal of the American Ceramic Society</i> , 2016 , 99, 660-666	3.8	153
338	On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with pure sodium at 550 °C and 750 °C. <i>Corrosion Science</i> , 2016 , 111, 568-573	6.8	11
337	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 1639	6453	138
336	Anodized Ti3SiC2 As an Anode Material for Li-ion Microbatteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 16670-6	9.5	28
335	Stability of V2AlC with Al in 80011000111C temperature range and in situ synthesis of V2AlC/Al composites. <i>Journal of Alloys and Compounds</i> , 2016 , 666, 279-286	5.7	18
334	Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 653, 53-62	5.3	17

333	X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). <i>Applied Surface Science</i> , 2016 , 362, 406-417	6.7	834
332	Synthesis of the new MAX phase Zr 2 AlC. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 1847-1853	6	85
331	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). <i>Nanoscale</i> , 2016 , 8, 9128-33	7.7	161
330	Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC. <i>Journal of Nuclear Materials</i> , 2016 , 468, 194-206	3.3	57
329	Enthalpy of formation and thermodynamic parameters of the MAX phase V2AlC. <i>Journal of Alloys and Compounds</i> , 2016 , 665, 218-224	5.7	14
328	Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. <i>Nanoscale Horizons</i> , 2016 , 1, 227-234	10.8	242
327	Joining Ti3SiC2 MAX phase with 308 stainless steel and aluminum fillers by tungsten inert gas (TIG)-brazing process. <i>Ceramics International</i> , 2016 , 42, 1026-1035	5.1	12
326	Synthesis of the novel Zr 3 AlC 2 MAX phase. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 943-947	6	77
325	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). <i>Advanced Functional Materials</i> , 2016 , 26, 3118-3127	15.6	640
324	Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600050	6.4	407
323	Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. <i>Advanced Functional Materials</i> , 2016 , 26, 4162-4168	15.6	470
322	Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). <i>Advanced Materials</i> , 2016 , 28, 1517-22	24	614
321	Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage. <i>ChemElectroChem</i> , 2016 , 3, 689-693	4.3	298
320	High-Temperature Neutron Diffraction, Raman Spectroscopy, and First-Principles Calculations of Ti3SnC2 and Ti2SnC. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2233-2242	3.8	10
319	Electronic properties of freestanding Ti3C2Tx MXene monolayers. <i>Applied Physics Letters</i> , 2016 , 108, 033102	3.4	120
318	Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). <i>Nanoscale</i> , 2016 , 8, 11385-91	7.7	487
317	Ion-Exchange and Cation Solvation Reactions in Ti3C2 MXene. Chemistry of Materials, 2016, 28, 3507-35	19 46	361
316	Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. <i>Polymer</i> , 2016 , 102, 119-126	3.9	52

315	Microstructure and tribological properties of boronized Ti2AlC MAX surfaces. <i>Ceramics International</i> , 2016 , 42, 16325-16331	5.1	7
314	Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano, 2015 , 9, 9507-16	16.7	923
313	Synthesis of two-dimensional molybdenum carbide, Mo 2 C, from the gallium based atomic laminate Mo 2 Ga 2 C. <i>Scripta Materialia</i> , 2015 , 108, 147-150	5.6	225
312	Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. <i>Nano Letters</i> , 2015 , 15, 4955-60	11.5	270
311	Mo2TiAlC2: A new ordered layered ternary carbide. <i>Scripta Materialia</i> , 2015 , 101, 5-7	5.6	104
310	Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. <i>Advanced Materials</i> , 2015 , 27, 3501-6	24	555
309	Reactions Between Ti2AlC, B4C, and Al and Phase Equilibria at 1000 LC in the Al-Ti-B-C Quaternary System. <i>Journal of Phase Equilibria and Diffusion</i> , 2015 , 36, 169-182	1	14
308	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti2SC. <i>Angewandte Chemie</i> , 2015 , 127, 4892-4896	3.6	19
307	High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 163, 246-251	6.7	169
306	In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. <i>Acta Materialia</i> , 2015 , 98, 51-63	8.4	25
305	A High-Temperature Neutron Diffraction Study of Nb2AlC and TiNbAlC. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 940-947	3.8	8
304	On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with silicon carbide and pyrolytic carbon at 1300 °C. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 4107-4114	6	16
303	Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis. <i>Acta Materialia</i> , 2015 , 99, 157-164	8.4	53
302	Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. <i>Advanced Materials</i> , 2015 , 27, 339-45	24	860
301	Effect of neutron irradiation on select MAX phases. <i>Acta Materialia</i> , 2015 , 85, 132-143	8.4	146
300	Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements. <i>Advanced Energy Materials</i> , 2015 , 5, 1400815	21.8	225
299	Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 393-397	6	30
298	Innentitelbild: Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti2SC (Angew. Chem. 16/2015). <i>Angewandte Chemie</i> , 2015 , 127, 4764-4764	3.6	

297	Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. Journal of Applied Physics, 2015 , 118, 094304	2.5	149
296	Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy. <i>Advanced Energy Materials</i> , 2015 , 5, 1500589	21.8	374
295	On the Rapid Synthesis of the Ternary Mo2GaC. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 2713	-3,7815	14
294	Molal: a new ternary nanolaminated carbide. Chemical Communications, 2015, 51, 6560-3	5.8	96
293	Reactivity of Zircaloy-4 with Ti3SiC2 and Ti2AlC in the 1100🛮 300 🖰 temperature range. <i>Journal of Nuclear Materials</i> , 2015 , 460, 122-129	3.3	47
292	Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14096-14100	13	124
291	Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V2CTx Using NMR Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13713-13720	3.8	113
290	Solid Solubility and Magnetism upon Mn Incorporation in the Bulk Ternary Carbides Cr2AlC and Cr2GaC. <i>Materials Research Letters</i> , 2015 , 3, 16-22	7.4	54
289	25th anniversary article: MXenes: a new family of two-dimensional materials. <i>Advanced Materials</i> , 2014 , 26, 992-1005	24	3141
288	Effect of helium irradiation on Ti3AlC2 at 500LC. Scripta Materialia, 2014, 77, 1-4	5.6	48
287	Flexible and conductive MXene films and nanocomposites with high capacitance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16676-81	11.5	1204
286	Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. <i>Materials Science & Dispersion of the Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 618, 511-522	5.3	42
285	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. <i>Chemical Communications</i> , 2014 , 50, 7420-3	5.8	427
284	Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14334-14338	13	419
283	Perturbed angular correlation studies of uniaxial compressive stressed zinc, titanium, rutile, Ti2AlN, and Nb2AlC. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 295501	1.8	2
282	Synthesis and characterization of two-dimensional Nb4C3 (MXene). <i>Chemical Communications</i> , 2014 , 50, 9517-20	5.8	321
281	Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. <i>ACS Nano</i> , 2014 , 8, 9606-15	16.7	644
280	Coexistence of Ferromagnetic and a Re-entrant Cluster Glass State in the Layered Quaternary (Cr1¼,Mnx)2GeC. <i>Materials Research Letters</i> , 2014 , 2, 192-198	7.4	38

279	Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. <i>Chemistry of Materials</i> , 2014 , 26, 2374-2381	9.6	778
278	Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6385-94	16.4	864
277	Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. <i>Angewandte Chemie</i> , 2014 , 126, 4977-4980	3.6	23
276	Innentitelbild: Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases (Angew. Chem. 19/2014). <i>Angewandte Chemie</i> , 2014 , 126, 4820-4820	3.6	
275	Rapid Bonding of Ti3SiC2 and Ti3AlC2 by Pulsed Electrical Current Heating. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3721-3724	3.8	10
274	The Mn+1 AXn Phases and their Properties 2014 , 299-347		2
273	A genomic approach to the stability, elastic, and electronic properties of the MAX phases. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 1480-1497	1.3	86
272	Two-Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials (Adv. Mater. 7/2014). <i>Advanced Materials</i> , 2014 , 26, 982-982	24	85
271	Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. <i>Physical Review B</i> , 2014 , 89,	3.3	90
270	A High-Temperature Neutron Diffraction and First-Principles Study of Ti 3 AlC 2 and Ti 3 (Al 0.8 Sn 0.2) C 2. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 570-576	3.8	12
269	Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. <i>Nature</i> , 2014 , 516, 78-81	50.4	2849
268	Pulse Electric CurrentAided Reactive Sintering of High-Purity Zr3Al3C5. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 1296-1302	3.8	8
267	New Solid Solution MAX Phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC. <i>Materials Research Letters</i> , 2014 , 2, 233-240	7.4	85
266	On the oxidation of Ti2GeC in air. <i>Journal of Alloys and Compounds</i> , 2013 , 580, 550-557	5.7	4
265	New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 2013 , 135, 15966-9	16.4	1168
264	Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. <i>Science</i> , 2013 , 341, 1502-5	33.3	2510
263	Single crystal pillar microcompression tests of the MAX phases Ti2InC and Ti4AlN3. <i>Scripta Materialia</i> , 2013 , 69, 303-306	5.6	28
262	Intercalation and delamination of layered carbides and carbonitrides. <i>Nature Communications</i> , 2013 , 4, 1716	17.4	1504

261	Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. <i>Materials Chemistry and Physics</i> , 2013 , 139, 147-152	4.4	227
260	Tailoring of the thermal expansion of Cr2(Alx,Ge1☑)C phases. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 897-904	6	81
259	Reversible dislocation motion and microcracking in plastically anisotropic solids under cyclic spherical nanoindentation. <i>MRS Communications</i> , 2013 , 3, 245-248	2.7	6
258	Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Ta $n+1$ C n ($n=1,2,3$). Europhysics Letters, 2013 , 101, 57004	1.6	43
257	Mechanical Properties: High Temperatures 2013 , 363-397		5
256	High-temperature neutron diffraction and first-principles study of temperature-dependent crystal structures and atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3. <i>Journal of Applied Physics</i> , 2013 , 113, 183519	2.5	35
255	Dislocations, Kinking Nonlinear Elasticity, and Damping 2013 , 271-305		1
254	A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air. <i>Materials Research Letters</i> , 2013 , 1, 115-125	7.4	217
253	On Equilibrium Ga Intergranular Films in Cr2GaC. Materials Research Letters, 2013, 1, 109-113	7.4	7
252	Elastic Properties, Raman and Infrared Spectroscopy 2013 , 65-105		3
252 251	Elastic Properties, Raman and Infrared Spectroscopy 2013 , 65-105 Thermal Properties 2013 , 107-153		3
251	Thermal Properties 2013, 107-153	5.1	3
251	Thermal Properties 2013, 107-153 2013, MXene: a promising transition metal carbide anode for lithium-ion batteries. <i>Electrochemistry</i>	5.1	3 460
251 250 249	Thermal Properties 2013, 107-153 2013, MXene: a promising transition metal carbide anode for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2012, 16, 61-64 Comment on IIi5Al2C3: A New Ternary Carbide Belonging to MAX Phases in the TiAlII SystemII	3.8	3 460 963
251 250 249 248	Thermal Properties 2013, 107-153 2013, MXene: a promising transition metal carbide anode for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2012, 16, 61-64 Comment on III5Al2C3: A New Ternary Carbide Belonging to MAX Phases in the TiAla System Journal of the American Ceramic Society, 2012, 95, 3352-3354	3.8	3 460 963 11
251 250 249 248	Thermal Properties 2013, 107-153 2013, MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16, 61-64 Comment on IIISAl2C3: A New Ternary Carbide Belonging to MAX Phases in the TiAlia System Journal of the American Ceramic Society, 2012, 95, 3352-3354 Tensile creep of Ti2AlC in air in the temperature range 1000II 150IC. Scripta Materialia, 2012, 66, 805-80 MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and	3.8 0 8 5.6	34609631132

243	Neutron diffraction measurements and first-principles study of thermal motion of atoms in select Mn+1AXn and binary MX transition-metal carbide phases. <i>Physical Review B</i> , 2012 , 86,	3.3	30
242	A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1368-A1373	3.9	270
241	Two-dimensional transition metal carbides. ACS Nano, 2012, 6, 1322-31	16.7	2382
240	First principles study of two-dimensional early transition metal carbides. <i>MRS Communications</i> , 2012 , 2, 133-137	2.7	316
239	Pulsed laser deposition from a pre-synthesized Cr2AlC MAX phase target with and without ion-beam assistance. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 545-552	1.6	9
238	First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3, and Ta2AlC. <i>Journal of Raman Spectroscopy</i> , 2012 , 43, 954-958	2.3	28
237	High volume limestone alkali-activated cement developed by design of experiment. <i>Cement and Concrete Composites</i> , 2012 , 34, 328-336	8.6	52
236	Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation. <i>Journal of Materials Research</i> , 2012 , 27, 53-63	2.5	8
235	Spectroscopic ellipsometry study on the dielectric function of bulk Ti2AlN, Ti2AlC, Nb2AlC, (Ti0.5,Nb0.5)2AlC, and Ti3GeC2 MAX-phases. <i>Journal of Applied Physics</i> , 2011 , 109, 013530	2.5	12
234	Elastic and Mechanical Properties of the MAX Phases. <i>Annual Review of Materials Research</i> , 2011 , 41, 195-227	12.8	673
233	Nanoscale continuum calculation of basal dislocation core structures in graphite. <i>Philosophical Magazine</i> , 2011 , 91, 1441-1463	1.6	7
232	Spherical nanoindentation study of the deformation micromechanisms of LiTaO3 single crystals.		
	Journal of Applied Physics, 2011 , 110, 023516	2.5	18
231	Journal of Applied Physics, 2011, 110, 023516 The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C. Journal of the American Ceramic Society, 2011, 94, 1737-1743	2.5	27
231	The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C.	3.8	
	The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C. Journal of the American Ceramic Society, 2011, 94, 1737-1743 Phase Stability, Electronic Structure, Compressibility, Elastic and Optical Properties of a Newly	3.8	27
230	The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C. Journal of the American Ceramic Society, 2011, 94, 1737-1743 Phase Stability, Electronic Structure, Compressibility, Elastic and Optical Properties of a Newly Discovered Ti3SnC2: A First-Principle Study. Journal of the American Ceramic Society, 2011, 94, 3907-391 Temperature-Dependent Crystal Structures of Ti2AlN and Cr2GeC as Determined from High	3.8 14 ^{.8}	27
230	The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C. Journal of the American Ceramic Society, 2011, 94, 1737-1743 Phase Stability, Electronic Structure, Compressibility, Elastic and Optical Properties of a Newly Discovered Ti3SnC2: A First-Principle Study. Journal of the American Ceramic Society, 2011, 94, 3907-391 Temperature-Dependent Crystal Structures of Ti2AlN and Cr2GeC as Determined from High Temperature Neutron Diffraction. Journal of the American Ceramic Society, 2011, 94, 3473-3479 Phase Evaluation in Al2O3 Fiber-Reinforced Ti2AlC During Sintering in the 1300°C 1500°C	3.8 14 ^{3.8} 3.8	27 24 19

225	On the response of titanium sulfocarbide to stress studied by in situ neutron diffraction and the elastoplastic self-consistent approach. <i>Scripta Materialia</i> , 2011 , 65, 573-576	5.6	8
224	High-temperature stability of ⊞a4AlC3. <i>Materials Research Bulletin</i> , 2011 , 46, 1088-1091	5.1	9
223	Were the casing stones of Senefru's Bent Pyramid in Dahshour cast or carved?. <i>Materials Letters</i> , 2011 , 65, 350-352	3.3	9
222	On the tribology of the MAX phases and their composites during dry sliding: A review. <i>Wear</i> , 2011 , 271, 1878-1894	3.5	127
221	Polymorphism of newly discovered Ti4GaC3: A first-principles study. <i>Acta Materialia</i> , 2011 , 59, 5523-553	3 3 .4	33
220	Nanocrystalline MgMAX composites: Mechanical behavior characterization via acoustic emission monitoring. <i>Acta Materialia</i> , 2011 , 59, 5716-5727	8.4	39
219	Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23, 4248-	5 3 4	4846
218	Synthesis of a new nanocrystalline titanium aluminum fluoride phase by reaction of Ti2AlC with hydrofluoric acid. <i>RSC Advances</i> , 2011 , 1, 1493	3.7	35
217	Mechanical and elastic properties of fine-grained polycrystalline scandia and erbia as determined by indentation techniques. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 1703-1712	6	10
216	First-principles study of dislocations in hcp metals through the investigation of the (112🛮 1) twin boundary. <i>Physical Review B</i> , 2011 , 84,	3.3	41
215	Electron correlation effects in the MAX phase Cr2AlC from first-principles. <i>Journal of Applied Physics</i> , 2011 , 109, 063707	2.5	33
214	Electric field gradients at (111)In/(111)Cd probe atoms on A-sites in 211-MAX phases. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 505501	1.8	7
213	Chemical and Microstructural Characterization of 20-Month-Old Alkali-Activated Slag Cements. Journal of the American Ceramic Society, 2010 , 93, 1741	3.8	35
212	Elastic and Mechanical Properties of Polycrystalline Transparent Yttria as Determined by Indentation Techniques. <i>Journal of the American Ceramic Society</i> , 2010 , 93, no-no	3.8	4
211	Diatomaceous Earth as a Pozzolan in the Fabrication of an Alkali-Activated Fine-Aggregate Limestone Concrete. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 2828-2836	3.8	11
210	Pozzolanic Activity of Diatomaceous Earth. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 3406-341	0 3.8	14
209	High-temperature neutron diffraction and the temperature-dependent crystal structures of the MAX phases Ti3SiC2 and Ti3GeC2. <i>Physical Review B</i> , 2010 , 82,	3.3	22
208	Hysteresis in kinking nonlinear elastic solids and the Preisach-Mayergoyz model. <i>Physical Review B</i> , 2010 , 82,	3.3	16

(2009-2010)

207	Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5). Journal of Alloys and Compounds, 2010 , 498, 62-70	5.7	72	
206	Bulk moduli of Cr2GaC and Ti2GaN up to 50GPa. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 328-331	5.7	13	
205	General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M=transition metal): A first-principle study. <i>Computational Materials Science</i> , 2010 , 49, 691-698	3.2	73	
204	The Mn+1 AXn Phases and their Properties 2010 , 299-347		31	
203	Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete. <i>Materials and Structures/Materiaux Et Constructions</i> , 2010 , 43, 1025-1035	3.4	31	
202	On the effect of texture on the mechanical and damping properties of nanocrystalline Mg-matrix composites reinforced with MAX phases. <i>Materials Science & Dinguering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 3707-3718	5.3	46	
201	On the kinking nonlinear elastic deformation of cobalt. <i>Materials Science & Discourse And Processing</i> , 2010, 527, 4664-4673	5.3	18	
200	An integral-equation formulation of nonlinear deformation in a stack of buffered plates. <i>Engineering Analysis With Boundary Elements</i> , 2010 , 34, 1113-1119	2.6	1	
199	Thermal expansion of select Mn+1AXn (M=earlytransitionmetal, A=Agroupelement, X=C or N) phases measured by high temperature x-ray diffraction and dilatometry. <i>Journal of Applied Physics</i> , 2009 , 105, 013543	2.5	88	
198	Direct observation of nonlinear acoustoelastic hysteresis in kinking nonlinear elastic solids. <i>Applied Physics Letters</i> , 2009 , 94, 241904	3.4	13	
197	Isothermal Oxidation of Ti[sub 2]SC in Air. <i>Journal of the Electrochemical Society</i> , 2009 , 156, P101	3.9	9	
196	On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. <i>Journal of Structural Geology</i> , 2009 , 31, 791-801	3	43	
195	Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 374, 78-82	2.3	36	
194	Effect of Applied Load and Surface Roughness on the Tribological Properties of Ni-Based Superalloys Versus Ta2AlC/Ag or Cr2AlC/Ag Composites. <i>Tribology Letters</i> , 2009 , 33, 9-20	2.8	14	
193	Kinking Nonlinear Elasticity and the Deformation of Magnesium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 1741-1756	2.3	32	
192	Synthesis and characterization of Nb2AlC thin films. <i>Thin Solid Films</i> , 2009 , 517, 2920-2923	2.2	40	
191	On the compression behavior of Ti2InC, (Ti0.5, Zr0.5)2InC, and M2SnC (M=Ti, Nb, Hf) to quasi-hydrostatic pressures up to 50 GPa. <i>Solid State Communications</i> , 2009 , 149, 1978-1983	1.6	25	
190	Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3. <i>Wear</i> , 2009 , 267, 1490-1500	3.5	26	

189	Processing, microstructural characterization and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite. <i>Composites Science and Technology</i> , 2009 , 69, 414-420	8.6	65
188	Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. <i>Construction and Building Materials</i> , 2009 , 23, 2951-2957	6.7	81
187	Thermal expansion and stability of Ti2SC in air and inert atmospheres. <i>Journal of Alloys and Compounds</i> , 2009 , 469, 395-400	5.7	27
186	Electron-backscattered diffraction and transmission electron microscopy study of post-creep Ti3SiC2. <i>Journal of Alloys and Compounds</i> , 2009 , 488, 181-189	5.7	29
185	Combinatorial investigation of (Ti1NDx)2AlC. <i>Applied Physics Letters</i> , 2009 , 95, 101907	3.4	8
184	On the stability of mg nanograins to coarsening after repeated melting. <i>Nano Letters</i> , 2009 , 9, 3082-6	11.5	14
183	Carbide-derived carbon membrane. Materials Chemistry and Physics, 2008, 112, 587-591	4.4	17
182	Electronic and thermal properties of Ti3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5) and Ti2AlN. <i>Journal of Applied Physics</i> , 2008 , 104, 073713	2.5	58
181	Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy. <i>Journal of Applied Physics</i> , 2008 , 104, 023531	2.5	50
180	Study of Ti2SC under compression up to 47GPa. <i>Journal of Alloys and Compounds</i> , 2008 , 448, L1-L4	5.7	54
179	Synthesis and elastic and mechanical properties of Cr2GeC. Journal of Materials Research, 2008, 23, 215	57 <u>≥2</u> 516!	5 50
178	Determination of the effective zero point of contact for spherical nanoindentation. <i>Journal of Materials Research</i> , 2008 , 23, 204-209	2.5	39
177	Reversible dislocation motion under contact loading in LiNbO3 single crystal. <i>Journal of Materials Research</i> , 2008 , 23, 1334-1338	2.5	32
176	On the heat capacities of Ta2AlC, Ti2SC, and Cr2GeC. Journal of Applied Physics, 2008, 104, 023526	2.5	21
175	Elastic properties and phonon conductivities of Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5) solid solutions. <i>Journal of Materials Research</i> , 2008 , 23, 1517-1521	2.5	54
174	Optical properties of Ti3SiC2 and Ti4AlN3. <i>Applied Physics Letters</i> , 2008 , 92, 221907	3.4	106
173	Room temperature constant-stress creep of a brittle solid studied by spherical nanoindentation. Journal of Applied Physics, 2008 , 104, 063522	2.5	7
172	Electrical, thermal, and elastic properties of the MAX-phase Ti2SC. <i>Journal of Applied Physics</i> , 2008 , 104, 033502	2.5	60

(2007-2008)

171	Micro and mesoporosity of carbon derived from ternary and binary metal carbides. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 526-532	5.3	97	
170	Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. <i>Acta Materialia</i> , 2008 , 56, 60-67	8.4	66	
169	Weak electronic anisotropy in the layered nanolaminate Ti 2 GeC. <i>Solid State Communications</i> , 2008 , 146, 498-501	1.6	31	
168	Ambient and 550°C tribological behavior of select MAX phases against Ni-based superalloys. <i>Wear</i> , 2008 , 264, 270-278	3.5	83	
167	Tribological behavior of select MAX phases against Al2O3 at elevated temperatures. <i>Wear</i> , 2008 , 265, 560-565	3.5	84	
166	The properties of electroactive ruthenium oxide coatings supported by titanium-based ternary carbides. <i>Surface and Coatings Technology</i> , 2007 , 202, 319-324	4.4	12	
165	Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. <i>Applied Surface Science</i> , 2007 , 254, 1232-1235	6.7	32	
164	On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature. <i>Acta Materialia</i> , 2007 , 55, 3387-3396	8.4	17	
163	Homoepitaxial growth of TiBill MAX-phase thin films on bulk Ti3SiC2 substrates. <i>Journal of Crystal Growth</i> , 2007 , 304, 264-269	1.6	34	
162	Ta2AlC and Cr2AlC Ag-based compositesNew solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina. <i>Wear</i> , 2007 , 262, 1479-1489	3.5	76	
161	Interdiffusion Between Ti3SiC2IIi3GeC2 and Ti2AlCNb2AlC Diffusion Couples. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2200-2204	3.8	26	
160	High-Temperature Thermal Expansion and Stability of V2AlC Up To 950°C. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3013-3016	3.8	15	
159	Tribological Behavior of Ti2SC at Ambient and Elevated Temperatures. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3566-3571	3.8	37	
158	Synthesis and Mechanical Properties of Fully Dense Ti2SC. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 070926191407003-???	3.8	14	
157	Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stressatrain curves. <i>Journal of Materials Research</i> , 2007 , 22, 2470-2477	2.5	50	
156	On Raman scattering from selected M2AC compounds. <i>Journal of Materials Research</i> , 2007 , 22, 2651-2	65245	44	
155	Infrared spectrum and compressibility of Ti3GeC2 to 51 GPa. <i>Journal of Alloys and Compounds</i> , 2007 , 433, 265-268	5.7	45	
154	On the low temperature heat capacities of Ti2AlN and Ti2Al(N0.5C0.5). <i>Journal of Alloys and Compounds</i> , 2007 , 433, 59-62	5.7	40	

153	On the compression behaviour of (Ti(0.5),V(0.5))(2)AlC and (Ti(0.5),Nb(0.5))(2)AlC to quasi-hydrostatic pressures above 50 GPa. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 246215	1.8	22
152	On the compression behavior of Cr2GeC and V2GeC up to quasi-hydrostatic pressures of 50 GPa. Journal of Physics Condensed Matter, 2007 , 19, 456218	1.8	38
151	Synthesis and compressibility of Ti3(Al,Sn0.2)C2 and Ti3Al(C0.5,N0.5)2. <i>Journal of Applied Physics</i> , 2007 , 101, 113523	2.5	69
150	Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. <i>Biomaterials</i> , 2006 , 27, 5755-62	15.6	111
149	X-ray high-pressure study of Ti2AlN and Ti2AlC. Journal of Physics and Chemistry of Solids, 2006, 67, 209	1320094	96
148	High-Temperature Oxidation of Ti[sub 3]GeC[sub 2] and Ti[sub 3]Ge[sub 0.5]Si[sub 0.5]C[sub 2] in Air. <i>Journal of the Electrochemical Society</i> , 2006 , 153, J61	3.9	12
147	Corrosion Behavior of Ti[sub 3]GeC[sub 2] and Ti[sub 2]AlN in 1 M NaOH. <i>Journal of the Electrochemical Society</i> , 2006 , 153, B238	3.9	12
146	On the determination of spherical nanoindentation stressEtrain curves. <i>Journal of Materials Research</i> , 2006 , 21, 2628-2637	2.5	107
145	High-pressure x-ray diffraction study of Ta4AlC3. <i>Applied Physics Letters</i> , 2006 , 88, 201902	3.4	95
144	Sapphire: A kinking nonlinear elastic solid. <i>Journal of Applied Physics</i> , 2006 , 99, 063501	2.5	39
143	Compression behavior of M2AlC (M=Ti, V, Cr, Nb, and Ta) phases to above 50GPa. <i>Physical Review B</i> , 2006 , 73,	3.3	147
142	On the heat capacities of M2AlC (M=Ti,V,Cr) ternary carbides. <i>Journal of Applied Physics</i> , 2006 , 99, 09350	0 2 .5	40
141	Electron-phonon coupling in Mn+1AXn-phase carbides. <i>Physical Review B</i> , 2006 , 74,	3.3	76
140	Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces. <i>Journal of Materials Research</i> , 2006 , 21, 1629-1631	2.5	7
139	Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4. Corrosion Science, 2006, 48, 4274-42	862 8	82
138	Synthesis and oxidation of Ti2InC, Zr2InC, (Ti0.5,Zr0.5)2InC and (Ti0.5,Hf0.5)2InC in air. <i>Journal of Alloys and Compounds</i> , 2006 , 426, 168-175	5.7	24
137	Isothermal Oxidation of Ta2AlC in Air. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060623005134	0,032-??	?2
136	Microstructural Evidence of Reconstituted Limestone Blocks in the Great Pyramids of Egypt. Journal of the American Ceramic Society, 2006 , 89, 3788-3796	3.8	36

Incipient and regular kink bands in fully dense and 10vol.% porous Ti2AlC. Acta Materialia, 2006, 54, 163 & 163994

134	On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300¶573 K temperature range. <i>Acta Materialia</i> , 2006 , 54, 2757-2767	8.4	201
133	Mechanical damping in porous Ti3SiC2. Acta Materialia, 2006, 54, 5261-5270	8.4	58
132	Macroscale constitutive modeling of kinking nonlinear elastic solids. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 418, 95-98	5.3	14
131	Crystal chemistry of layered carbide, Ti3(Si0.43Ge0.57)C2. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 2512-2516	3.9	14
130	Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A357		72
129	Vibrational behavior of the Mn+1AXn phases from first-order Raman scattering (M=Ti,V,Cr, A=Si, X=C,N). <i>Physical Review B</i> , 2005 , 71,	3.3	113
128	Synthesis of Carbide-Derived Carbon by Chlorination of Ti2AlC. <i>Chemistry of Materials</i> , 2005 , 17, 2317-2	.3 3 .8	79
127	Effect of sintering temperature on the thermoelectric properties of pulse discharge sintered (Bi0.24Sb0.76)2Te3 alloy. <i>Journal of Alloys and Compounds</i> , 2005 , 397, 236-244	5.7	41
126	Microscale modeling of kinking nonlinear elastic solids. <i>Physical Review B</i> , 2005 , 71,	3.3	87
125	Electrical transport, thermal transport, and elastic properties of M2AlC (M=Ti, Cr, Nb, and V). <i>Physical Review B</i> , 2005 , 72,	3.3	223
124	On the heat capacity of Ti3GeC2. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 119, 159-163	3.1	26
123	Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. <i>Carbon</i> , 2005 , 43, 2075-2082	10.4	120
122	Effects of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. <i>Acta Materialia</i> , 2005 , 53, 4163-4171	8.4	75
121	Compressive creep of fine and coarse-grained T3SiC2 in air in the 1100🛮 300 🖒 temperature range. <i>Acta Materialia</i> , 2005 , 53, 4963-4973	8.4	65
120	Isothermal Section of Ti-B-C Phase Diagram at 1600°C. <i>Journal of the American Ceramic Society</i> , 2005 , 79, 785-787	3.8	9
119	Damage Mechanisms around Hardness Indentations in Ti3SiC2. <i>Journal of the American Ceramic Society</i> , 2005 , 80, 513-516	3.8	290
118	Contact Damage Accumulation in Tic3SiC2. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 225-228	3.8	134

117	Comment on New Ternary Nitride in the TiAlN System. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 785-786	3.8	16
116	Dislocations and Stacking Faults in Ti3SiC2. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 1677-168	13.8	77
115	The 1300°C Isothermal Section in the Tilh© Ternary Phase Diagram. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1290-1296	3.8	11
114	Thermal Expansion of Polycrystalline Ti3SiC2 in the 25🗓 400°C Temperature Range. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 3489-3491	3.8	14
113	Tribological duality of Ti3SiC2. <i>Tribology Letters</i> , 2005 , 18, 341-352	2.8	65
112	Spontaneous room temperature extrusion of Pb nano-whiskers from leaded brass surfaces. <i>Journal of Materials Research</i> , 2005 , 20, 1087-1089	2.5	17
111	Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces. <i>Journal of Materials Research</i> , 2005 , 20, 2618-2621	2.5	20
110	Creep rupture induced silica-based nanofibers formed on fracture surfaces of Ti3SiC2. <i>Journal of Materials Research</i> , 2005 , 20, 2895-2897	2.5	5
109	Compressibility of Nb2AsC to 41 GPa. Applied Physics Letters, 2005, 86, 111904	3.4	60
108	High pressure study of Ti4AlN3 to 55 GPa. <i>Applied Physics Letters</i> , 2005 , 86, 101906	3.4	58
107	Dynamic elastic hysteretic solids and dislocations. <i>Physical Review Letters</i> , 2005 , 94, 085501	7.4	51
106	Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. <i>Journal of Materials Research</i> , 2005 , 20, 895-903	2.5	29
105	Elastic and electronic properties of select M2AX phases. <i>Applied Physics Letters</i> , 2004 , 84, 508-510	3.4	141
104	Compressibility and pressure-induced phase transformation of Ti3GeC2. <i>Applied Physics Letters</i> , 2004 , 85, 3453-3455	3.4	41
103	Driving force and mechanism for spontaneous metal whisker formation. <i>Physical Review Letters</i> , 2004 , 93, 206104	7.4	129
102	Low temperature heat capacity and magnetic susceptibility of Ti3SiC2. <i>Journal of Applied Physics</i> , 2004 , 95, 128-133	2.5	16
101	Synthesis and Oxidation of V[sub 2]AlC and (Ti[sub 0.5],V[sub 0.5])[sub 2]AlC in Air. <i>Journal of the Electrochemical Society</i> , 2004 , 151, D24	3.9	76
100	Spherical Nanoindentations and Kink Bands in Ti3SiC2. <i>Journal of Materials Research</i> , 2004 , 19, 1139-11	48 .5	68

(2003-2004)

99	Corrosion Behavior and Passive Film Characteristics Formed on Ti, Ti[sub 3]SiC[sub 2], and Ti[sub 4]AlN[sub 3] in H[sub 2]SO[sub 4] and HCl. <i>Journal of the Electrochemical Society</i> , 2004 , 151, B71	3.9	52
98	Ambient- and High-Temperature Properties of Titanium Carbidellitanium Boride Composites Fabricated by Transient Plastic Phase Processing. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 66.	5- 6 72	21
97	Processing and Mechanical Properties of Ti3SiC2: I, Reaction Path and Microstructure Evolution. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 2849-2854	3.8	233
96	Processing and Mechanical Properties of Ti3SiC2: II, Effect of Grain Size and Deformation Temperature. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 2855-2860	3.8	298
95	Synthesis and Characterization of Ti3AlC2. Journal of the American Ceramic Society, 2004, 83, 825-832	3.8	477
94	Tape Casting, Pressureless Sintering, and Grain Growth in Ti3SiC2 Compacts. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 550-556	3.8	47
93	Compression of Zr2InC to 52GPa. Applied Physics Letters, 2004 , 85, 1514-1516	3.4	61
92	Kink bands, nonlinear elasticity and nanoindentations in graphite. <i>Carbon</i> , 2004 , 42, 1435-1445	10.4	121
91	Compression of Ti3Si0.5Ge0.5C2 to 53 GPa. Applied Physics Letters, 2004, 84, 2799-2801	3.4	57
90	Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1 \square)C2 (x = 0.5, 0.75) solid solutions. <i>Journal of Alloys and Compounds</i> , 2004 , 376, 287-295	5.7	110
89	Kinking nonlinear elastic solids, nanoindentations, and geology. <i>Physical Review Letters</i> , 2004 , 92, 2555	0 8 .4	102
88	Dual Tribological Behavior of a Nanolayered Ceramic: Ti3SiC2. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 778, 661		3
87	Oxidation of Hf2SnC and Nb2SnC in Air in the 400B00CC Temperature Range. <i>Oxidation of Metals</i> , 2003 , 59, 83-96	1.6	14
86	Core level and valence band studies of layered Ti3SiC2 by high resolution photoelectron spectroscopy. <i>Journal of Physics and Chemistry of Solids</i> , 2003 , 64, 2321-2328	3.9	17
85	Ti3SiC2: A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy. <i>Acta Materialia</i> , 2003 , 51, 2859-2872	8.4	141
84	Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. <i>Nature Materials</i> , 2003 , 2, 107-11	27	304
83	Nanoporous carbide-derived carbon with tunable pore size. <i>Nature Materials</i> , 2003 , 2, 591-4	27	599
82	The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH. Corrosion Science, 2003, 45, 1313-	136287	50

81	Synthesis and characterization of 0.3 Vf TiClīi3SiC2 and 0.3 Vf SiClīi3SiC2 composites. <i>Journal of Alloys and Compounds</i> , 2003 , 350, 303-312	5.7	69
80	Tensile creep of coarse-grained Ti3SiC2 in the 1000🛮 200˚LC temperature range. <i>Journal of Alloys and Compounds</i> , 2003 , 361, 299-312	5.7	82
79	Oxidation of Nb[sub 2]AlC and (Ti,Nb)[sub 2]AlC in Air. <i>Journal of the Electrochemical Society</i> , 2003 , 150, C152	3.9	52
78	Long Time Oxidation Study of Ti[sub 3]SiC[sub 2], Ti[sub 3]SiC[sub 2]/SiC, and Ti[sub 3]SiC[sub 2]/TiC Composites in Air. <i>Journal of the Electrochemical Society</i> , 2003 , 150, B166	3.9	83
77	Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3. <i>Physical Review B</i> , 2003 , 67,	3.3	56
76	High pressure behavior of titanium lilicon carbide (Ti3SiC2). Journal of Applied Physics, 2003, 93, 9639-9	643	36
75	Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2002 , 33, 2775-2779	2.3	123
74	Crystal-chemistry from XPS analysis of carbide-derived M n+1 AX n (n =1) nano-laminate compounds. <i>Journal of Physics and Chemistry of Solids</i> , 2002 , 63, 2063-2068	3.9	17
73	Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. <i>Acta Materialia</i> , 2002 , 50, 1297-1306	8.4	117
72	The 1300 LC isothermal section in the NbBnL ternary phase diagram. <i>Journal of Alloys and Compounds</i> , 2002 , 337, 202-207	5.7	7
71	Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti,Hf)2InC. <i>Journal of Alloys and Compounds</i> , 2002 , 340, 173-179	5.7	89
70	Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. <i>Journal of Alloys and Compounds</i> , 2002 , 347, 271-278	5.7	200
69	Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases@haracterization by XPS. <i>Journal of Physics and Chemistry of Solids</i> , 2001 , 62, 811-817	3.9	106
68	Tensile creep of fine grained (3B fh) Ti3SiC2 in the 1000fl200fC temperature range. <i>Acta Materialia</i> , 2001 , 49, 4103-4112	8.4	79
67	Reaction of Al with Ti3SiC2 in the 800🛮 000 °C temperature range. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 298, 174-178	5.3	97
66	Cyclic Fatigue-Crack Growth and Fracture Properties in Ti3SiC2 Ceramics at Elevated Temperatures. Journal of the American Ceramic Society, 2001 , 84, 2914-2920	3.8	58
65	Oxidation of Ti[sub n+1]AlX[sub n] (n=1-3 and X=C, N): II. Experimental Results. <i>Journal of the Electrochemical Society</i> , 2001 , 148, C551	3.9	97
64	Oxidation of Ti[sub n+1]AlX[sub n] (n=1-3 and X=C, N). <i>Journal of the Electrochemical Society</i> , 2001 , 148, C544	3.9	53

(2000-2001)

63	Ti3SiC2 and ice. Applied Physics Letters, 2001, 79, 479-481	3.4	47
62	Magnetotransport properties of the ternary carbide Ti3SiC2: Hall effect, magnetoresistance, and magnetic susceptibility. <i>Physical Review B</i> , 2001 , 65,	3.3	29
61	The MAX Phases: Unique New Carbide and Nitride Materials. American Scientist, 2001, 89, 334	2.7	500
60	Improved X-ray powder diffraction data for Ti2AlN. <i>Powder Diffraction</i> , 2000 , 15, 241-242	1.8	8
59	Effect of grain size on friction and wear behavior of Ti3SiC2. Wear, 2000, 238, 125-130	3.5	146
58	Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr). <i>Journal of the European Ceramic Society</i> , 2000 , 20, 2619-2625	6	96
57	Influence of small amounts of Fe and V on the synthesis and stability of Ti3SiC2. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 801-806	6	41
56	Ti3SiC2 has negligible thermopower. <i>Nature</i> , 2000 , 407, 581-2	50.4	155
55	Tensile properties of Ti3SiC2 in the 25🛘 300LC temperature range. <i>Acta Materialia</i> , 2000 , 48, 453-459	8.4	106
54	Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2. <i>Scripta Materialia</i> , 2000 , 42, 761-767	5.6	146
53	Structure of Ti4AlN3 layered Mn+1AXn nitride. Materials Research Bulletin, 2000, 35, 1785-1796	5.1	102
52	Characterization of Ti4AlN3. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 333-337	2.3	73
51	Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 373-378	2.3	46
50	Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 1857-1865	2.3	432
49	Thermal properties of Nb2SnC. Journal of Applied Physics, 2000, 88, 6313-6316	2.5	52
48	Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2. <i>Journal of Applied Physics</i> , 2000 , 87, 1701-1703	2.5	172
47	The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. <i>Progress in Solid State Chemistry</i> , 2000 , 28, 201-281	8	2432
46	Electrical conductivity, thermopower, and Hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2. <i>Physical Review B</i> , 2000 , 62, 10194-10198	3.3	178

45	Thermal properties of Ti4AlN3. <i>Journal of Applied Physics</i> , 2000 , 87, 8407-8414	2.5	68
44	The Topotactic Transformation of Ti3SiC2 into a Partially Ordered Cubic Ti(C 0.67Si0.06)Phase by the Diffusion of Si into Molten Cryolite. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 3919-3923	3.9	124
43	Isothermal sections in the Crta N system in the 65011000 LC temperature range. <i>Journal of Materials Research</i> , 1999 , 14, 2560-2566	2.5	24
42	Low temperature heat capacity of Ti3SiC2. <i>Journal of Applied Physics</i> , 1999 , 85, 7970-7971	2.5	16
41	Low temperature heat capacities of Ti3Al1.1C1.8, Ti4AlN3, and Ti3SiC2. <i>Journal of Applied Physics</i> , 1999 , 86, 3609-3611	2.5	38
40	High-resolution transmission electron microscopy of some Tin+1AXn compounds (n=1, 2; A=Al or Si; X=C or N). <i>Journal of Applied Physics</i> , 1999 , 86, 2540-2543	2.5	56
39	Low temperature dependence of the elastic properties of Ti3SiC2. <i>Journal of Applied Physics</i> , 1999 , 85, 7123-7126	2.5	29
38	Thermal properties of Ti3SiC2. <i>Journal of Physics and Chemistry of Solids</i> , 1999 , 60, 429-439	3.9	276
37	High-Resolution Transmission Electron Microscopy of Ti4AlN3, or Ti3Al2N2 Revisited. <i>Journal of the American Ceramic Society</i> , 1999 , 82, 2545-2547	3.8	107
36	Preliminary Report on the Electrochemical Behavior of Ti3SiC2. <i>Journal of Materials Science Letters</i> , 1999 , 18, 519-520		12
35	Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1999 , 30, 1727-1738	2.3	269
34	Room-temperature ductile carbides. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1999 , 30, 363-369	2.3	235
33	Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. <i>Science</i> , 1999 , 284, 937-9	33.3	59
32	Growing Metallic Whiskers: Alternative Interpretation. <i>Science</i> , 1999 , 285, 1355i-1355	33.3	13
31	STRUCTURE AND CRYSTAL CHEMISTRY OF Ti3SiC2. <i>Journal of Physics and Chemistry of Solids</i> , 1998 , 59, 1437-1443	3.9	149
30	The Raman spectrum of Ti3SiC2. Journal of Applied Physics, 1998, 84, 5817-5819	2.5	117
29	Diffusion kinetics of the carburization and silicidation of Ti3SiC2. <i>Journal of Applied Physics</i> , 1998 , 83, 112-119	2.5	113
28	Oxidation Of Ti3SiC2 in Air. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 2508-2516	3.9	270

27	Layered machinable ceramics for high temperature applications. Scripta Materialia, 1997, 36, 535-541	5.6	465
26	Grain growth and strength degradation of SiC monofilaments at high temperatures. <i>Journal of Materials Science</i> , 1996 , 31, 6119-6123	4.3	7
25	Microstructural Evolution during Transient Plastic Phase Processing of Titanium Carbide-Titanium Boride Composites. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 1945-1952	3.8	79
24	Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 1953-1956	3.8	1305
23	Low Breakdown Voltage Varistors by Grain Boundary Diffusion of Molten Bi2O3 in ZnO. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 962-966	3.8	8
22	Transient Plastic Phase Processing of Titanium B oronCarbon Composites. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 1445-1451	3.8	94
21	Thermal Expansion of Silicon Carbide Monofilaments and Silicon Carbide B orosilicate Composites. Journal of the American Ceramic Society, 1992 , 75, 2871-2873	3.8	21
20	Matrix crack initiation in ceramic matrix composites Part I: Experiments and test results. <i>Composites Science and Technology</i> , 1992 , 44, 257-269	8.6	61
19	Matrix crack initiation in ceramic matrix composites Part II: Models and simulation results. <i>Composites Science and Technology</i> , 1992 , 44, 271-282	8.6	24
18	Nitridation Kinetics and Thermodynamics of Silicon Powder Compacts. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 1248-1253	3.8	31
17	Effect of Oxidation on Single-Fiber Pullout Interfacial Shear Stresses in a Silicon Carbide B orosilicate Glass System. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 2693-2696	3.8	4
16	Effect of temperature on interfacial shear strengths of SiC-glass interfaces. <i>Journal of Materials Science</i> , 1991 , 26, 1216-1222	4.3	12
15	A microprobe for the Cu(1) site in Y1Ba2Cu3O7DEmission MBsbauer studies using carrier-free cobalt-57. <i>Solid State Communications</i> , 1988 , 68, 181-184	1.6	22
14	Electron spin resonance in Y 1Ba 2Cu 3O y. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1988 , 128, 225-227	2.3	7
13	Low-field ac susceptibility and microwave absorption in YBaCuO and BiCaSrCuO superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1988 , 156, 73-78	1.3	14
12	Thermodynamics of molten Li-Sn alloys. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1988 , 19, 637-644		17
11	Use of the Meissner effect to separate, purify, and classify superconducting powders. <i>Applied Physics Letters</i> , 1987 , 51, 1954-1956	3.4	10
10	Glass solid electrolytes: Past, present and near future Ithe year 2004. <i>Journal of Non-Crystalline Solids</i> , 1985 , 73, 331-350	3.9	42

8

9	Effect of Sb, Sn and Pb on the recrystallization of bismuth. <i>Journal of the Less Common Metals</i> , 1978 , 58, 133-146		
8	Aqueous Electrolytes, MXene-Based Supercapacitors and Their Self-Discharge. <i>Advanced Energy and Sustainability Research</i> ,2100147	1.6	1
7	On the Effect of Ti2AlC on the Formation of Thermally Stable Mg Nano Grains409-412		
6	High-Temperature Cyclic Fatigue-Crack Growth in Monolithic Ti3SiC2 Ceramics70-75		
5	Structure, Bonding, and Defects13-64		3
4	Electronic, Optical, and Magnetic Properties155-185		3
3	Oxidation and Reactivity with Other Gases187-235		2
2	Chemical Reactivity237-269		2

Mechanical Properties: Ambient Temperature 307-361