Peter A Wierenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1340882/publications.pdf

Version: 2024-02-01

40 papers 1,110 citations

20 h-index 32 g-index

40 all docs

40 docs citations

40 times ranked

1289 citing authors

#	Article	IF	CITATIONS
1	Gastrointestinal Protein Hydrolysis Kinetics: Opportunities for Further Infant Formula Improvement. Nutrients, 2022, 14, 1512.	4.1	8
2	Hydrophobicity Enhances the Formation of Protein-Stabilized Foams. Molecules, 2022, 27, 2358.	3.8	7
3	A method to identify and quantify the complete peptide composition in protein hydrolysates. Analytica Chimica Acta, 2022, 1201, 339616.	5.4	11
4	Assessment of milk protein digestion kinetics: effects of denaturation by heat and protein type used. Food and Function, 2022, 13, 5715-5729.	4.6	4
5	Urinary excretion of advanced glycation end products in dogs and cats. Journal of Animal Physiology and Animal Nutrition, 2021, 105, 149-156.	2.2	11
6	Evaluation of PBN spin-trapped radicals as early markers of lipid oxidation in mayonnaise. Food Chemistry, 2021, 334, 127578.	8.2	20
7	Characterizing emulsion properties of microalgal and cyanobacterial protein isolates. Algal Research, 2019, 39, 101471.	4.6	33
8	Cell wall disruption: An effective strategy to improve the nutritive quality of microalgae in African catfish (<i>Clarias gariepinus</i>). Aquaculture Nutrition, 2019, 25, 783-797.	2.7	39
9	Postprandial Amino Acid Kinetics of Milk Protein Mixtures are Affected by Composition, But Not Denaturation, in Neonatal Piglets. Current Developments in Nutrition, 2019, 3, nzy102.	0.3	10
10	Understanding glycation kinetics of individual peptides in protein hydrolysates. International Dairy Journal, 2019, 91, 98-109.	3.0	3
11	Maillard induced aggregation of individual milk proteins and interactions involved. Food Chemistry, 2019, 276, 652-661.	8.2	21
12	³¹ P NMR assessment of the phosvitinâ€iron complex in mayonnaise. Magnetic Resonance in Chemistry, 2019, 57, 540-547.	1.9	7
13	Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture, 2019, 499, 269-282.	3.5	86
14	Comparison of Protein Hydrolysis Catalyzed by Bovine, Porcine, and Human Trypsins. Journal of Agricultural and Food Chemistry, 2018, 66, 4219-4232.	5.2	22
15	Maillard induced glycation behaviour of individual milk proteins. Food Chemistry, 2018, 252, 311-317.	8.2	43
16	Degradation of Collagen Increases Nitrogen Solubilisation During Enzymatic Hydrolysis of Fleshing Meat. Waste and Biomass Valorization, 2018, 9, 1113-1119.	3.4	23
17	Towards predicting protein hydrolysis by bovine trypsin. Process Biochemistry, 2018, 65, 81-92.	3.7	38
18	Apparent ileal digestibility of Maillard reaction products in growing pigs. PLoS ONE, 2018, 13, e0199499.	2.5	8

#	Article	IF	CITATIONS
19	Comparison of Protein Extracts from Various Unicellular Green Sources. Journal of Agricultural and Food Chemistry, 2017, 65, 7989-8002.	5.2	47
20	Demasking kinetics of peptide bond cleavage for whey protein isolate hydrolysed by Bacillus licheniformis protease. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S426-S431.	1.8	9
21	Controlling the Ratio between Native-Like, Non-Native-Like, and Aggregated β-Lactoglobulin after Heat Treatment. Journal of Agricultural and Food Chemistry, 2016, 64, 4362-4370.	5.2	25
22	Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures. Biotechnology Progress, 2015, 31, 1396-1405.	2.6	9
23	Towards predicting the stability of protein-stabilized emulsions. Advances in Colloid and Interface Science, 2015, 219, 1-9.	14.7	57
24	Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate. International Dairy Journal, 2015, 44, 44-53.	3.0	26
25	Spontaneous, non-enzymatic breakdown of peptides during enzymatic protein hydrolysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 987-994.	2.3	12
26	Comparison of Heat-Induced Aggregation of Globular Proteins. Journal of Agricultural and Food Chemistry, 2015, 63, 5257-5265.	5.2	56
27	Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1898-1905.	2.3	16
28	Reactive lysine content in commercially available pet foods. Journal of Nutritional Science, 2014, 3, e35.	1.9	15
29	Quantitative description of the parameters affecting the adsorption behaviour of globular proteins. Colloids and Surfaces B: Biointerfaces, 2014, 123, 199-206.	5.0	70
30	Effect of charged polysaccharides on the techno-functional properties of fractions obtained from algae soluble protein isolate. Food Hydrocolloids, 2014, 35, 9-18.	10.7	35
31	Influence of water availability on the enzymatic hydrolysis of proteins. Process Biochemistry, 2014, 49, 1903-1912.	3.7	25
32	Determination of the Influence of Substrate Concentration on Enzyme Selectivity Using Whey Protein Isolate and <i>Bacillus licheniformis</i> Protease. Journal of Agricultural and Food Chemistry, 2014, 62, 10230-10239.	5.2	18
33	Introducing enzyme selectivity: a quantitative parameter to describe enzymatic protein hydrolysis. Analytical and Bioanalytical Chemistry, 2014, 406, 5827-5841.	3.7	42
34	Chemometric analysis of soy protein hydrolysates used in animal cell culture for IgG production – An untargeted metabolomics approach. Process Biochemistry, 2014, 49, 309-317.	3.7	25
35	Improved emulsion stability by succinylation of patatin is caused by partial unfolding rather than charge effects. Journal of Colloid and Interface Science, 2014, 430, 69-77.	9.4	28
36	Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid. Food and Bioprocess Technology, 2013, 6, 870-881.	4.7	22

#	Article	IF	CITATION
37	Enhancement of Emulsifying Properties of Cuttlefish Skin Gelatin by Modification with N-hydroxysuccinimide Esters of Fatty Acids. Food and Bioprocess Technology, 2013, 6, 671-681.	4.7	14
38	Characteristics and Effects of Specific Peptides on Heat-Induced Aggregation of \hat{l}^2 -Lactoglobulin. Biomacromolecules, 2011, 12, 2159-2170.	5.4	27
39	Modified Capillary Cell for Foam Film Studies Allowing Exchange of the Film-Forming Liquid. Langmuir, 2009, 25, 6035-6039.	3.5	14
40	Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Airâ^'Water Interface. Langmuir, 2003, 19, 8964-8970.	3.5	124