List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1340785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties. Journal of Materials Science and Technology, 2022, 110, 14-23.	5.6	31
2	A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. Journal of Materials Chemistry B, 2022, 10, 262-270.	2.9	8
3	A Photothermal Nanoplatform with Sugar-Triggered Cleaning Ability for High-Efficiency Intracellular Delivery. ACS Applied Materials & Interfaces, 2022, 14, 2618-2628.	4.0	8
4	Glycopolymer Engineering of the Cell Surface Changes the Single Cell Migratory Direction and Inhibits the Collective Migration of Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 4921-4930.	4.0	5
5	One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112372.	2.5	5
6	Vascular cell behavior on glycocalyx–mimetic surfaces: Simultaneous mimicking of the chemical composition and topographical structure of the vascular endothelial glycocalyx. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112337.	2.5	8
7	Oxygenâ€Đemanding Photocontrolled RAFT Polymerization Under Ambient Conditions. Macromolecular Rapid Communications, 2022, 43, e2100920.	2.0	11

8 Robust, anti-biofouling 2D nanogel films from poly(<i>N</i>-vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 Td (caprolactam₃<i>co</i>-

9	Preparation of <i>α</i> , <i>ω</i> â€heterobifunctionalized poly(<i>N</i> â€vinylpyrrolidone) via a bisâ€clickable <scp>RAFT</scp> reagent. Journal of Polymer Science, 2022, 60, 1954-1961.	2.0	2
10	Transparent and superhydrophilic antifogging coatings constructed by poly(N-hydroxyethyl) Tj ETQq0 0 0 rgBT /O 128724.	verlock 10 2.3	0 Tf 50 387 12
11	Dendritic cells maturation facilitated by group-adjustable lipopolysaccharide analogues synthesized via RAFT polymerization. Chinese Chemical Letters, 2022, 33, 4331-4334.	4.8	7
12	Optimizing the Bacteriostatic and Cytocompatibility Properties of Poly(hexamethylene guanidine) Hydrochloride (PHMG) via the Guanidine/Alkane Ratio. Biomacromolecules, 2022, 23, 2170-2183.	2.6	8
13	Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. Journal of Materials Chemistry B, 2022, 10, 5203-5210.	2.9	2
14	Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomaterials Science, 2021, 9, 10-22.	2.6	109
15	Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously. Journal of Materials Science and Technology, 2021, 70, 24-38.	5.6	93
16	Synthesis and antifouling performance of tadpole-shaped poly(<i>N</i> -hydroxyethylacrylamide) coatings. Journal of Materials Chemistry B, 2021, 9, 2877-2884.	2.9	9
17	Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency. Chinese Journal of Polymer Science (English Edition), 2021, 39, 856-864.	2.0	1
18	Ultrahigh Efficiency and Minimalist Intracellular Delivery of Macromolecules Mediated by Latent-Photothermal Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 12594-12602.	4.0	8

#	Article	IF	CITATIONS
19	The role of carboxylic groups in heparin-mimicking polymer-functionalized surfaces for blood compatibility: Enhanced vascular cell selectivity. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111653.	2.5	6
20	Immune Effect Regulated by the Chain Length: Interaction between Immune Cell Surface Receptors and Synthetic Glycopolymers. ACS Applied Materials & Interfaces, 2021, 13, 36859-36867.	4.0	6
21	Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS Nano, 2021, 15, 14162-14173.	7.3	8
22	Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS Applied Materials & Interfaces, 2021, 13, 45191-45200.	4.0	33
23	Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography. Journal of Colloid and Interface Science, 2021, 603, 501-510.	5.0	17
24	Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal–Phenolic Networks for Prevention of Biofilm Formation. ACS Applied Materials & Interfaces, 2021, 13, 48403-48413.	4.0	44
25	Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys. Journal of Materials Chemistry B, 2021, 9, 9893-9899.	2.9	15
26	Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS Applied Materials & Interfaces, 2020, 12, 21283-21291.	4.0	116
27	A Universal Platform for Highâ€Efficiency "Engineering―Living Cells: Integration of Cell Capture, Intracellular Delivery of Biomolecules, and Cell Harvesting Functions. Advanced Functional Materials, 2020, 30, 1906362.	7.8	34
28	Nitric Oxide-Generating Antiplatelet Polyurethane Surfaces with Multiple Additional Biofunctions via Cyclodextrin-Based Host–Guest Interactions. ACS Applied Bio Materials, 2020, 3, 570-576.	2.3	12
29	Promoting the activation of T cells with glycopolymer-modified dendritic cells by enhancing cell interactions. Science Advances, 2020, 6, .	4.7	35
30	Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition <i>vs.</i> topographic patterning. Journal of Materials Chemistry B, 2020, 8, 9151-9161.	2.9	15
31	Reactive films fabricated using click sulfur(<scp>vi</scp>)–fluoride exchange reactions <i>via</i> layer-by-layer assembly. Journal of Materials Chemistry B, 2020, 8, 5529-5534.	2.9	10
32	Bacteria mimics bearing carbohydrates, oligodeoxynucleotides and designed shapes. Chemical Communications, 2020, 56, 10887-10889.	2.2	3
33	Ultralow Crosslinked Microgel Brings Ultrahigh Catalytic Efficiency. Macromolecular Rapid Communications, 2020, 41, 2000135.	2.0	5
34	Tri-functional platform for the facile construction of dual-functional surfaces <i>via</i> a one-pot strategy. Journal of Materials Chemistry B, 2020, 8, 5602-5605.	2.9	4
35	Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS Applied Materials & amp; Interfaces, 2020, 12, 31054-31078.	4.0	22
36	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117

#	Article	IF	CITATIONS
37	Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e1900430.	2.0	86
38	Polarization of Macrophages, Cellular Adhesion, and Spreading on Bacterially Contaminated Gold Nanoparticle-Coatings <i>in Vitro</i> . ACS Biomaterials Science and Engineering, 2020, 6, 933-945.	2.6	8
39	Multistimulus Responsive Biointerfaces with Switchable Bioadhesion and Surface Functions. ACS Applied Materials & Interfaces, 2020, 12, 5447-5455.	4.0	55
40	Universal Antibacterial Surfaces Fabricated from Quaternary Ammonium Salt-Based PNIPAM Microgels. ACS Applied Materials & Interfaces, 2020, 12, 19268-19276.	4.0	48
41	Dual Pathway for Promotion of Stem Cell Neural Differentiation Mediated by Gold Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 22066-22073.	4.0	14
42	Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomaterials Science and Engineering, 2020, 6, 2847-2854.	2.6	18
43	Antibacterial coatings based on microgels containing quaternary ammonium ions: Modification with polymeric sugars for improved cytocompatibility. Colloids and Interface Science Communications, 2020, 37, 100268.	2.0	19
44	Efficient Heterodifunctional Unimolecular Ring losure Method for Cyclic Polymers by Combining RAFT and SuFEx Click Reactions. Macromolecular Rapid Communications, 2019, 40, 1900310.	2.0	16
45	Ultralow Self-Cross-Linked Poly(<i>N</i> -isopropylacrylamide) Microgels Prepared by Solvent Exchange. Langmuir, 2019, 35, 13991-13998.	1.6	6
46	Enhancement of Bactericidal Activity via Cyclic Poly(cationic liquid) Brushes. Macromolecular Rapid Communications, 2019, 40, e1900379.	2.0	12
47	Chemical synthesis of glycosaminoglycan-mimetic polymers. Polymer Chemistry, 2019, 10, 164-171.	1.9	25
48	Small addition of Zn ²⁺ in Ca ²⁺ @DNA results in elevated gene transfection by aminated PGMA-modified silicon nanowire arrays. Journal of Materials Chemistry B, 2019, 7, 566-575.	2.9	6
49	A rapid one-step surface functionalization of polyvinyl chloride by combining click sulfur(<scp>vi</scp>)-fluoride exchange with benzophenone photochemistry. Chemical Communications, 2019, 55, 858-861.	2.2	28
50	Sustained release of a synthetic structurally-tailored glycopolymer modulates endothelial cells for enhanced endothelialization of materials. Journal of Materials Chemistry B, 2019, 7, 4017-4029.	2.9	8
51	Improved neural differentiation of stem cells mediated by magnetic nanoparticle-based biophysical stimulation. Journal of Materials Chemistry B, 2019, 7, 4161-4168.	2.9	29
52	Structure–Chemical Modification Relationships with Silk Materials. ACS Biomaterials Science and Engineering, 2019, 5, 2762-2768.	2.6	17
53	Synthesis of glycopolymers with specificity for bacterial strains <i>via</i> bacteria-guided polymerization. Chemical Science, 2019, 10, 5251-5257.	3.7	32
54	Gold nanoparticle–protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. Journal of Materials Chemistry B, 2019, 7, 3260-3267.	2.9	14

#	Article	IF	CITATIONS
55	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. ACS Macro Letters, 2019, 8, 337-344.	2.3	32
56	Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS Applied Materials & Interfaces, 2019, 11, 12357-12366.	4.0	35
57	Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. Langmuir, 2019, 35, 3470-3478.	1.6	9
58	One-step preparation of gold nanovectors using folate modified polyethylenimine and their use in target-specific gene transfection. Colloids and Surfaces B: Biointerfaces, 2019, 177, 306-312.	2.5	10
59	Protein-resistant properties of poly(N-vinylpyrrolidone)-modified gold surfaces: The advantage of bottle-brushes over linear brushes. Colloids and Surfaces B: Biointerfaces, 2019, 177, 448-453.	2.5	25
60	Modular Polymers as a Platform for Cell Surface Engineering: Promoting Neural Differentiation and Enhancing the Immune Response. ACS Applied Materials & amp; Interfaces, 2019, 11, 47720-47729.	4.0	18
61	Glutathione-Sensitive Silicon Nanowire Arrays for Gene Transfection. ACS Applied Materials & Interfaces, 2019, 11, 46515-46524.	4.0	12
62	Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Advanced Healthcare Materials, 2019, 8, e1801381.	3.9	270
63	A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2018, 167, 28-35.	2.5	17
64	Tissue-engineered Vascular Grafts: Balance of the Four Major Requirements. Colloids and Interface Science Communications, 2018, 23, 34-44.	2.0	53
65	Polydopamine–polyethylene glycol–albumin antifouling coatings on multiple substrates. Journal of Materials Chemistry B, 2018, 6, 940-949.	2.9	52
66	A supramolecular approach for versatile biofunctionalization of magnetic nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2198-2203.	2.9	27
67	Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS Applied Materials & Interfaces, 2018, 10, 10647-10655.	4.0	41
68	Sulfonate Groups and Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic Properties. ACS Applied Materials & Interfaces, 2018, 10, 1440-1449.	4.0	38
69	Combining Click Sulfur(VI)â€Fluoride Exchange with Photoiniferters: A Facile, Fast, and Efficient Strategy for Postpolymerization Modification. Macromolecular Rapid Communications, 2018, 39, 1700523.	2.0	17
70	Microfluidic channels with renewable and switchable biological functionalities based on host–guest interactions. Journal of Materials Chemistry B, 2018, 6, 8055-8063.	2.9	8
71	Facile fabrication of a "Catch and Release―cellulose acetate nanofiber interface: a platform for reversible glycoprotein capture and bacterial attachment. Journal of Materials Chemistry B, 2018, 6, 6744-6751.	2.9	13
72	Gold nanoparticle layer: a versatile nanostructured platform for biomedical applications. Materials Chemistry Frontiers, 2018, 2, 2175-2190.	3.2	36

#	Article	IF	CITATIONS
73	Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host–Guest Interactions. ACS Applied Materials & Interfaces, 2018, 10, 36585-36601.	4.0	58
74	Universal intracellular biomolecule delivery with precise dosage control. Science Advances, 2018, 4, eaat8131.	4.7	95
75	Regenerable smart antibacterial surfaces: full removal of killed bacteria <i>via</i> a sequential degradable layer. Journal of Materials Chemistry B, 2018, 6, 3946-3955.	2.9	71
76	Controlled synthesis of diverse single-chain polymeric nanoparticles using polymers bearing furan-protected maleimide moieties. Polymer Chemistry, 2018, 9, 3238-3247.	1.9	17
77	"Click-chemical―modification of cellulose acetate nanofibers: a versatile platform for biofunctionalization. Journal of Materials Chemistry B, 2018, 6, 4579-4582.	2.9	17
78	Self-assembled proteinaceous wound dressings attenuate secondary trauma and improve wound healing <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 4645-4655.	2.9	57
79	Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery. Journal of Materials Chemistry B, 2018, 6, 4427-4436.	2.9	29
80	A hemocompatible polyurethane surface having dual fibrinolytic and nitric oxide generating functions. Journal of Materials Chemistry B, 2017, 5, 980-987.	2.9	16
81	Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 3505-3513.	4.0	70
82	Promoting neural differentiation of embryonic stem cells using Î ² -cyclodextrin sulfonate. Journal of Materials Chemistry B, 2017, 5, 1896-1900.	2.9	16
83	A supramolecular bioactive surface for specific binding of protein. Colloids and Surfaces B: Biointerfaces, 2017, 152, 192-198.	2.5	12
84	Synthesis of star-glycopolymers by Cu(0)-mediated radical polymerisation in the absence and presence of oxygen. RSC Advances, 2017, 7, 8484-8490.	1.7	13
85	Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids and Surfaces B: Biointerfaces, 2017, 150, 175-182.	2.5	43
86	Intracellular Delivery Platform for "Recalcitrant―Cells: When Polymeric Carrier Marries Photoporation. ACS Applied Materials & Interfaces, 2017, 9, 21593-21598.	4.0	22
87	Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not?. ACS Applied Materials & Interfaces, 2017, 9, 11518-11527.	4.0	29
88	"Hearing Loss―in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers. Analytical Chemistry, 2017, 89, 4184-4191.	3.2	31
89	A reusable supramolecular platform for the specific capture and release of proteins and bacteria. Journal of Materials Chemistry B, 2017, 5, 444-453.	2.9	47
90	A multifunctional surface for blood contact with fibrinolytic activity, ability to promote endothelial cell adhesion and inhibit smooth muscle cell adhesion. Journal of Materials Chemistry B, 2017, 5, 604-611.	2.9	20

#	Article	IF	CITATIONS
91	Thrombosisâ€Responsive Thrombolytic Coating Based on Thrombinâ€Degradable Tissue Plasminogen Activator (tâ€PA) Nanocapsules. Advanced Functional Materials, 2017, 27, 1703934.	7.8	35
92	Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Applied Materials & Interfaces, 2017, 9, 37511-37523.	4.0	308
93	Effects of polymer topology on biointeractions of polymer brushes: Comparison of cyclic and linear polymers. Colloids and Surfaces B: Biointerfaces, 2017, 159, 527-532.	2.5	13
94	Multifunctional gold nanoparticle layers for controllable capture and release of proteins. Nanoscale, 2017, 9, 15407-15415.	2.8	10
95	Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS Applied Materials & Interfaces, 2017, 9, 25767-25774.	4.0	120
96	Deciphering the Role of Sulfonated Unit in Heparin-Mimicking Polymer to Promote Neural Differentiation of Embryonic Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 28209-28221.	4.0	31
97	Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment. Colloids and Surfaces B: Biointerfaces, 2017, 150, 279-287.	2.5	7
98	A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect. Advanced Functional Materials, 2016, 26, 5787-5795.	7.8	55
99	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.	4.1	74
100	Recyclable <i>Escherichia coli</i> -Specific-Killing AuNP–Polymer (ESKAP) Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 11309-11317.	4.0	48
101	An antithrombotic hydrogel with thrombin-responsive fibrinolytic activity: breaking down the clot as it forms. Materials Horizons, 2016, 3, 556-562.	6.4	34
102	A Universal and Versatile Approach for Surface Biofunctionalization: Layerâ€by‣ayer Assembly Meets Host–Guest Chemistry. Advanced Materials Interfaces, 2016, 3, 1600600.	1.9	43
103	Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca ²⁺ -Dependent Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8, 15138-15144.	4.0	17
104	Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. Journal of Materials Chemistry B, 2016, 4, 6111-6116.	2.9	30
105	One-step synthesis of glycoprotein mimics in vitro: improvement of protein activity, stability and application in CPP hydrolysis. Journal of Materials Chemistry B, 2016, 4, 5437-5445.	2.9	11
106	Synthesis of lipo-glycopolymers for cell surface engineering. Polymer Chemistry, 2016, 7, 7287-7294.	1.9	17
107	Multifunctional and Regenerable Antibacterial Surfaces Fabricated by a Universal Strategy. ACS Applied Materials & Interfaces, 2016, 8, 30048-30057.	4.0	114
108	A Smart Antibacterial Surface for the Onâ€Demand Killing and Releasing of Bacteria. Advanced Healthcare Materials, 2016, 5, 449-456.	3.9	128

#	Article	IF	CITATIONS
109	Improvement of Site-Directed Protein–Polymer Conjugates: High Bioactivity and Stability Using a Soft Chain-Transfer Agent. ACS Applied Materials & Interfaces, 2016, 8, 15967-15974.	4.0	17
110	Multifunctional nanoparticle–protein conjugates with controllable bioactivity and pH responsiveness. Nanoscale, 2016, 8, 4387-4394.	2.8	20
111	Bioinspired Blood Compatible Surface Having Combined Fibrinolytic and Vascular Endothelium‣ike Properties via a Sequential Coimmobilization Strategy. Advanced Functional Materials, 2015, 25, 5206-5213.	7.8	53
112	Regulation of Protein Binding Capability of Surfaces via Host–Guest Interactions: Effects of Localized and Average Ligand Density. Langmuir, 2015, 31, 6172-6178.	1.6	23
113	Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	582 Td (n 1.6	nethacrylate)
114	Improving the protein activity and stability under acidic conditions via site-specific conjugation of a pH-responsive polyelectrolyte. Journal of Materials Chemistry B, 2015, 3, 498-504.	2.9	22
115	Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16, 1-13.	4.1	354
116	Modulating the Activity of Protein Conjugated to Gold Nanoparticles by Site-Directed Orientation and Surface Density of Bound Protein. ACS Applied Materials & amp; Interfaces, 2015, 7, 3717-3724.	4.0	88
117	Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry. Polymer Chemistry, 2015, 6, 3708-3715.	1.9	22
118	Conjugation of polymers to proteins through an inhibitor-derived peptide: taking up the inhibitor "berth― Chemical Communications, 2015, 51, 10099-10102.	2.2	8
119	Temperature-Responsive Poly(<i>N</i> -isopropylacrylamide) Modified Gold Nanoparticle–Protein Conjugates for Bioactivity Modulation. ACS Applied Materials & Interfaces, 2015, 7, 11547-11554.	4.0	44
120	New "X-type―second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Journal of Materials Chemistry C, 2015, 3, 4545-4552.	2.7	31
121	Dendronized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance. Polymer Chemistry, 2015, 6, 5580-5589.	1.9	40
122	Improvement in the Thermal Stability of Pyrophosphatase by Conjugation to Poly(<i>N</i> -isopropylacrylamide): Application to the Polymerase Chain Reaction. ACS Applied Materials & Interfaces, 2015, 7, 21913-21918.	4.0	16
123	Surfaces having dual affinity for plasminogen and tissue plasminogen activator: in situ plasmin generation and clot lysis. Journal of Materials Chemistry B, 2015, 3, 6939-6944.	2.9	10
124	Surface immobilization of a protease through an inhibitor-derived affinity ligand: a bioactive surface with defensive properties against an inhibitor. Chemical Communications, 2015, 51, 14263-14266.	2.2	9
125	A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chemical Communications, 2015, 51, 15434-15437.	2.2	45
126	A facile approach to modify poly(dimethylsiloxane) surfaces via visible light-induced grafting polymerization. Journal of Materials Chemistry B, 2015, 3, 629-634.	2.9	28

#	Article	IF	CITATIONS
127	Vertical SiNWAs for biomedical and biotechnology applications. Journal of Materials Chemistry B, 2014, 2, 7849-7860.	2.9	35
128	Incorporation of Lysineâ€Containing Copolymer with Polyurethane Affording Biomaterial with Specific Adsorption of Plasminogen. Chinese Journal of Chemistry, 2014, 32, 44-50.	2.6	5
129	Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry, 2014, 5, 14-24.	1.9	74
130	One-step preparation of vinyl-functionalized material surfaces: a versatile platform for surface modification. Science China Chemistry, 2014, 57, 654-660.	4.2	13
131	Controlling the biointerface of electrospun mats for clot lysis: an engineered tissue plasminogen activator link to a lysine-functionalized surface. Journal of Materials Chemistry B, 2014, 2, 4272.	2.9	10
132	6- <i>O</i> -Sulfated Chitosan Promoting the Neural Differentiation of Mouse Embryonic Stem Cells. ACS Applied Materials & Interfaces, 2014, 6, 20043-20050.	4.0	49
133	Maintaining the pluripotency of mouse embryonic stem cells on gold nanoparticle layers with nanoscale but not microscale surface roughness. Nanoscale, 2014, 6, 6959.	2.8	54
134	Recyclable antibacterial material: silicon grafted with 3,6-O-sulfated chitosan and specifically bound by lysozyme. Journal of Materials Chemistry B, 2014, 2, 569-576.	2.9	28
135	Integrating a thermoresponsive copolymer with host–guest interactions for fabricating molecular recognition surfaces. Materials Horizons, 2014, 1, 540-545.	6.4	26
136	Development of a Low-Cost Hemin-Based Dissolved Oxygen Sensor With Anti-Biofouling Coating for Water Monitoring. IEEE Sensors Journal, 2014, 14, 3400-3407.	2.4	37
137	A Versatile, Fast, and Efficient Method of Visible-Light-Induced Surface Grafting Polymerization. Langmuir, 2014, 30, 5474-5480.	1.6	26
138	Stimulation of Gene Transfection by Silicon Nanowire Arrays Modified with Polyethylenimine. ACS Applied Materials & amp; Interfaces, 2014, 6, 14391-14398.	4.0	30
139	Probing the Structural Dependence of Carbon Space Lengths of Poly(<i>N</i> -hydroxyalkyl) Tj ETQq1 1	0.784314 rgBT 2.6	/Overlock 10 T
140	Blood compatible materials: state of the art. Journal of Materials Chemistry B, 2014, 2, 5718-5738.	2.9	237
141	¹²⁵ I-Radiolabeling, Surface Plasmon Resonance, and Quartz Crystal Microbalance with Dissipation: Three Tools to Compare Protein Adsorption on Surfaces of Different Wettability. Langmuir, 2014, 30, 1029-1035.	1.6	29
142	New Strategy for Reversible Modulation of Protein Activity through Site-Specific Conjugation of Small Molecule and Polymer. Bioconjugate Chemistry, 2014, 25, 1252-1260.	1.8	20
143	A new t-PA releasing concept based on protein–protein displacement. Soft Matter, 2013, 9, 2321.	1.2	16

 $Control the Wettability of Poly(<i>N</i>-isopropylacrylamide-<i>co</i>-1-adamantan-1-ylmethyl) Tj ETQq0 0 0 rgBT_{1.6}^{I/O} verlock_{43}^{10} Tf 50 6$

#	Article	IF	CITATIONS
145	Poly(<i>N</i> â€vinylpyrrolidone)â€Modified Surfaces for Biomedical Applications. Macromolecular Bioscience, 2013, 13, 147-154.	2.1	170
146	A novel antithrombotic coronary stent: lysine-poly(HEMA)-modified cobalt–chromium stent with fibrinolytic activity. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 684-695.	1.9	10
147	Regulation of fibrinolytic protein adsorption on polyurethane surfaces by modification with lysine-containing copolymers. Polymer Chemistry, 2013, 4, 5597.	1.9	31
148	Vinyl-monomer with lysine side chains for preparing copolymer surfaces with fibrinolytic activity. Polymer Chemistry, 2013, 4, 1583-1589.	1.9	20
149	Reductase-like Activity of Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2013, 5, 1800-1805.	4.0	27
150	Block Copolymer Modified Surfaces for Conjugation of Biomacromolecules with Control of Quantity and Activity. Langmuir, 2013, 29, 1122-1128.	1.6	40
151	Aptamer-Modified Micro/Nanostructured Surfaces: Efficient Capture of Ramos Cells in Serum Environment. ACS Applied Materials & amp; Interfaces, 2013, 5, 3816-3823.	4.0	33
152	Cell Adhesion on a POEGMA-Modified Topographical Surface. Langmuir, 2012, 28, 17011-17018.	1.6	43
153	Enhancing Specific Binding of L929 Fibroblasts: Effects of Multiâ€Scale Topography of GRGDY Peptide Modified Surfaces. Macromolecular Bioscience, 2012, 12, 1391-1400.	2.1	21
154	Facile Synthesis of Thermally Stable Poly(<i>N</i> -vinylpyrrolidone)-Modified Gold Surfaces by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2012, 28, 9451-9459.	1.6	47
155	Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Science Bulletin, 2012, 57, 1109-1115.	1.7	72
156	Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst, The, 2012, 137, 1779.	1.7	106
157	Gold Nanoparticle Layer: A Promising Platform for Ultra-Sensitive Cancer Detection. Langmuir, 2011, 27, 2155-2158.	1.6	45
158	The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: wettability and protein adsorption. RSC Advances, 2011, 1, 262.	1.7	31
159	Mimicking the fibrinolytic system on material surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 86, 1-6.	2.5	50
160	Surface Modification to Control Protein/Surface Interactions. Macromolecular Bioscience, 2011, 11, 1031-1040.	2.1	73
161	Lysine–poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomaterialia, 2011, 7, 954-958.	4.1	54
162	Anti-fouling bioactive surfaces. Acta Biomaterialia, 2011, 7, 1550-1557.	4.1	280

#	Article	IF	CITATIONS
163	Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity. Acta Biomaterialia, 2011, 7, 1993-1998.	4.1	25
164	Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size. Colloids and Surfaces B: Biointerfaces, 2010, 76, 468-474.	2.5	91
165	A surface decorated with diblock copolymer for biomolecular conjugation. Soft Matter, 2010, 6, 2616.	1.2	28
166	pH-Reversible, High-Capacity Binding of Proteins on a Substrate with Nanostructure. Langmuir, 2010, 26, 17812-17815.	1.6	35
167	Protein Adsorption and Cell Adhesion/Detachment Behavior on Dual-Responsive Silicon Surfaces Modified with Poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene Copolymer. Langmuir, 2010, 26, 8582-8588.	1.6	108
168	A Facile Approach to Modify Polyurethane Surfaces for Biomaterial Applications. Macromolecular Bioscience, 2009, 9, 1165-1168.	2.1	51
169	Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Acta Biomaterialia, 2009, 5, 1864-1871.	4.1	107
170	Protein Adsorption on Poly(<i>N</i> -vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009, 25, 2900-2906.	1.6	135
171	Fibrinolytic Poly(dimethyl siloxane) Surfaces. Macromolecular Bioscience, 2008, 8, 863-870.	2.1	41
172	Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008, 33, 1059-1087.	11.8	617
173	Generic Bioaffinity Silicone Surfaces. Bioconjugate Chemistry, 2006, 17, 21-28.	1.8	66
174	Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials, 2005, 26, 7418-7424.	5.7	143
175	Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, , 1740-1741.	2.2	6,387
176	Gold Nanoparticle-Protein Conjugate Dually-Responsive to pH and Temperature for Modulation of Enzyme Activity. SSRN Electronic Journal, 0, , .	0.4	0