## Valentina L Stolyarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1340258/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis, Vaporization and Thermodynamic Properties of Superfine<br>Nd <sub>2</sub> Hf <sub>2</sub> O <sub>7</sub> and Gd <sub>2</sub> Hf <sub>2</sub> O <sub>7</sub> .<br>European Journal of Inorganic Chemistry, 2013, 2013, 4636-4644.                                          | 1.0 | 44        |
| 2  | The Ti3SiC2 max phases as promising materials for high temperature applications: Formation under various synthesis conditions. Materials Chemistry and Physics, 2021, 267, 124625.                                                                                                   | 2.0 | 41        |
| 3  | Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Materials Chemistry and Physics, 2015, 153, 78-87.                                                                                                                                 | 2.0 | 30        |
| 4  | Vaporization and thermodynamic properties of lanthanum hafnate. Journal of Alloys and Compounds, 2018, 735, 2348-2355.                                                                                                                                                               | 2.8 | 28        |
| 5  | High-temperature thermodynamic properties of the Al2O3-SiO2 system. Inorganic Materials, 2005, 41, 362-369.                                                                                                                                                                          | 0.2 | 27        |
| 6  | High Temperature Mass Spectrometric Study of Thermodynamic Properties of the CaO â€â€‰SiO2 System.<br>Journal of the Electrochemical Society, 1991, 138, 3710-3714.                                                                                                                  | 1.3 | 26        |
| 7  | Mass spectrometric study of thermodynamic properties in the<br>Yb <sub>2</sub> O <sub>3</sub> â€ZrO <sub>2</sub> system at high temperatures. Rapid Communications<br>in Mass Spectrometry, 2014, 28, 109-114.                                                                       | 0.7 | 25        |
| 8  | Mass spectrometric study of thermodynamic properties in the<br>Gd <sub>2</sub> O <sub>3</sub> ‥ <sub>2</sub> O <sub>3</sub> system at high temperatures. Rapid<br>Communications in Mass Spectrometry, 2017, 31, 538-546.                                                            | 0.7 | 24        |
| 9  | Mass spectrometric thermodynamic studies of oxide systems and materials. Russian Chemical Reviews, 2016, 85, 60-80.                                                                                                                                                                  | 2.5 | 23        |
| 10 | A mass spectrometric study of Al2O3-SiO2melts using a Knudsen cell. Rapid Communications in Mass<br>Spectrometry, 2001, 15, 836-842.                                                                                                                                                 | 0.7 | 21        |
| 11 | Thermodynamic properties and structure of ternary silicate glass-forming melts: Experimental studies and modeling. Journal of Non-Crystalline Solids, 2008, 354, 1373-1377.                                                                                                          | 1.5 | 18        |
| 12 | Highâ€ŧemperature mass spectrometric study of the vaporization processes and thermodynamic<br>properties in the Gd <sub>2</sub> O <sub>3</sub> ‥ <sub>2</sub> O <sub>3</sub> â€HfO <sub>2</sub><br>system. Rapid Communications in Mass Spectrometry, 2017, 31, 1137-1146.           | 0.7 | 18        |
| 13 | Thermodynamics and vaporization of ceramics based on the Y2O3-ZrO2 system studied by KEMS. Journal of Alloys and Compounds, 2019, 794, 606-614.                                                                                                                                      | 2.8 | 18        |
| 14 | High temperature mass spectrometric study of 3Al2O3 · 2SiO2. Rapid Communications in Mass<br>Spectrometry, 1994, 8, 478-480.                                                                                                                                                         | 0.7 | 17        |
| 15 | Synthesis, vaporization, and thermodynamics of ultrafine Nd2Hf2O7 powders. Russian Journal of Inorganic Chemistry, 2013, 58, 1-8.                                                                                                                                                    | 0.3 | 17        |
| 16 | High-temperature mass spectrometric study of the vaporization processes of V2 O3 and vanadium-containing slags. Rapid Communications in Mass Spectrometry, 2010, 24, 2420-2430.                                                                                                      | 0.7 | 16        |
| 17 | Mass-spectrometric study of vaporization of high refractory ceramics. Doklady Physical Chemistry, 2015, 463, 150-153.                                                                                                                                                                | 0.2 | 16        |
| 18 | Vaporization and thermodynamics of ceramics based on the<br>La <sub>2</sub> O <sub>3</sub> â€Y <sub>2</sub> O <sub>3</sub> â€HfO <sub>2</sub> system studied by the<br>highâ€temperature mass spectrometric method. Rapid Communications in Mass Spectrometry, 2018, 32,<br>686-694. | 0.7 | 16        |

| #  | Article                                                                                                                                                                                                                                                                                                     | IF      | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 19 | Thermodynamic properties of the UO2î—,ZrO2 system studied by the isothermal mass spectrometric vaporization method. Journal of Nuclear Materials, 1997, 247, 41-45.                                                                                                                                         | 1.3     | 15        |
| 20 | A Mass Spectrometric Study of the Thermodynamic Properties of Oxide Melts. Glass Physics and Chemistry, 2001, 27, 3-15.                                                                                                                                                                                     | 0.2     | 14        |
| 21 | Thermodynamic properties of silicate glasses and melts: I. System BaO-SiO2. Russian Journal of General<br>Chemistry, 2006, 76, 1522-1530.                                                                                                                                                                   | 0.3     | 14        |
| 22 | Vaporization and thermodynamics of ceramics in the<br>Y <sub>2</sub> O <sub>3</sub> â€ZrO <sub>2</sub> â€HfO <sub>2</sub> system. Rapid Communications in<br>Mass Spectrometry, 2019, 33, 1537-1546.                                                                                                        | 0.7     | 14        |
| 23 | Vaporization and thermodynamics of ceramics in the Sm 2 O 3 ‥ 2 O 3 â€HfO 2 system. Rapid<br>Communications in Mass Spectrometry, 2020, 34, e8693.                                                                                                                                                          | 0.7     | 14        |
| 24 | Mass spectrometric study of thermodynamic properties and vaporization processes in the<br>Na2Oî—,B2O3î—,GeO2 glass-forming melts. Journal of Non-Crystalline Solids, 1980, 38-39, 581-586.                                                                                                                  | 1.5     | 13        |
| 25 | Determination of the saturation vapor pressure of silicon by Knudsen cell mass spectrometry. Russian<br>Journal of Inorganic Chemistry, 2012, 57, 219-225.                                                                                                                                                  | 0.3     | 13        |
| 26 | Highâ€ŧemperature mass spectrometric study and modeling of thermodynamic properties of binary<br>glassâ€ŧorming systems containing Bi <sub>2</sub> O <sub>3</sub> . Rapid Communications in Mass<br>Spectrometry, 2014, 28, 801-810.                                                                        | 0.7     | 13        |
| 27 | Ceramics based on the Sm2O3–Y2O3 and Sm2O3–HfO2 systems at high temperatures: Thermodynamics and modeling. Materials Chemistry and Physics, 2020, 252, 123240.                                                                                                                                              | 2.0     | 13        |
| 28 | High temperature mass spectrometric study of oxide systems and materials. Rapid Communications in<br>Mass Spectrometry, 1993, 7, 1022-1032.                                                                                                                                                                 | 0.7     | 12        |
| 29 | Vaporization and Thermodynamic Properties of Melts in the Na2O–B2O3–SiO2 System. Glass Physics and Chemistry, 2002, 28, 112-116.                                                                                                                                                                            | 0.2     | 12        |
| 30 | Highâ€ŧemperature mass spectrometric study of the vaporization processes in the system<br>CaOâ€MgOâ€Al <sub>2</sub> O <sub>3</sub> â€Cr <sub>2</sub> O <sub>3</sub> â€FeO‧iO <sub>2</sub> . Ra<br>Communications in Mass Spectrometry, 2009, 23, 2233-2239.                                                 | apiol.7 | 12        |
| 31 | Highâ€temperature mass spectrometric study of the vaporization processes and thermodynamic properties of samples in the Bi <sub>2</sub> 0 <sub>3</sub> â€P <sub>2</sub> ô <sub>3</sub> â€P <sub>2</sub> ô <sub>â€SiO<sub>2</sub> system. Rapid Communications in Mass Spectrometry, 2017, 31, 111-120</sub> | 0.7     | 12        |
| 32 | Thermodynamic description of the Gd2O3-Y2O3-HfO2 and La2O3-Y2O3-HfO2 systems at high temperatures. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 65, 165-170.                                                                                                                     | 0.7     | 12        |
| 33 | Thermodynamic properties of the gaseous barium silicates BaSiO2 and BaSiO3. Journal of Chemical Thermodynamics, 2006, 38, 1706-1710.                                                                                                                                                                        | 1.0     | 11        |
| 34 | Relative volatility of borosilicate glasses: a mass spectrometric study. Rapid Communications in Mass<br>Spectrometry, 1998, 12, 1330-1334.                                                                                                                                                                 | 0.7     | 10        |
| 35 | Application of the Sanderson Method to the Calculation of Bonding Energies in Oxide Glass-Forming Systems. Glass Physics and Chemistry, 2003, 29, 517-521.                                                                                                                                                  | 0.2     | 10        |
| 36 | Thermodynamic properties of silicate glasses and melts: II. System SrO-SiO2. Russian Journal of General Chemistry, 2006, 76, 1878-1884.                                                                                                                                                                     | 0.3     | 10        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Review KEMS 2012 till 2017. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 258-266.                                                                                              | 0.7 | 10        |
| 38 | Investigation of the Physicochemical Properties of Ceramics in the Sm2O3–Y2O3–HfO2 System for<br>Developing Promising Thermal Barrier Coatings. Russian Journal of Inorganic Chemistry, 2020, 65,<br>914-923. | 0.3 | 10        |
| 39 | Optimization of the Thermodynamic Properties of the Sm2O3–Y2O3–HfO2 System at High Temperatures<br>by the Barker Method. Russian Journal of Inorganic Chemistry, 2020, 65, 773-780.                           | 0.3 | 10        |
| 40 | Mass spectrometric study of the vaporization and thermodynamic properties of components in the BaO-TiO2-SiO2 system. Glass Physics and Chemistry, 2005, 31, 132-137.                                          | 0.2 | 9         |
| 41 | On the fluctuation structure of single-phase glasses in the SrO-B2O3-SiO2 system. Glass Physics and Chemistry, 2009, 35, 455-462.                                                                             | 0.2 | 9         |
| 42 | Thermodynamic properties of silicate glasses and melts: VII. System MgO-B2O3-SiO2. Russian Journal of<br>General Chemistry, 2010, 80, 2405-2413.                                                              | 0.3 | 9         |
| 43 | Application of the Barker lattice theory to modeling of thermodynamic properties of PbO–B2O3–SiO2<br>melts. Journal of Non-Crystalline Solids, 2013, 366, 6-12.                                               | 1.5 | 9         |
| 44 | Thermodynamic properties of the La2O3-HfO2 system at high temperatures. Thermochimica Acta, 2018, 668, 87-95.                                                                                                 | 1.2 | 9         |
| 45 | Features of Thermodynamic Description of Properties of Gd2O3-Y2O3-HfO2 Based Ceramics. Russian<br>Journal of General Chemistry, 2019, 89, 475-479.                                                            | 0.3 | 9         |
| 46 | High temperature mass spectrometric study of the B2O3Al2O3 system at 1248-1850 K. Rapid<br>Communications in Mass Spectrometry, 1995, 9, 1244-1251.                                                          | 0.7 | 8         |
| 47 | Application of a QMG-420 mass spectrometer for high temperature studies. Vacuum, 1995, 46, 871-874.                                                                                                           | 1.6 | 8         |
| 48 | Vaporization studies of oxide systems using a QMS-420 mass spectrometer. Vacuum, 1998, 49, 161-165.                                                                                                           | 1.6 | 8         |
| 49 | Title is missing!. Glass Physics and Chemistry, 2001, 27, 132-147.                                                                                                                                            | 0.2 | 8         |
| 50 | Mass spectrometric study of evaporation of alumina in the presence of carbon. Doklady Chemistry, 2004, 399, 257-260.                                                                                          | 0.2 | 8         |
| 51 | On the structure of glasses in the BaO-B2O3-SiO2 system. Class Physics and Chemistry, 2010, 36, 554-560.                                                                                                      | 0.2 | 8         |
| 52 | Samarium Oxide at High Temperatures: Sublimation and Thermodynamics. Russian Journal of General<br>Chemistry, 2020, 90, 874-876.                                                                              | 0.3 | 8         |
| 53 | Thermodynamic Properties of the MgO–SiO2System by High-Temperature Mass Spectrometry. Doklady<br>Physical Chemistry, 2004, 399, 275-277.                                                                      | 0.2 | 7         |
| 54 | Mass Spectrometric Study of the Thermodynamic Properties of Melts in the Cs2O-B2O3 System. Glass Physics and Chemistry, 2005, 31, 789-796.                                                                    | 0.2 | 7         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Phase equilibria and thermodynamic properties of components in the Cs2O-B2O3-SiO2 system at high temperatures. Glass Physics and Chemistry, 2006, 32, 55-62.                                                                           | 0.2 | 7         |
| 56 | On the structure of glass of the PbO-B2O3-SiO2 and CdO-SiO2-B2O3 systems. Glass Physics and Chemistry, 2013, 39, 624-633.                                                                                                              | 0.2 | 7         |
| 57 | Thermodynamic properties of silicate glasses and melts: IX. Bi2O3-SiO2 system. Russian Journal of<br>General Chemistry, 2014, 84, 419-423.                                                                                             | 0.3 | 7         |
| 58 | Synthesis, vaporization and thermodynamic properties of superfine yttrium aluminum garnet. Journal of Alloys and Compounds, 2018, 764, 397-405.                                                                                        | 2.8 | 7         |
| 59 | Production of Ceramics Based on the Y2O3–ZrO2–HfO2 System for Casting Molds. Russian Journal of<br>Inorganic Chemistry, 2019, 64, 934-940.                                                                                             | 0.3 | 7         |
| 60 | Physicochemical Properties of Sm2O3–ZrO2–HfO2 Ceramics for the Development of Promising<br>Thermal Barrier Coatings. Russian Journal of Inorganic Chemistry, 2021, 66, 789-797.                                                        | 0.3 | 7         |
| 61 | Mass spectrometric study of vaporization processes and thermodynamic properties in the GeO2·P2O5 system. Rapid Communications in Mass Spectrometry, 1990, 4, 510-512.                                                                  | 0.7 | 6         |
| 62 | A Knudsen Effusion High Temperature Assembly for a Quadrupole QMG-420 Mass Spectrometer. Rapid<br>Communications in Mass Spectrometry, 1997, 11, 1425-1429.                                                                            | 0.7 | 6         |
| 63 | High-Temperature Mass Spectrometric Study of the CaO-TiO2-SiO2 System. High Temperature Materials and Processes, 2000, 19, 345-356.                                                                                                    | 0.6 | 6         |
| 64 | Calculations of the Thermodynamic Properties of Glasses and Melts in the Na2O-SiO2 and B2O3-SiO2<br>Systems on the Basis of the Generalized Lattice Theory of Associated Solutions. Glass Physics and<br>Chemistry, 2005, 31, 763-788. | 0.2 | 6         |
| 65 | Vaporization of aluminum oxide in neutral and reductive conditions. Russian Journal of General Chemistry, 2006, 76, 1693-1697.                                                                                                         | 0.3 | 6         |
| 66 | Glass transition and liquidus temperatures of low-alkali rubidium and cesium borosilicate glasses from the small-angle X-ray scattering data. Glass Physics and Chemistry, 2006, 32, 287-292.                                          | 0.2 | 6         |
| 67 | Thermodynamic properties and structure of gaseous metaborates. Glass Physics and Chemistry, 2006, 32, 353-369.                                                                                                                         | 0.2 | 6         |
| 68 | Thermodynamic Properties of silicate glasses and melts: VIII. System MgO-Al2O3-SiO2. Russian Journal of General Chemistry, 2011, 81, 2051-2061.                                                                                        | 0.3 | 6         |
| 69 | Kinetics of early stages of phase separation in glasses of the PbO-B2O3 system. Glass Physics and Chemistry, 2011, 37, 252-257.                                                                                                        | 0.2 | 6         |
| 70 | Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies. Journal of Materials Research, 2019, 34, 3326-3336.                                                                   | 1.2 | 6         |
| 71 | Thermodynamic properties of the Gd2O3-Y2O3-HfO2 system studied by high temperature Knudsen effusion mass spectrometry and optimized using the Barker lattice theory. Journal of Alloys and Compounds, 2019, 791, 1207-1212.            | 2.8 | 6         |
| 72 | Vaporization processes of borosilicate coatings studied by high temperature mass spectrometry and using an induction plasma generator. Rapid Communications in Mass Spectrometry, 1993, 7, 127-131.                                    | 0.7 | 5         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vaporization features of oxide systems studied by high-temperature mass spectrometry. Journal of<br>Nuclear Materials, 1997, 247, 7-10.                                                                         | 1.3 | 5         |
| 74 | Mass Spectrometric Study of the Thermodynamic Properties of Melts in the CaO–TiO2–SiO2System.<br>Glass Physics and Chemistry, 2004, 30, 142-150.                                                                | 0.2 | 5         |
| 75 | Investigation into the vaporization of Al2O3 in the presence of carbon at high temperatures. Glass Physics and Chemistry, 2006, 32, 191-195.                                                                    | 0.2 | 5         |
| 76 | Thermodynamic properties of silicate glasses and melts: VI. System SrO-B2O3-SiO2. Russian Journal of<br>General Chemistry, 2009, 79, 1778-1784.                                                                 | 0.3 | 5         |
| 77 | Thermodynamic properties of the system MgO-B2O3 melts. Russian Journal of General Chemistry, 2010,<br>80, 689-694.                                                                                              | 0.3 | 5         |
| 78 | Studies of glass structure in the system Bi2O3-B2O3-SiO2. Glass Physics and Chemistry, 2015, 41, 247-253.                                                                                                       | 0.2 | 5         |
| 79 | Reactions of niobium silicide melt with refractory ceramics. Russian Journal of General Chemistry, 2016, 86, 2105-2108.                                                                                         | 0.3 | 5         |
| 80 | High Temperature Study of Oxide Systems: Thermal Analysis and Knudsen Effusion Mass Spectrometry.<br>Russian Journal of Physical Chemistry A, 2020, 94, 2640-2647.                                              | 0.1 | 5         |
| 81 | Thermodynamics and vaporization of the Sm2O3–ZrO2 system studied by Knudsen effusion mass spectrometry. Journal of Physics and Chemistry of Solids, 2021, 156, 110156.                                          | 1.9 | 5         |
| 82 | A high temperature mass spectrometric study of the thermodynamic properties of Cu-Mg solid alloys.<br>Rapid Communications in Mass Spectrometry, 1998, 12, 1133-1136.                                           | 0.7 | 4         |
| 83 | Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XVI. Iron(II) Salts. Russian Journal of General Chemistry, 2005, 75, 325-331.                                                                 | 0.3 | 4         |
| 84 | Thermochemical Study of Gaseous Salts of Oxygen-containing Acids: XVIII. Cobalt(II) Salts. Russian<br>Journal of General Chemistry, 2005, 75, 1186-1192.                                                        | 0.3 | 4         |
| 85 | Thermodynamic properties of gaseous barium silicates. Doklady Physical Chemistry, 2006, 407, 85-87.                                                                                                             | 0.2 | 4         |
| 86 | A mass spectrometric study of evaporation processes and thermodynamic properties of SrO-SiO2 melts. Doklady Physical Chemistry, 2006, 411, 309-311.                                                             | 0.2 | 4         |
| 87 | Thermodynamic properties of silicate glasses and melts: V. Systems CaB2O4-CaSiO3 and Ca2B2O5-CaSiO3. Russian Journal of General Chemistry, 2008, 78, 1877-1881.                                                 | 0.3 | 4         |
| 88 | Mass spectrometric study of ceramics in the<br>Sm <sub>2</sub> O <sub>3</sub> â€ZrO <sub>2</sub> â€HfO <sub>2</sub> system at high temperatures. Rapid<br>Communications in Mass Spectrometry, 2021, 35, e9066. | 0.7 | 4         |
| 89 | High Temperature Mass Spectrometric Study of Thermodynamic Properties and Vaporization Processes of Oxide Systems: Experiment and Modeling. The Open Thermodynamics Journal, 2013, 7, 57-70.                    | 0.6 | 4         |
| 90 | The hafnia-based ceramics containing lanthana or samaria: mass spectrometric study and calculation of the thermodynamic properties at high temperatures. Materials Today Communications, 2021, 29, 102952.      | 0.9 | 4         |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A high-temperature mass spectrometric study of the vaporization processes of fluxes based on<br>CaO-CaCl2 and CaO-CaF2 systems. Rapid Communications in Mass Spectrometry, 1998, 12, 1335-1343.                                                        | 0.7 | 3         |
| 92  | On the Structure of Low-Alkali Rubidium and Cesium Borate Glasses and Melts. Glass Physics and Chemistry, 2003, 29, 267-275.                                                                                                                           | 0.2 | 3         |
| 93  | Mass Spectrometric Study of the Thermodynamic Properties of Melts in the Rb2O–B2O3System. Glass Physics and Chemistry, 2004, 30, 151-156.                                                                                                              | 0.2 | 3         |
| 94  | Thermochemical Study of Gaseous Salts of Oxygen-Containing Acids: XV. Manganese Molybdates and<br>Tungstates. Russian Journal of General Chemistry, 2004, 74, 983-988.                                                                                 | 0.3 | 3         |
| 95  | Mass spectrometric study of evaporation processes and thermodynamic properties of BaO-SiO2 melts.<br>Doklady Physical Chemistry, 2006, 409, 186-187.                                                                                                   | 0.2 | 3         |
| 96  | Thermodynamic properties of gaseous strontium silicates. Doklady Physical Chemistry, 2006, 411, 315-316.                                                                                                                                               | 0.2 | 3         |
| 97  | Thermodynamic properties of melts of SrO-B2O3 and BaO-B2O3 systems. Russian Journal of General Chemistry, 2006, 76, 1687-1692.                                                                                                                         | 0.3 | 3         |
| 98  | Thermodynamic properties of silicate glasses and melts: III. System Rb2O-B2O3-SiO2. Russian Journal of<br>General Chemistry, 2007, 77, 997-1001.                                                                                                       | 0.3 | 3         |
| 99  | Thermodynamic properties of silicate glasses and melts: IV. System BaO-B2O3-SiO2. Russian Journal of<br>General Chemistry, 2008, 78, 14-18.                                                                                                            | 0.3 | 3         |
| 100 | Thermodynamic properties of melts of the system CaO-B2O3. Russian Journal of General Chemistry, 2008, 78, 1139-1145.                                                                                                                                   | 0.3 | 3         |
| 101 | Highâ€ŧemperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbOâ€B <sub>2</sub> 0 <sub>3</sub> â€6iO <sub>2</sub> system. Rapid Communications in Mass Spectrometry, 2013, 27, 1559-1566.    | 0.7 | 3         |
| 102 | Vaporization Processes and Thermodynamic Properties of Oxide Systems Studied by High Temperature<br>Mass Spectrometry. ECS Transactions, 2013, 46, 55-67.                                                                                              | 0.3 | 3         |
| 103 | Highâ€ŧemperature mass spectrometric study of vaporization and thermodynamics of the<br>Cs <sub>2</sub> Oâ€8 <sub>2</sub> O <sub>3</sub> system: Review and experimental investigation. Rapid<br>Communications in Mass Spectrometry, 2021, 35, e9079. | 0.7 | 3         |
| 104 | Vaporization and thermodynamics of the Cs 2 O–MoO 3 system studied using highâ€ŧemperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e9097.                                                                              | 0.7 | 3         |
| 105 | The viscosity of Bi2O3–B2O3–SiO2 glasses and melts. Glass Technology: European Journal of Glass<br>Science and Technology Part A, 2019, 60, 105-110.                                                                                                   | 0.2 | 3         |
| 106 | Thermodynamic approach for prediction of oxide materials properties at high temperatures. Pure and Applied Chemistry, 2020, 92, 1259-1264.                                                                                                             | 0.9 | 3         |
| 107 | Vaporization and thermodynamics of glasses and glass-forming melts in ternary oxide systems. Applied Solid State Chemistry, 2017, 1, 26-30.                                                                                                            | 0.1 | 3         |
| 108 | High-temperature Mass Spectrometric Study of the Vaporization Processes in the DyF3-Dy2O3 System.<br>Rapid Communications in Mass Spectrometry, 1996, 10, 781-789.                                                                                     | 0.7 | 2         |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Title is missing!. Glass Physics and Chemistry, 2003, 29, 451-455.                                                                                                                                                               | 0.2 | 2         |
| 110 | Gaseous Manganese Molybdates and Tungstates. Doklady Physical Chemistry, 2004, 395, 80-83.                                                                                                                                       | 0.2 | 2         |
| 111 | Thermodynamic Properties of Gaseous Strontium and Barium Ferrates. Doklady Physical Chemistry, 2004, 397, 158-160.                                                                                                               | 0.2 | 2         |
| 112 | Specifics of Light Scattering after Temperature Jumps in Oxide Glasses in the Glass Transition Range.<br>Doklady Physical Chemistry, 2005, 405, 221-223.                                                                         | 0.2 | 2         |
| 113 | Vaporization processes and thermodynamic properties of oxide systems at high temperatures:<br>Experimental study and modeling. Glass Physics and Chemistry, 2005, 31, 30-43.                                                     | 0.2 | 2         |
| 114 | Thermodynamic properties of gaseous salts formed by Nickel(II) oxide. Doklady Physical Chemistry, 2006, 406, 27-29.                                                                                                              | 0.2 | 2         |
| 115 | Thermochemical study of gaseous salts of oxygen-containing acids: XIX. Nickel(II) salts. Russian<br>Journal of General Chemistry, 2006, 76, 340-345.                                                                             | 0.3 | 2         |
| 116 | Mass spectrometric investigation of the vaporization and thermodynamic properties of components in the BaO-SiO2 system. Glass Physics and Chemistry, 2006, 32, 533-542.                                                          | 0.2 | 2         |
| 117 | Mass spectrometric investigation of the thermodynamic properties of glass melts in the<br>Cs2O-B2O3-SiO2 system at high temperatures. Glass Physics and Chemistry, 2006, 32, 543-549.                                            | 0.2 | 2         |
| 118 | Simulation of thermodynamic properties of borosilicate melts containing alkaline-earth metal oxides.<br>Russian Journal of General Chemistry, 2010, 80, 2414-2424.                                                               | 0.3 | 2         |
| 119 | Highâ€ŧemperature mass spectrometric study of thermodynamic properties in the<br>UO <sub>2</sub> –ZrO <sub>2</sub> system. Rapid Communications in Mass Spectrometry, 2020, 34,<br>e8862.                                        | 0.7 | 2         |
| 120 | Simultaneous thermal analysis of samples in the Bi2O3-P2O5-SiO2 system: Comparison with the KEMS data. Thermochimica Acta, 2020, 685, 178531.                                                                                    | 1.2 | 2         |
| 121 | Samarium zirconate: Thermodynamics and vaporization at high temperatures. Materials Today<br>Communications, 2021, 27, 102200.                                                                                                   | 0.9 | 2         |
| 122 | High Temperature Mass Spectrometric Studies of the Thermodynamic Properties of Glass-Forming Systems. , 1990, , 405-414.                                                                                                         |     | 2         |
| 123 | Highâ€ŧemperature mass spectrometric study of the thermodynamic properties in the<br>Sm <sub>2</sub> O <sub>3</sub> â€ZrO <sub>2</sub> â€HfO <sub>2</sub> system. Rapid Communications in<br>Mass Spectrometry, 2022, 36, e9238. | 0.7 | 2         |
| 124 | High-temperature mass spectrometric study of the thermodynamic properties of the CaOAl2o3 system. Rapid Communications in Mass Spectrometry, 1995, 9, 686-692.                                                                  | 0.7 | 1         |
| 125 | Thermodynamic Properties of Gaseous Iron(II) Salts. Doklady Physical Chemistry, 2004, 398, 208-210.                                                                                                                              | 0.2 | 1         |
| 126 | Mass spectrometric study of the Al2O3-SiO2 System. Doklady Physical Chemistry, 2004, 399, 302-304.                                                                                                                               | 0.2 | 1         |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Temperature dependences of the viscosity for some glasses in the Cs2O-B2O3-SiO2 system. Glass Physics and Chemistry, 2006, 32, 52-54.                                                                                                            | 0.2 | 1         |
| 128 | Calculations of the thermodynamic properties of glasses and melts in the Cs2O-B2O3-SiO2 system in the framework of the generalized lattice theory of associated solutions. Glass Physics and Chemistry, 2006, 32, 181-190.                       | 0.2 | 1         |
| 129 | Simulation of the thermodynamic properties of glass melts in the Cs2O-B2O3-SiO2 system in the concentration range 0.06–0.50 mole fractions of Cs2O at a temperature of 1020 K. Glass Physics and Chemistry, 2006, 32, 550-564.                   | 0.2 | 1         |
| 130 | Thermochemical study of gaseous salts of oxygen-containing acids: XXV. Magnesium borates. Russian<br>Journal of General Chemistry, 2010, 80, 379-384.                                                                                            | 0.3 | 1         |
| 131 | Thermodynamic properties and phase equilibria in the system MgO-Al2O3-SiO2 at high temperatures.<br>Russian Chemical Bulletin, 2012, 61, 809-812.                                                                                                | 0.4 | 1         |
| 132 | High Temperature Mass Spectrometric Study of the TiO2–Al2O3 System. Russian Journal of General Chemistry, 2021, 91, 1999-2007.                                                                                                                   | 0.3 | 1         |
| 133 | Constitution and Thermodynamic Properties of Phosphates of Group IV Elements (Si, Ge, Ti, Zr, Hf).<br>Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 51, 424-424.                                                                | 0.8 | 0         |
| 134 | Thermophysical characteristics of glasses based on the Na2O -B2O3-SiO2 system. Journal of Optical<br>Technology (A Translation of Opticheskii Zhurnal), 2002, 69, 207.                                                                           | 0.2 | 0         |
| 135 | Study of the refractive-index variation of glasses in the B2O3âÃ,â,¬Ã," SiO2 system during. Journal of<br>Optical Technology (A Translation of Opticheskii Zhurnal), 2003, 70, 58.                                                               | 0.2 | 0         |
| 136 | Thermodynamic properties of gaseous salts formed by cobalt(II) oxide. Doklady Physical Chemistry, 2005, 401, 41-43.                                                                                                                              | 0.2 | 0         |
| 137 | Simulation of the thermodynamic properties of glass-forming melts in the Na2O-B2O3-SiO2 system in the framework of the generalized lattice theory of associated solutions. Glass Physics and Chemistry, 2006, 32, 422-435.                       | 0.2 | 0         |
| 138 | Design and physicochemical studies of advanced materials at the Saint Petersburg State University.<br>Russian Chemical Reviews, 2016, 85, E01-E01.                                                                                               | 2.5 | 0         |
| 139 | On the Glass Structure of the Bi2O3–SiO2–GeO2 System. Glass Physics and Chemistry, 2020, 46, 234-241.                                                                                                                                            | 0.2 | 0         |
| 140 | High-temperature behavior of oxide systems containing rare-earth elements. Chemical Engineering, 2021, 22, 123-133.                                                                                                                              | 0.1 | 0         |
| 141 | Mass spectrometric study and modeling of the thermodynamic properties in the<br>Gd <sub>2</sub> O <sub>3</sub> â€ZrO <sub>2</sub> â€HfO <sub>2</sub> system at high temperatures. Rapid<br>Communications in Mass Spectrometry, 2022, 36, e9306. | 0.7 | 0         |
| 142 | Thermodynamics and vaporization of ceramics based on the Gd2O3-ZrO2 and Gd2O3-HfO2 systems studied by KEMS. Journal of Alloys and Compounds, 2022, 908, 164575.                                                                                  | 2.8 | 0         |