Lai Yee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1340212/publications.pdf

Version: 2024-02-01

331259 329751 1,863 37 21 37 citations h-index g-index papers 39 39 39 2361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 163-180.	2.7	335
2	Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, 2017, 236, 155-163.	4.8	156
3	Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. Journal of Environmental Sciences, 2019, 79, 174-199.	3.2	136
4	Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environmental Research, 2019, 168, 241-253.	3.7	132
5	Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Chemical Engineering Research and Design, 2018, 116, 262-286.	2.7	124
6	Effective removal of Acid Blue 113 dye using overripe Cucumis sativus peel as an eco-friendly biosorbent from agricultural residue. Journal of Cleaner Production, 2016, 113, 194-203.	4.6	102
7	Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresource Technology, 2019, 274, 134-144.	4.8	99
8	Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresource Technology, 2017, 245, 656-664.	4.8	96
9	Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 150-162.	2.7	63
10	Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicology and Environmental Safety, 2016, 127, 61-70.	2.9	61
11	Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresource Technology, 2020, 309, 123296.	4.8	58
12	Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 57-66.	2.7	44
13	Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: Equilibrium, kinetic, thermodynamics and mechanism studies. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1764-1772.	2.7	42
14	Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresource Technology, 2017, 245, 944-953.	4.8	41
15	Evaluation of Abelmoschus esculentus (lady's finger) seed as a novel biosorbent for the removal of Acid Blue 113 dye from aqueous solutions. Chemical Engineering Research and Design, 2015, 94, 329-338.	2.7	39
16	Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber. Journal of Environmental Management, 2019, 247, 38-45.	3.8	35
17	Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution. Clean Technologies and Environmental Policy, 2012, 14, 273-280.	2.1	31
18	Kinetics and Mechanisms for Copyrolysis of Palm Empty Fruit Bunch Fiber (EFBF) with Palm Oil Mill Effluent (POME) Sludge. Energy & Energy	2.5	31

#	Article	IF	CITATIONS
19	Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. Journal of Environmental Sciences, 2012, 24, 1559-1568.	3.2	30
20	Valorization of spent brewery yeast biosorbent with sonication-assisted adsorption for dye removal in wastewater treatment. Environmental Research, 2022, 204, 112385.	3.7	29
21	Enhancement of Palm Kernel Shell Fuel Properties via Wet Torrefaction: Response Surface, Optimization, and Combustion Studies. Energy & Samp; Fuels, 2019, 33, 11009-11020.	2.5	22
22	Insight into Co-pyrolysis of Palm Kernel Shell (PKS) with Palm Oil Sludge (POS): Effect on Bio-oil Yield and Properties. Waste and Biomass Valorization, 2020, 11, 5877-5889.	1.8	20
23	<i>Luffa acutangula</i> peel as an effective natural biosorbent for malachite green removal in aqueous media: equilibrium, kinetic and thermodynamic investigations. Desalination and Water Treatment, 2016, 57, 7302-7311.	1.0	19
24	Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies. Materials Science for Energy Technologies, 2020, 3, 601-610.	1.0	17
25	Catalytic pyrolysis of cellulose with oxides: effects on physical properties and reaction pathways. Clean Technologies and Environmental Policy, 2019, 21, 1629-1643.	2.1	15
26	Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal. Environmental Science and Pollution Research, 2021, 28, 40608-40622.	2.7	14
27	Applicability of a novel and highly effective adsorbent derived from industrial palm oil mill sludge for copper sequestration: Central composite design optimisation and adsorption performance evaluation. Journal of Environmental Chemical Engineering, 2021, 9, 105968.	3.3	13
28	Usage of a new macro-hierarchical graphene sponge in batch adsorption and packed column configuration for efficient decontamination of cadmium in aqueous environment. Journal of Environmental Chemical Engineering, 2021, 9, 106057.	3.3	11
29	Synthesis of a highly recoverable 3D MnO2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue. Journal of Environmental Sciences, 2022, 118, 194-203.	3.2	9
30	Comparison of Bio-Oil Properties from Non-Catalytic and In-Situ Catalytic Fast Pyrolysis of Palm Empty Fruit Bunch. Materials Today: Proceedings, 2018, 5, 23456-23465.	0.9	8
31	Kinetics and mechanisms for catalytic pyrolysis of empty fruit bunch fibre and cellulose with oxides. SN Applied Sciences, 2020, 2, 1 .	1.5	7
32	Esterification and neutralization of bio-oil from palm empty fruit bunch fibre with calcium oxide. Bioresource Technology Reports, 2020, 12, 100560.	1.5	6
33	Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Materials Science for Energy Technologies, 2021, 4, 211-223.	1.0	5
34	Enhancement of fuel properties of yard waste through dry torrefaction. Materials Science for Energy Technologies, 2021, 4, 156-165.	1.0	4
35	Evaluation of industrial palm oil sludge as an effective green adsorbing substrate for toxic aqueous cadmium removal. Materials Science for Energy Technologies, 2021, 4, 224-235.	1.0	2
36	The introduction of an autumn and spring activity week into the first year of a chemical engineering undergraduate program in Malaysia. Education for Chemical Engineers, 2012, 7, e125-e132.	2.8	1

#	Article	IF	CITATIONS
37	Improved physical properties and in vitro biocompatibility of chitosan composite scaffolds incorporated with a green filler on bone cells. Clean Technologies and Environmental Policy, 2020, 22, 701-712.	2.1	1