Andreas Schober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1340101/publications.pdf

Version: 2024-02-01

98 papers 11,961 citations

54 h-index ³⁶⁰⁰⁸
97
g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked 14881 citing authors

#	Article	IF	CITATIONS
1	Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection. Science Signaling, 2009, 2, ra81.	1.6	1,165
2	MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13, 587-596.	15.2	1,065
3	Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine, 2003, 9, 61-67.	15.2	931
4	Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 2014, 124, 2136-2146.	3.9	803
5	MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine, 2014, 20, 368-376.	15. 2	527
6	MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation, 2012, 122, 4190-4202.	3.9	436
7	Protective Role of CXC Receptor 4/CXC Ligand 12 Unveils the Importance of Neutrophils in Atherosclerosis. Circulation Research, 2008, 102, 209-217.	2.0	363
8	SDF-1α/CXCR4 Axis Is Instrumental in Neointimal Hyperplasia and Recruitment of Smooth Muscle Progenitor Cells. Circulation Research, 2005, 96, 784-791.	2.0	345
9	Deposition of Platelet RANTES Triggering Monocyte Recruitment Requires P-Selectin and Is Involved in Neointima Formation After Arterial Injury. Circulation, 2002, 106, 1523-1529.	1.6	332
10	Chemokines in Vascular Dysfunction and Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1950-1959.	1.1	237
11	Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1997-2008.	1.1	229
12	Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood, 2015, 125, 3202-3212.	0.6	205
13	MicroRNA-126, -145, and -155. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 449-454.	1.1	202
14	The <i>>microRNA-342-5p</i> >Fosters Inflammatory Macrophage Activation Through an Akt1- and <i>>microRNA-155</i> >–Dependent Pathway During Atherosclerosis. Circulation, 2013, 127, 1609-1619.	1.6	193
15	Crucial Role of Stromal Cell–Derived Factor-1α in Neointima Formation After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2003, 108, 2491-2497.	1.6	190
16	Lipoprotein-Derived Lysophosphatidic Acid Promotes Atherosclerosis by Releasing CXCL1Âfrom the Endothelium. Cell Metabolism, 2011, 13, 592-600.	7.2	176
17	Stabilization of Atherosclerotic Plaques by Blockade of Macrophage Migration Inhibitory Factor After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2004, 109, 380-385.	1.6	162
18	Mechanical Activation of Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ Drives Endothelial Dysfunction at Atheroprone Sites. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2087-2101.	1.1	154

#	Article	IF	CITATIONS
19	Oxidized Phospholipids Trigger Atherogenic Inflammation in Murine Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 633-638.	1.1	138
20	Chemokines in vascular remodeling. Thrombosis and Haemostasis, 2007, 97, 730-737.	1.8	134
21	MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAPâ€₹0 signaling, and lymphocyte chemotaxis. FASEB Journal, 2015, 29, 4497-4511.	0.2	129
22	Endothelial Hypoxia-Inducible Factor- \hat{l}_{\pm} Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a. Hypertension, 2015, 66, 1220-1226.	1.3	128
23	Crucial Role of the CCL2/CCR2 Axis in Neointimal Hyperplasia After Arterial Injury in Hyperlipidemic Mice Involves Early Monocyte Recruitment and CCL2 Presentation on Platelets. Circulation Research, 2004, 95, 1125-1133.	2.0	125
24	MicroRNAs in flow-dependent vascular remodelling. Cardiovascular Research, 2013, 99, 294-303.	1.8	119
25	Double-Edged Role of the CXCL12/CXCR4 Axis in Experimental Myocardial Infarction. Journal of the American College of Cardiology, 2011, 58, 2415-2423.	1.2	114
26	Neointimal Smooth Muscle Cells Display a Proinflammatory Phenotype Resulting in Increased Leukocyte Recruitment Mediated by P-Selectin and Chemokines. Circulation Research, 2004, 94, 776-784.	2.0	110
27	Reduction of the aortic inflammatory response in spontaneous atherosclerosis by blockade of macrophage migration inhibitory factor (MIF). Atherosclerosis, 2006, 184, 28-38.	0.4	107
28	Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nature Communications, 2016, 7, 10521.	5.8	105
29	Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nature Communications, 2020, 11, 214.	5 . 8	103
30	Regulation of <i>Csf1r</i> and <i>Bcl6</i> in Macrophages Mediates the Stage-Specific Effects of MicroRNA-155 on Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 796-803.	1.1	102
31	MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 361-374.	6.1	101
32	The role of microRNAs in arterial remodelling. Thrombosis and Haemostasis, 2012, 107, 611-618.	1.8	100
33	Pathogenic arterial remodeling: the good and bad of microRNAs. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1050-H1059.	1.5	97
34	Expression of HIF-1α in Injured Arteries Controls SDF-1α–Mediated Neointima Formation in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2540-2547.	1.1	88
35	Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. Journal of Cellular and Molecular Medicine, 2006, 10, 727-733.	1.6	87
36	Lysophosphatidic acid in atherosclerotic diseases. British Journal of Pharmacology, 2012, 167, 465-482.	2.7	80

3

#	Article	IF	Citations
37	Involvement of JAM-A in Mononuclear Cell Recruitment on Inflamed or Atherosclerotic Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 729-735.	1.1	79
38	Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Research in Cardiology, 2013, 108, 310.	2.5	79
39	Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circulation Research, 2017, 121, 354-367.	2.0	79
40	Dicer in Macrophages Prevents Atherosclerosis by Promoting Mitochondrial Oxidative Metabolism. Circulation, 2018, 138, 2007-2020.	1.6	79
41	CXCL12 Promotes the Stabilization of Atherosclerotic Lesions Mediated by Smooth Muscle Progenitor Cells in <i>Apoe</i> -Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 679-686.	1.1	75
42	Blockade of Keratinocyte-Derived Chemokine Inhibits Endothelial Recovery and Enhances Plaque Formation After Arterial Injury in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1891-1896.	1.1	74
43	SDF-1α-Mediated Tissue Repair by Stem Cells: A Promising Tool in Cardiovascular Medicine?. Trends in Cardiovascular Medicine, 2006, 16, 103-108.	2.3	73
44	Mechanisms of MicroRNAs in Atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 583-616.	9.6	73
45	Chemokine-like functions of MIF in atherosclerosis. Journal of Molecular Medicine, 2008, 86, 761-770.	1.7	71
46	Chemokines and microRNAs in atherosclerosis. Cellular and Molecular Life Sciences, 2015, 72, 3253-3266.	2.4	71
47	MicroRNA regulation of macrophages in human pathologies. Cellular and Molecular Life Sciences, 2016, 73, 3473-3495.	2.4	71
48	Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.	2.0	67
49	Mechanisms of Monocyte Recruitment in Vascular Repair After Injury. Antioxidants and Redox Signaling, 2005, 7, 1249-1257.	2.5	64
50	HIF-1α (Hypoxia-Inducible Factor-1α) Promotes Macrophage Necroptosis by Regulating miR-210 and miR-383. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 583-596.	1.1	64
51	NADPH-Diaphorase in the central nervous system of the larval lamprey (Lampetra planeri). Journal of Comparative Neurology, 1994, 345, 94-104.	0.9	63
52	Lysophosphatidic Acid Receptors LPA 1 and LPA 3 Promote CXCL12-Mediated Smooth Muscle Progenitor Cell Recruitment in Neointima Formation. Circulation Research, 2010, 107, 96-105.	2.0	61
53	Activation of CXCR7 Limits Atherosclerosis and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose Tissue. Circulation, 2014, 129, 1244-1253.	1.6	61
54	MicroRNA-specific regulatory mechanisms in atherosclerosis. Journal of Molecular and Cellular Cardiology, 2015, 89, 35-41.	0.9	58

#	Article	IF	CITATIONS
55	Chemokines in vascular remodeling. Thrombosis and Haemostasis, 2007, 97, 730-7.	1.8	58
56	Deficiency of Endothelial <i>Cxcr4</i> Reduces Reendothelialization and Enhances Neointimal Hyperplasia After Vascular Injury in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1209-1220.	1.1	57
57	miR-103 promotes endothelial maladaptation by targeting IncWDR59. Nature Communications, 2018, 9, 2645.	5. 8	57
58	Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 715-721.	3. 3	52
59	Peripheral CD34+ Cells and the Risk of In-Stent Restenosis in Patients With Coronary Heart Disease. American Journal of Cardiology, 2005, 96, 1116-1122.	0.7	51
60	Central projections of the nervus terminalis and the nervus praeopticus in the lungfish brain revealed by nitric oxide synthase. Journal of Comparative Neurology, 1994, 349, 1-19.	0.9	50
61	MicroRNA-Based Therapy of GATA2-Deficient Vascular Disease. Circulation, 2016, 134, 1973-1990.	1.6	46
62	Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis. Scientific Reports, 2017, 7, 45263.	1.6	44
63	The response of heat shock proteins 25 and 72 to ischaemia in different kidney zones. Pflugers Archiv European Journal of Physiology, 1997, 434, 292-299.	1.3	43
64	A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury. Journal of Thrombosis and Haemostasis, 2008, 6, 1812-1815.	1.9	41
65	Hyperlipidemia-Induced MicroRNA-155-5p Improves \hat{l}^2 -Cell Function by Targeting (i>Mafb < /i>. Diabetes, 2017, 66, 3072-3084.	0.3	41
66	Adult progenitor cells in vascular remodeling during atherosclerosis. Biological Chemistry, 2008, 389, 837-844.	1.2	36
67	Virtual Elastic Sphere Processing Enables Reproducible Quantification of Vessel Stenosis at CT and MR Angiography. Radiology, 2011, 260, 709-717.	3.6	36
68	MicroRNA signatures in cardiac biopsies and detection of allograft rejection. Journal of Heart and Lung Transplantation, 2018, 37, 1329-1340.	0.3	34
69	Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing <scp>SDF</scp> â€I in a rat model. Journal of Cellular and Molecular Medicine, 2012, 16, 2311-2320.	1.6	31
70	MicroRNAs and the response to injury in atherosclerosis. Hamostaseologie, 2015, 35, 142-150.	0.9	27
71	High Expression of C5L2 Correlates with High Proinflammatory Cytokine Expression in Advanced Human Atherosclerotic Plaques. American Journal of Pathology, 2014, 184, 2123-2133.	1.9	26
72	MicroRNA-21 Controls Circadian Regulation of Apoptosis in Atherosclerotic Lesions. Circulation, 2021, 144, 1059-1073.	1.6	26

#	Article	IF	Citations
73	Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer. International Journal of Molecular Sciences, 2018, 19, 1756.	1.8	25
74	CD34+CD140b+ cells and circulating CXCL12 correlate with the angiographically assessed severity of cardiac allograft vasculopathy. European Heart Journal, 2011, 32, 476-484.	1.0	24
75	Dexamethasone and Restenosis After Coronary Stent Implantation: New Indication for an Old Drug?. Current Pharmaceutical Design, 2004, 10, 349-355.	0.9	22
76	The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation. Thrombosis and Haemostasis, 2012, 107, 356-368.	1.8	22
77	Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cellular and Molecular Life Sciences, 2017, 74, 359-372.	2.4	20
78	Effect of ischemia on localization of heat shock protein 25 in kidney. Kidney International, 1998, 54, S174-S176.	2.6	19
79	Circulating miRNAs: messengers on the move in cardiovascular disease. Thrombosis and Haemostasis, 2012, 108, 590-591.	1.8	13
80	Regulatory Non-coding RNAs in Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 463-492.	0.9	13
81	Endothelial ENPP2 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 1023-1036.	1.1	12
82	MicroRNAs in vascular biology – metabolism and atherosclerosis. Thrombosis and Haemostasis, 2012, 107, 603-604.	1.8	11
83	Deletion of MFGE8 Inhibits Neointima Formation upon Arterial Damage. Thrombosis and Haemostasis, 2018, 118, 1340-1342.	1.8	10
84	Dicer promotes endothelial recovery and limits lesion formation after vascular injury through miR-126-5p. International Journal of Cardiology, 2018, 273, 199-202.	0.8	8
85	Cationic amino acid transporter mRNA expression in rat kidney and liver. Kidney International, 1998, 54, S136-S138.	2.6	5
86	Influence of osmotic stress on heat shock proteins 25 and 72 in mouse mesangial cells. Kidney International, 1998, 54, S162-S164.	2.6	5
87	Janus-Faced Role of Krüppel-Like Factor 2–Dependent Regulation of MicroRNAs in Endothelial Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1605-1606.	1.1	5
88	miR155 Deficiency Reduces Myofibroblast Density but Fails to Improve Cardiac Function after Myocardial Infarction in Dyslipidemic Mouse Model. International Journal of Molecular Sciences, 2021, 22, 5480.	1.8	5
89	Mechanisms of arterial remodeling and neointima formation: an updated view on the chemokine system. Drug Discovery Today Disease Mechanisms, 2008, 5, e293-e298.	0.8	4
90	Non-activatable mutant of inhibitor of kappa B kinase $\hat{l}\pm$ (IKK $\hat{l}\pm$) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis, 2020, 292, 23-30.	0.4	3

#	Article	IF	CITATIONS
91	MicroRNA-155 and macrophages: a fatty liaison. Cardiovascular Research, 2014, 103, 5-6.	1.8	2
92	Leptin and EPCs in Arterial Injury. Circulation Research, 2008, 103, 447-449.	2.0	1
93	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2010, 21, 284-285.	1.2	1
94	Bone Marrow–Derived Smooth Muscle Cells Are Breaking Bad in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1258-1259.	1.1	1
95	Smooth Muscle Progenitor Cells. , 2012, , 1391-1400.		1
96	Regulation of Atherosclerosis by microRNAs. Cardiac and Vascular Biology, 2017, , 1-20.	0.2	1
97	MIF and Atherosclerosis. , 2007, , 217-228.		0
98	Neointima formation after vascular injury: Is it all about CD39?. Thrombosis and Haemostasis, 2010, 103, 257-258.	1.8	0