Aldo Steinfeld

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1339908/aldo-steinfeld-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

434	21,252	76	125
papers	citations	h-index	g-index
483	23,891 ext. citations	5.8	7.42
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
434	Solar Energy in Thermochemical Processing 2022 , 315-347		O
433	Drop-in Fuels from Sunlight and Air. <i>Nature</i> , 2021 ,	50.4	20
432	Optical properties and scattering distribution of thermographic phosphors. <i>Optical Materials</i> , 2021 , 122, 111741	3.3	
431	Experimental Investigation of a Thermochemical Reactor for High-Temperature Heat Storage via Carbonation-Calcination Based Cycles. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	1
430	Reversible Phase Transformations in Novel Ce-Substituted Perovskite Oxide Composites for Solar Thermochemical Redox Splitting of CO2. <i>Advanced Energy Materials</i> , 2021 , 11, 2003532	21.8	3
429	Performance Indicators for Benchmarking Solar Thermochemical Fuel Processes and Reactors. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	6
428	High-purity nitrogen production from air by pressure swing adsorption combined with SrFeO3 redox chemical looping. <i>Chemical Engineering Journal</i> , 2021 , 421, 127734	14.7	8
427	Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000 °C. Solar Energy, 2021, 214, 72-85	6.8	12
426	Thermodynamic comparison of solar methane reforming via catalytic and redox cycle routes. <i>Solar Energy</i> , 2021 , 215, 169-178	6.8	8
425	Isothermal relaxation kinetics for the reduction and oxidation of SrFeO based perovskites. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2466-2474	3.6	13
424	High redox performance of Y0.5Ba0.5CoO3Ifor thermochemical oxygen production and separation. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 685-695	4.9	5
423	High-Temperature Thermochemical Heat Storage via the CuO/Cu2O Redox Cycle: From Material Synthesis to Packed-Bed Reactor Engineering and Cyclic Operation. <i>Energy & Company Street</i> , 2020, 34, 1677	′2 ⁴ 1678	1 2 9
422	Dual Hydrogen- and Oxygen-Transport Membrane Reactor for Solar-Driven Syngas Production. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	1
421	Additive-Manufactured Ordered Porous Structures Made of Ceria for Concentrating Solar Applications. <i>Energy Technology</i> , 2019 , 7, 1900484	3.5	14
420	Concentrated solar energy Ithe path for efficient thermal conversion to power and fuels. <i>Science Bulletin</i> , 2019 , 64, 485-486	10.6	13
419	Solar-driven co-thermolysis of CO2 and H2O promoted by in situ oxygen removal across a non-stoichiometric ceria membrane. <i>Reaction Chemistry and Engineering</i> , 2019 , 4, 1431-1438	4.9	16
418	Thermochemical energy storage via isothermal carbonation-calcination cycles of MgO-stabilized SrO in the range of 1000🛘 100 °C. <i>Solar Energy</i> , 2019 , 188, 720-729	6.8	14

417	Reticulated porous ceramic ceria structures with modified surface geometry for solar thermochemical splitting of water and carbon dioxide 2019 ,		3
416	Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project 2019 ,		7
415	A Pressurized High-Flux Solar Reactor for the Thermochemical Gasification of Charcoal Slurry II wo-Phase Flow and Heat Transfer Analysis. <i>Journal of Heat Transfer</i> , 2019 , 142,	1.8	1
414	Solar-Driven Thermochemical Production of Sustainable Liquid Fuels from H2O and CO2 in a Heliostat Field 2019 ,		3
413	Unsteady Radiative Heat Transfer Model of a Ceria Particle Suspension Undergoing Solar Thermochemical Reduction. <i>Journal of Thermophysics and Heat Transfer</i> , 2019 , 33, 63-77	1.3	5
412	Heat Transfer Model of a 50 kW Solar Receiver R eactor for Thermochemical Redox Cycling Using Cerium Dioxide. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2019 , 141,	2.3	16
411	A co-located solar receiver and thermal storage concept using silicate glass at1000fCand above: Experiments and modeling in the optically-thick regime. <i>Solar Energy</i> , 2019 , 177, 553-560	6.8	3
410	Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. <i>Journal of Energy Storage</i> , 2018 , 17, 129-13	9 ^{7.8}	72
409	Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage. <i>Applied Energy</i> , 2018 , 216, 694-708	10.7	29
408	Mimicking tetravalent dopant behavior using paired charge compensating dopants to improve the redox performance of ceria for thermochemically splitting H2O and CO2. <i>Acta Materialia</i> , 2018 , 144, 728-737	8.4	18
407	Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 2: Tests with combined sensible/latent thermal-energy storage. <i>Journal of Energy Storage</i> , 2018 , 17, 140-152	7.8	38
406	Reactive stability of promising scalable doped ceria materials for thermochemical two-step CO2 dissociation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5807-5816	13	15
405	Investigation of Na2SO4 removal from a supercritical aqueous solution in a dip-tube salt separator. Journal of Supercritical Fluids, 2018 , 133, 146-155	4.2	5
404	Solar thermal hybrids for combustion power plant: A growing opportunity. <i>Progress in Energy and Combustion Science</i> , 2018 , 64, 4-28	33.6	67
403	Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles. <i>Solar Energy</i> , 2018 , 170, 568-575	6.8	37
402	Co-production of syngas and potassium-based fertilizer by solar-driven thermochemical conversion of crop residues. <i>Fuel Processing Technology</i> , 2018 , 171, 89-99	7.2	15
401	Solar thermochemical reactor technology for splitting CO2 2018 ,		6
400	Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 18814-18831	6.7	52

399	A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock. <i>Fuel</i> , 2017 , 193, 432-443	7.1	49
398	High Redox Capacity of Al-Doped La Sr MnO Perovskites for Splitting CO and H O at Mn-Enriched Surfaces. <i>ChemSusChem</i> , 2017 , 10, 1517-1525	8.3	26
397	Coupled Concentrating Optics, Heat Transfer, and Thermochemical Modeling of a 100-kWth High-Temperature Solar Reactor for the Thermal Dissociation of ZnO. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2017 , 139,	2.3	10
396	Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. <i>Energy and Environmental Science</i> , 2017 , 10, 1142-1149	35.4	245
395	Computational screening of perovskite redox materials for solar thermochemical ammonia synthesis from N 2 and H 2 O. <i>Catalysis Today</i> , 2017 , 286, 124-130	5.3	21
394	Optimal solar dish field layouts for maximum collection and shading efficiencies. <i>Solar Energy</i> , 2017 , 144, 286-294	6.8	5
393	Exploiting kinetics to unravel the role of a ZnO diluent in the production of CO via oxidizing Zn particles with CO2. <i>Chemical Engineering Science</i> , 2017 , 165, 96-107	4.4	2
392	Tunable thermodynamic activity of La Sr Mn Al O (0 III, 0 III) perovskites for solar thermochemical fuel synthesis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4172-4182	13	42
391	Upgrading sensible-heat storage with a thermochemical storage section operated at variable pressure: An effective way toward active control of the heat-transfer fluid outflow temperature. <i>Applied Energy</i> , 2017 , 196, 51-61	10.7	22
390	Integration of a Pressurized-Air Solar Receiver Array to a Gas Turbine Power Cycle for Solar Tower Applications. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2017 , 139,	2.3	8
389	Solar-driven alumina calcination for CO2 mitigation and improved product quality. <i>Green Chemistry</i> , 2017 , 19, 2992-3005	10	19
388	Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. <i>Applied Energy</i> , 2017 , 203, 373-389	10.7	64
387	Splitting CO with a ceria-based redox cycle in a solar-driven thermogravimetric analyzer. <i>AICHE Journal</i> , 2017 , 63, 1263-1271	3.6	15
386	Reticulated porous ceria undergoing thermochemical reduction with high-flux irradiation. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 107, 439-449	4.9	59
385	Experimental observation of transient <i></i>¹⁸O interaction between snow and advective airflow under various temperature gradient conditions. <i>Cryosphere</i> , 2017 , 11, 1733-1743	5.5	16
384	Thermodynamics of paired charge-compensating doped ceria with superior redox performance for solar thermochemical splitting of H2O and CO2. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19476-19484	13	28
383	Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19901-19913	13	24
382	Solar-Driven Thermochemical Splitting of CO and Separation of CO and O across a Ceria Redox Membrane Reactor. <i>Joule</i> , 2017 , 1, 146-154	27.8	75

381	Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2017 , 56, 10300-10308	3.9	29
380	Solar kerosene from H2O and CO2 2017 ,		5
379	Does the \$ 20 Million Carbon XPRIZE Exclude Solar Technologies?. Energy Technology, 2017 , 5, 773-774	3.5	О
378	Fuels from water, CO2 and solar energy. Science Bulletin, 2017, 62, 1099-1101	10.6	22
377	Assessment of Heat Exchangers for the Integration of Concentrated Solar Energy into the Catalytic Hydrothermal Gasification of Biomass. <i>Energy Technology</i> , 2017 , 5, 2086-2099	3.5	5
376	High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation 2017 ,		3
375	Design principles of perovskites for solar-driven thermochemical splitting of CO. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15105-15115	13	23
374	Principles of doping ceria for the solar thermochemical redox splitting of H2O and CO2. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15578-15590	13	52
373	On-sun optical characterization of a solar dish concentrator based on elliptical vacuum membrane facets. <i>Solar Energy</i> , 2017 , 153, 732-743	6.8	16
372	A 6-focus high-concentration photovoltaic-thermal dish system. <i>Solar Energy</i> , 2017 , 155, 445-463	6.8	20
371	Spectral hemispherical reflectivity of nonstoichiometric cerium dioxide. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 167-171	6.4	9
370	Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells. <i>Applied Optics</i> , 2017 , 56, 3035-3052	0.2	4
369	A High-Flux Solar Parabolic Dish System for Continuous Thermochemical Fuel Production 2017,		1
368	Heat and mass transfer of temperature lacuum swing desorption for CO2 capture from air. <i>Chemical Engineering Journal</i> , 2016 , 283, 1329-1338	14.7	50
367	Experimental demonstration of high-concentration photovoltaics on a parabolic trough using tracking secondary optics. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 1410-1426	6.8	5
366	A 1.2 MWth solar parabolic trough system based on air as heat transfer fluid at 500 LC LE Engineering design, modelling, construction, and testing. <i>Solar Energy</i> , 2016 , 139, 398-411	6.8	14
365	Impact of Daily StartupBhutdown Conditions on the Production of Solar Methanol over a Commercial CuInOIAl2O3 Catalyst. <i>Energy Technology</i> , 2016 , 4, 565-572	3.5	10
364	The effect of the gasBolid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant. <i>Energy and Environmental Science</i> , 2016 , 9, 1375-1389	35.4	43

363	Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. <i>Acta Materialia</i> , 2016 , 103, 700-710	8.4	97
362	High-concentration solar dishes based on pneumatic reflecting membranes. <i>Solar Energy</i> , 2016 , 124, 89-100	6.8	7
361	Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators. <i>Data in Brief</i> , 2016 , 6, 184-8	1.2	7
360	Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 144, 509-522	6.4	24
359	Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample. <i>Cryosphere</i> , 2016 , 10, 791-797	5.5	9
358	SolarSyngas: Results from a virtual institute developing materials and key components for solar thermochemical fuel production 2016 ,		2
357	Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage. <i>Applied Thermal Engineering</i> , 2016 , 101, 657-668	5.8	64
356	A packed-bed solar reactor for the carbothermal zinc production dynamic modelling and experimental validation. <i>AICHE Journal</i> , 2016 , 62, 4586-4594	3.6	1
355	Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor. <i>Industrial & Demonstration Chemistry Research</i> , 2016 , 55, 10618-10625	3.9	32
354	Heat transfer and fluid flow analysis of a 4kW solar thermochemical reactor for ceria redox cycling. <i>Chemical Engineering Science</i> , 2015 , 137, 373-383	4.4	59
353	Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573-1773 K temperature range. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 7813-22	3.6	87
352	Kinetics of CO Reduction over Nonstoichiometric Ceria. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1645	52 ₅ .864	68 ₇
351	Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2. <i>Energy & amp; Fuels</i> , 2015 , 29, 3241-3250	4.1	130
350	On the Development of a Zinc Vapor Condensation Process for the Solar Carbothermal Reduction of Zinc Oxide. <i>Jom</i> , 2015 , 67, 1096-1109	2.1	6
349	Design Principles of Perovskites for Thermochemical Oxygen Separation. <i>ChemSusChem</i> , 2015 , 8, 1966-	78.3	73
348	A numerical investigation of gas-particle suspensions as heat transfer media for high-temperature concentrated solar power. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 90, 1056-1070	4.9	23
347	Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. <i>Energy Technology</i> , 2015 , 3, 784-789	3.5	42
346	Experimental Investigation of the Carbothermal Reduction of ZnO Using a Beam-Down, Gravity-Fed Solar Reactor. <i>Industrial & Empire Engineering Chemistry Research</i> , 2015 , 54, 8319-8332	3.9	29

(2015-2015)

345	Analysis of solar-driven gasification of biochar trickling through an interconnected porous structure. <i>AICHE Journal</i> , 2015 , 61, 867-879	3.6	11
344	A novel ventilation strategy with CO2 capture device and energy saving in buildings. <i>Energy and Buildings</i> , 2015 , 87, 134-141	7	26
343	An air-based corrugated cavity-receiver for solar parabolic trough concentrators. <i>Applied Energy</i> , 2015 , 138, 337-345	10.7	38
342	Reforming of Blast Furnace Gas with Methane, Steam, and Lime for Syngas Production and CO2 Capture: A Thermodynamic Study. <i>Mineral Processing and Extractive Metallurgy Review</i> , 2015 , 36, 7-12	3.1	5
341	Design of packed bed thermal energy storage systems for high-temperature industrial process heat. <i>Applied Energy</i> , 2015 , 137, 812-822	10.7	106
340	Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs. <i>Applied Optics</i> , 2015 , 54, 9709-21	0.2	14
339	Rational design of metal nitride redox materials for solar-driven ammonia synthesis. <i>Interface Focus</i> , 2015 , 5, 20140084	3.9	61
338	Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions. <i>Journal of Geophysical Research F: Earth Surface</i> , 2015 , 120, 2437-2451	3.8	5
337	Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications. <i>Chimia</i> , 2015 , 69, 799-803	1.3	3
336	Lanthanum Manganite Perovskites with Ca/Sr A-site and Al B-site Doping as Effective Oxygen Exchange Materials for Solar Thermochemical Fuel Production. <i>Energy Technology</i> , 2015 , 3, 1130-1142	3.5	95
335	Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 6629-34	3.6	84
334	The effect of dopants on the redox performance, microstructure and phase formation of ceria. Journal of Power Sources, 2015 , 300, 261-271	8.9	21
333	Modular Design and Experimental Testing of a 50 kWth Pressurized-Air Solar Receiver for Gas Turbines. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2015 , 137,	2.3	31
332	Optical and Thermal Analysis of a Pressurized-Air Receiver Cluster for a 50 MWe Solar Power Tower. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2015 , 137,	2.3	10
331	Numerical Heat Transfer Analysis of a 50 kWth Pressurized-Air Solar Receiver. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2015 , 137,	2.3	8
330	An array of coiled absorber tubes for solar trough concentrators operating with air at 600 LC and above. <i>Solar Energy</i> , 2015 , 111, 378-395	6.8	16
329	Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production. <i>Advanced Energy Materials</i> , 2015 , 5, 1401082	21.8	38
328	Experimental and numerical investigation of combined sensiblellatent heat for thermal energy storage at 575°C and above. <i>Solar Energy</i> , 2015 , 114, 77-90	6.8	84

327	Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	100
326	Tomography-based monitoring of isothermal snow metamorphism under advective conditions. <i>Cryosphere</i> , 2015 , 9, 1363-1371	5.5	12
325	Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor. <i>Annals of Biomedical Engineering</i> , 2014 , 42, 1085-94	4.7	37
324	High Temperature Rock-bed TES System Suitable for Industrial-scale CSP Plant ICFD Analysis Under Charge/Discharge Cyclic Conditions. <i>Energy Procedia</i> , 2014 , 46, 124-133	2.3	38
323	Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10503-11	3.6	136
322	Experimental Determination of the Radiative Properties of Particle Suspensions for High-Temperature Solar Receiver Applications. <i>Heat Transfer Engineering</i> , 2014 , 35, 272-280	1.7	13
321	Thermal Reduction of Ceria within an Aerosol Reactor for H2O and CO2 Splitting. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 2175-2182	3.9	65
320	Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. <i>Environmental Science & Environmental S</i>	10.3	91
319	Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators. <i>Solar Energy</i> , 2014 , 107, 398-414	6.8	75
318	Transient discrete-granule packed-bed reactor model for thermochemical energy storage. <i>Chemical Engineering Science</i> , 2014 , 117, 465-478	4.4	16
317	Design of a 100 MWhth Packed-bed Thermal Energy Storage. <i>Energy Procedia</i> , 2014 , 49, 1071-1077	2.3	20
316	Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 78, 688-698	4.9	58
315	Nonparabolic solar concentrators matching the parabola. <i>Optics Letters</i> , 2014 , 39, 4301-4	3	6
314	Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. <i>Cold Regions Science and Technology</i> , 2014 , 97, 33-40	3.8	21
313	Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. <i>Materials Today</i> , 2014 , 17, 341-348	21.8	257
312	Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5216-5225	3.8	92
311	A Pressurized Air Receiver for Solar-driven Gas Turbines. <i>Energy Procedia</i> , 2014 , 49, 498-503	2.3	35
310	Towards a Commercial Parabolic Trough CSP System Using Air as Heat Transfer Fluid. <i>Energy Procedia</i> , 2014 , 49, 381-385	2.3	33

(2013-2014)

309	A two-zone solar-driven gasifier concept: Reactor design and experimental evaluation with bagasse particles. <i>Fuel</i> , 2014 , 117, 680-687	7.1	41
308	Investigations into Innovative and Sustainable Processes for the Carbothermic Production of Gaseous Aluminum 2014, 771-776		
307	Combined Experimental-Numerical Approach to Determine Radiation Properties of Particle Suspensions. <i>Journal of Heat Transfer</i> , 2014 , 136,	1.8	9
306	Morphological Characterization and Effective Thermal Conductivity of Dual-Scale Reticulated Porous Structures. <i>Materials</i> , 2014 , 7, 7173-7195	3.5	35
305	Pilot Scale Demonstration of a 100-kWth Solar Thermochemical Plant for the Thermal Dissociation of ZnO. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2014 , 136,	2.3	49
304	Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2014 , 136,	2.3	17
303	Design Point for Predicting Year-Round Performance of Solar Parabolic Trough Concentrator Systems. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2014 , 136,	2.3	9
302	CRISPTower 🗚 Solar Power Tower R&D Initiative in India. <i>Energy Procedia</i> , 2014 , 57, 301-310	2.3	3
301	Solar Trough Concentrator Design for Uniform Radiative Flux Distribution 2014,		1
300	Mechanism of Zn Particle Oxidation by HO and CO in the Presence of ZnO. <i>Chemistry of Materials</i> , 2014 , 26, 6486-6495	9.6	28
299	Surpassing the 2D Limit: A 600x High-concentration PV Collector Based on a Parabolic trough with Tracking Secondary Optics. <i>Energy Procedia</i> , 2014 , 57, 285-290	2.3	5
298	A 3 MWth parabolic trough CSP plant operating with air at up to 650 LC 2014 ,		4
297	Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials. <i>Applied Thermal Engineering</i> , 2014 , 70, 316-320	5.8	89
296	Vacuum Carbothermic Reduction of Alumina. <i>Mineral Processing and Extractive Metallurgy Review</i> , 2014 , 35, 126-135	3.1	26
295	An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow. <i>Geoscientific Instrumentation, Methods and Data Systems</i> , 2014 , 3, 179-185	1.5	5
294	Investigations into Innovative and Sustainable Processes for the Carbothermic Production of Gaseous Aluminum 2014, 771-776		
293	Surface Modification of Graphite Particles Coated by Atomic Layer Deposition and Advances in Ceramic Composites. <i>International Journal of Applied Ceramic Technology</i> , 2013 , 10, 257-265	2	14
292	Review of Heat Transfer Research for Solar Thermochemical Applications. <i>Journal of Thermal Science and Engineering Applications</i> , 2013 , 5,	1.9	56

291	Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. <i>Environmental Science & Environmental S</i>	10.3	81
290	Kinetics of Mn2O3Mn3O4 and Mn3O4MnO Redox Reactions Performed under Concentrated Thermal Radiative Flux. <i>Energy & Energy</i> 2013, 27, 4884-4890	4.1	49
289	Materials and Processes for Renewable Energy Technologies. <i>Jom</i> , 2013 , 65, 1658-1659	2.1	
288	Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy. <i>Jom</i> , 2013 , 65, 1733-1743	2.1	15
287	The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 116, 238-251	6.4	19
286	Sulphur based thermochemical cycles: Development and assessment of key components of the process. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 6197-6204	6.7	28
285	Performance of compound parabolic concentrators with polygonal apertures. <i>Solar Energy</i> , 2013 , 95, 308-318	6.8	42
284	Solar-driven steam-based gasification of sugarcane bagasse in a combined drop-tube and fixed-bed reactor lThermodynamic, kinetic, and experimental analyses. <i>Biomass and Bioenergy</i> , 2013 , 52, 173-183	5.3	37
283	Syngas Production by Thermochemical Gasification of Carbonaceous Waste Materials in a 150 kWth Packed-Bed Solar Reactor. <i>Energy & Energy & 2013</i> , 27, 4770-4776	4.1	55
282	LanthanumBtrontiumManganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2. <i>Energy & Documents</i> 2013, 27, 4250-4257	4.1	255
281	Synthesis, Characterization, and Thermochemical Redox Performance of Hf4+, Zr4+, and Sc3+Doped Ceria for Splitting CO2. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24104-24114	3.8	134
280	On the Effect of the Presence of Solid Diluents during Zn Oxidation by CO2. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 1859-1869	3.9	21
279	Tetrahedral mesh generation based on space indicator functions. <i>International Journal for Numerical Methods in Engineering</i> , 2013 , 93, 1040-1056	2.4	21
278	Theory and design of line-to-point focus solar concentrators with tracking secondary optics. <i>Applied Optics</i> , 2013 , 52, 8586-616	1.7	14
277	Brewing fuels in a solar furnace. MRS Bulletin, 2013, 38, 208-209	3.2	1
276	One-Dimensional Heat and Mass Transfer and Discrete Granule Model of a Tubular Packed-Bed Reactor for Thermochemical Storage of Solar Energy 2013 ,		1
275	Metal Oxide Reduction Using a Solar-Driven Vacuum Thermogravimeter 2013 ,		4
274	Solar TE Converter Applications. <i>Springer Series in Materials Science</i> , 2013 , 365-382	0.9	4

273	A solar dish concentrator based on ellipsoidal polyester membrane facets. Solar Energy, 2012, 86, 40-47	6.8	27
272	Syngas production from H2O and CO2 over Zn particles in a packed-bed reactor. <i>AICHE Journal</i> , 2012 , 58, 625-631	3.6	26
271	Packed-bed thermal storage for concentrated solar power Pilot-scale demonstration and industrial-scale design. <i>Solar Energy</i> , 2012 , 86, 3084-3098	6.8	230
270	Thermally Driven Copper Oxide Redox Cycle for the Separation of Oxygen from Gases. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 7013-7021	3.9	27
269	Thermogravimetric Pyrolysis and Gasification of Lignocellulosic Biomass and Kinetic Summative Law for Parallel Reactions with Cellulose, Xylan, and Lignin. <i>Energy & Description</i> 2012, 26, 357-364	4.1	34
268	Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle. <i>Environmental Science & Environmental Scienc</i>	10.3	100
267	Review: Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11828-11840	3.9	173
266	Vacuum Carbothermic Reduction of Bauxite Components: A Thermodynamic Study. <i>Mineral Processing and Extractive Metallurgy Review</i> , 2012 , 33, 190-203	3.1	11
265	Carbothermic Reduction of Alumina by Natural Gas to Aluminum and Syngas: A Thermodynamic Study. <i>Mineral Processing and Extractive Metallurgy Review</i> , 2012 , 33, 352-361	3.1	9
264	Determination of the macroscopic optical properties of snow based on exact morphology and direct pore-level heat transfer modeling. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		22
263	A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 16871-16887	6.7	56
262	A 1 kWe thermoelectric stack for geothermal power generation [Modeling and geometrical optimization. <i>Applied Energy</i> , 2012 , 99, 379-385	10.7	74
261	Concentrating solar thermal power and thermochemical fuels. <i>Energy and Environmental Science</i> , 2012 , 5, 9234	35.4	467
260	Analysis of Conduction Heat Loss From a Parabolic Trough Solar Receiver with Active Vacuum by Direct Simulation Monte Carlo. <i>Numerical Heat Transfer; Part A: Applications</i> , 2012 , 62, 432-444	2.3	12
259	Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System. <i>Energy & Energy Energy</i> 26, 7051-7059	4.1	285
258	Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production. <i>Energy & Discourt Senergy & Discourt S</i>	4.1	179
257	Syngas production by simultaneous splitting of H2O and CO2via ceria redox reactions in a high-temperature solar reactor. <i>Energy and Environmental Science</i> , 2012 , 5, 6098-6103	35.4	348
256	Principles of Sustainable Energy. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	2

255	Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation. <i>Materials</i> , 2012 , 5, 192-209	3.5	51
254	A 1 kWel thermoelectric stack for geothermal power generation - Modeling and geometrical optimization 2012 ,		3
253	Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media. Journal of Heat Transfer, 2012 , 134,	1.8	12
252	A Modular Ceramic Cavity-Receiver for High-Temperature High-Concentration Solar Applications. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	31
251	Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	57
250	Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	50
249	Experimental and Numerical Heat Transfer Analysis of an Air-Based Cavity-Receiver for Solar Trough Concentrators. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	16
248	Indoor characterization of the receiver for the novel InPhoCUS concrete tracker CPV system 2012,		2
247	Multi-Scale Modelling of a Solar Reactor for the High-Temperature Step of a Sulphur-Iodine-Based Water Splitting Cycle 2012 ,		2
246	THERMOCHEMICAL PRODUCTION OF SYNGAS USING CONCENTRATED SOLAR ENERGY. <i>Annual Review of Heat Transfer</i> , 2012 , 15, 255-275	2.7	10
245	Vacuum Carbothermic Reduction of Al2O3, BeO, MgO-CaO, TiO2, ZrO2, HfO2 + ZrO2, SiO2, SiO2 + Fe2O3, and GeO2 to the Metals. A Thermodynamic Study. <i>Mineral Processing and Extractive Metallurgy Review</i> , 2011 , 32, 247-266	3.1	43
244	Amine-based nanofibrillated cellulose as adsorbent for COL apture from air. <i>Environmental Science & Environmental Science</i>	10.3	303
243	InPhoCUS (Inflated Photovoltaic Ultra-light Mirror Concentrators): First Results Of The Project And Future Perspectives 2011 ,		2
242	Tomography-based determination of permeability and DupuitHorchheimer coefficient of characteristic snow samples. <i>Journal of Glaciology</i> , 2011 , 57, 811-816	3.4	32
241	Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysis. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12141-121	47 7	89
240	Solar Aluminum Production by Vacuum Carbothermal Reduction of AluminaThermodynamic and Experimental Analyses. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2011 , 42, 254-260	2.5	42
239	Concentrated solar energy for thermochemically producing liquid fuels from CO2 and H2O. <i>Jom</i> , 2011 , 63, 32-34	2.1	2
238	CO2 reduction with Zn particles in a packed-bed reactor. <i>AICHE Journal</i> , 2011 , 57, 2529-2534	3.6	9

(2010-2011)

237	Solar gasification of carbonaceous waste feedstocks in a packed-bed reactor Dynamic modeling and experimental validation. <i>AICHE Journal</i> , 2011 , 57, 3522-3533	3.6	46
236	Solar-driven gasification of carbonaceous feedstock review. <i>Energy and Environmental Science</i> , 2011 , 4, 73-82	35.4	162
235	Thermoelectric oxide modules tested in a solar cavity-receiver. <i>Journal of Materials Research</i> , 2011 , 26, 1975-1982	2.5	15
234	Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel. <i>Energy and Environmental Science</i> , 2011 , 4, 3584	35.4	147
233	High-temperature thermal storage using a packed bed of rocks [Heat transfer analysis and experimental validation. <i>Applied Thermal Engineering</i> , 2011 , 31, 1798-1806	5.8	238
232	Non-catalytic autothermal gasification of woody biomass. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 7852-7860	6.7	42
231	Manganese oxide based thermochemical hydrogen production cycle. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 7028-7037	6.7	29
230	Heliostat field layout optimization for high-temperature solar thermochemical processing. <i>Solar Energy</i> , 2011 , 85, 334-343	6.8	92
229	A solar cavity-receiver packed with an array of thermoelectric converter modules. <i>Solar Energy</i> , 2011 , 85, 1511-1518	6.8	36
228	A 9-m-Aperture Solar Parabolic Trough Concentrator Based on a Multilayer Polymer Mirror Membrane Mounted on a Concrete Structure. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2011 , 133,	2.3	25
227	Numerical Analysis of Heat Loss From a Parabolic Trough Absorber Tube With Active Vacuum System 2011 ,		1
226	Derivation of the Angular Dispersion Error Distribution of Mirror Surfaces for Monte Carlo Ray-Tracing Applications. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2011 , 133,	2.3	26
225	Spectroscopic Goniometry System for Determining Thermal Radiative Properties of Participating Media. <i>Experimental Heat Transfer</i> , 2011 , 24, 300-312	2.4	20
224	Numerical Analysis of Heat Loss From a Parabolic Trough Absorber Tube With Active Vacuum System. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2011 , 133,	2.3	26
223	Temperature of a Quartz/Sapphire Window in a Solar Cavity-Receiver. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2011 , 133,	2.3	20
222	Experimental and Numerical Determination of Thermal Radiative Properties of ZnO Particulate Media. <i>Journal of Heat Transfer</i> , 2010 , 132,	1.8	22
221	Solar Thermochemical Production of Fuels. Advances in Science and Technology, 2010, 74, 303-312	0.1	32
220	A Solar Trough Concentrator for Pill-Box Flux Distribution Over a CPV Panel. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2010 , 132,	2.3	5

219	Review of the Two-Step HD/COEplitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions. <i>Materials</i> , 2010 , 3, 4922-4938	3.5	135
218	An Air-Based Cavity-Receiver for Solar Trough Concentrators. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2010 , 132,	2.3	26
217	Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media 2010 ,		5
216	Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing. <i>Journal of Heat Transfer</i> , 2010 , 132,	1.8	103
215	Tomography-Based Analysis of Radiative Transfer in Reacting Packed Beds Undergoing a Solid-Gas Thermochemical Transformation. <i>Journal of Heat Transfer</i> , 2010 , 132,	1.8	22
214	Solar Syngas Production via H2O/CO2-Splitting Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions [] Chemistry of Materials, 2010 , 22, 851-859	9.6	93
213	Solar Syngas Production from H2O and CO2 via Two-Step Thermochemical Cycles Based on Zn/ZnO and FeO/Fe3O4 Redox Reactions: Kinetic Analysis. <i>Energy & Energy & Energ</i>	4.1	58
212	Design of a 10 MW Particle-Flow Reactor for Syngas Production by Steam-Gasification of Carbonaceous Feedstock Using Concentrated Solar Energy. <i>Energy & Energy & Ene</i>	4.1	30
211	Thermochemical production of fuels with concentrated solar energy. <i>Optics Express</i> , 2010 , 18 Suppl 1, A100-11	3.3	38
210	CO2 Splitting via the Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions. <i>ACS Symposium Series</i> , 2010 , 25-30	0.4	4
209	High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. <i>Science</i> , 2010 , 330, 1797-801	33.3	1080
208	Thermoelectric Oxide Modules (TOMs) for the Direct Conversion of Simulated Solar Radiation into Electrical Energy. <i>Materials</i> , 2010 , 3, 2801-2814	3.5	34
207	Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation. <i>Materials</i> , 2010 , 3, 2735-2752	3.5	26
206	Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy. <i>Jom</i> , 2010 , 62, 49-54	2.1	23
205	Hydrogen production by hydrogen sulfide splitting using concentrated solar energy Thermodynamics and economic evaluation. <i>Energy Conversion and Management</i> , 2010 , 51, 2353-2361	10.6	31
204	Reaction kinetics of the combined pyrolysis and steam-gasification of carbonaceous waste materials. <i>Fuel</i> , 2010 , 89, 1133-1140	7.1	31
203	Heat transfer model and scale-up of an entrained-flow solar reactor for the thermal decomposition of methane. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 13232-13241	6.7	22
202	CO2 splitting in an aerosol flow reactor via the two-step Zn/ZnO solar thermochemical cycle. <i>Chemical Engineering Science</i> , 2010 , 65, 1855-1864	4.4	40

Thermochemical production of fuels with concentrated solar energy. Optics Express, 2010, 18, A100-11 3.3 201 Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen 200 2.3 24 Production. Journal of Solar Energy Engineering, Transactions of the ASME, 2009, 131, Optical Design of a Novel Two-Stage Solar Trough Concentrator Based on Pneumatic Polymeric 199 2.3 25 Structures. Journal of Solar Energy Engineering, Transactions of the ASME, 2009, 131, Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for 198 High-Temperature Processing 2009, Tomographic Characterization of a Semitransparent-Particle Packed Bed and Determination of its 1.8 197 53 Thermal Radiative Properties. Journal of Heat Transfer, 2009, 131, Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via 196 1.9 50 Combined Cycles. Journal of Thermal Science and Engineering Applications, 2009, 1, Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a 3.6 58 195 solar-driven thermogravimeter in the 1800\(\textit{D}\)100 K range. AICHE Journal, 2009, 55, 1497-1504 Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation. 194 3.6 31 AICHE Journal, 2009, 55, 1659-1666 CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in 193 14.7 155 a fluidized-bed solar reactor. Chemical Engineering Journal, 2009, 146, 244-248 Dynamics and control of solar thermochemical reactors. *Chemical Engineering Journal*, **2009**, 145, 362-370_{4.7} 192 37 Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation [Application to the steam-gasification of carbonaceous materials. International 191 41 4.9 Journal of Heat and Mass Transfer, 2009, 52, 385-395 Experimental investigation of a packed-bed solar reactor for the steam-gasification of 190 7.2 113 carbonaceous feedstocks. Fuel Processing Technology, 2009, 90, 360-366 An ablation model for the thermal decomposition of porous zinc oxide layer heated by 189 4.9 32 concentrated solar radiation. International Journal of Heat and Mass Transfer, 2009, 52, 2444-2452 Particlegas reacting flow under concentrated solar irradiation. International Journal of Heat and 188 4.9 35 Mass Transfer, 2009, 52, 4997-5004 Hydrolysis rate of submicron Zn particles for solar H2 synthesis. International Journal of Hydrogen 187 6.7 46 Energy, 2009, 34, 1166-1175 Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and 186 102 carbon. International Journal of Hydrogen Energy, 2009, 34, 7676-7685 Hydrogen production and CO2 fixation by flue-gas treatment using methane tri-reforming or 185 coke/coal gasification combined with lime carbonation. International Journal of Hydrogen Energy, 6.7 31 2009, 34, 8061-8066 Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnOExperimental 184 89 validation at 10kW and scale-up to 1MW. Chemical Engineering Journal, 2009, 150, 502-508

183	CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor Effect of temperature and water vapor concentration. <i>Chemical Engineering Journal</i> , 2009 , 155, 867-873	14.7	47
182	Solar-driven biochar gasification in a particle-flow reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2009 , 48, 1279-1287	3.7	91
181	H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. <i>Chemical Engineering Science</i> , 2009 , 64, 1095-1101	4.4	45
180	Determination of thermal radiative properties of packed-bed media containing a mixture of polydispersed particles. <i>International Journal of Thermal Sciences</i> , 2009 , 48, 1510-1516	4.1	8
179	SECONDARY BATTERIES LZINC SYSTEMS Zinc Electrodes: Solar Thermal Production 2009, 469-486		7
178	Coproduction of Syngas and Lime by Combined CaCO3-Calcination and CH4-Reforming Using a Particle-Flow Reactor Driven by Concentrated Solar Radiation. <i>Energy & Description</i> , 23, 6207-6212	4.1	26
177	Production of AlN by Carbothermal and Methanothermal Reduction of Al2O3 in a N2 Flow Using Concentrated Thermal Radiation. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 528-533	3.9	22
176	CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis. <i>Energy & Samp; Fuels</i> , 2009 , 23, 2832-2839	4.1	89
175	Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power Via Combined Cycles 2009 ,		2
174	Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 3. Influence of the Carbon Reducing Agent and Cyclability. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2231-2237	3.9	30
173	CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis. <i>Energy & Energy & Energy</i>	4.1	128
172	Solar-Driven Coal Gasification in a Thermally Irradiated Packed-Bed Reactor. <i>Energy & Description</i> 2008, 22, 2043-2052	4.1	84
171	TRANSMITTANCE ENHANCEMENT OF PACKED-BED PARTICULATE MEDIA. <i>Experimental Heat Transfer</i> , 2008 , 21, 73-82	2.4	12
170	Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2008 , 130,	2.3	19
169	Towards the Industrial Solar Carbothermal Production of Zinc. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2008 , 130,	2.3	33
168	A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2008 , 130,	2.3	114
167	Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics. <i>Journal of Heat Transfer</i> , 2008 , 130,	1.8	49
166	Magnesium Production by the Pidgeon Process Involving Dolomite Calcination and MgO Silicothermic Reduction: Thermodynamic and Environmental Analyses. <i>Industrial & Dolomic Engineering Chemistry Research</i> , 2008 , 47, 2146-2154	3.9	38

(2007-2008)

165	Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy I V. Reactor experimentation with vacuum residue. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 679-684	6.7	34
164	Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactionsThermodynamic and kinetic analyses. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 2880-2890	6.7	62
163	A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. <i>International Journal of Thermal Sciences</i> , 2008 , 47, 1496-1503	4.1	78
162	A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO. <i>Journal of Materials Science</i> , 2008 , 43, 4729-4736	4.3	40
161	Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. <i>Applied Thermal Engineering</i> , 2008 , 28, 524-531	5.8	55
160	Feasibility of Na-based thermochemical cycles for the capture of CO2 from airThermodynamic and thermogravimetric analyses. <i>Chemical Engineering Journal</i> , 2008 , 140, 62-70	14.7	65
159	A two-phase reactor model for the steam-gasification of carbonaceous materials under concentrated thermal radiation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2008 , 47, 655-662	3.7	40
158	H2O-splitting thermochemical cycle based on ZnO/Zn-redox: Quenching the effluents from the ZnO dissociation. <i>Chemical Engineering Science</i> , 2008 , 63, 217-227	4.4	53
157	Tomography based determination of permeability, DupuitBorchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. <i>International Journal of Heat and Fluid Flow</i> , 2008 , 29, 315-326	2.4	129
156	Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy IV. Reactor modeling, optimization, and scale-up. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 5484-5492	6.7	72
155	Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 2659-2665	3.8	46
154	Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 1. Thermodynamic, Environmental, and Economic Analyses. <i>Industrial & Environmental Chemistry Research</i> , 2007 , 46, 2042	-3:846	68
153	A Rotary Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide 2007,		2
152	Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. <i>Solar Energy</i> , 2007 , 81, 1285-1294	6.8	37
151	Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2taCO3taO solar thermochemical cycle. <i>Chemical Engineering Journal</i> , 2007 , 129, 75-83	14.7	141
150	Numerical and experimental study of gasparticle radiative heat exchange in a fluidized-bed reactor for steam-gasification of coal. <i>Chemical Engineering Science</i> , 2007 , 62, 599-607	4.4	65
149	Dynamics of a solar thermochemical reactor for steam-reforming of methane. <i>Chemical Engineering Science</i> , 2007 , 62, 4214-4228	4.4	37
148	Hydrogen production by steam-gasification of petroleum coke using concentrated solar power []. Reactor experimentation with slurry feeding. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 992-99	6.7	77

147	A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 601-610	2.1	26
146	Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2007 , 105, 180-197	2.1	161
145	Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation. <i>Energy</i> , 2007 , 32, 2420-2427	7.9	83
144	A 300kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2007 , 129, 190-196	2.3	86
143	Development Steps for Parabolic Trough Solar Power Technologies With Maximum Impact on Cost Reduction. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2007 , 129, 371-377	2.3	52
142	A Novel 50kW 11,000 suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 405-411	2.3	164
141	Gas temperature measurement in thermal radiating environments using a suction thermocouple apparatus. <i>Measurement Science and Technology</i> , 2007 , 18, 3329-3334	2	9
140	Modeling of a Multi-Tube Solar Reactor for Hydrogen Production at High Temperatures 2007 , 903		
139	Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 2. Kinetic Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2047-2053	3.9	47
138	Thermoneutral tri-reforming of flue gases from coal- and gas-fired power stations. <i>Catalysis Today</i> , 2006 , 115, 170-178	5.3	37
137	Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal. <i>Energy</i> , 2006 , 31, 1533-1541	7.9	12
136	Production of (solar) H2 and ZnO Nanoparticles by Hydrolysis of Zn Aerosol Freshly Made by Evaporation and Condensation. <i>Chemie-Ingenieur-Technik</i> , 2006 , 78, 1334-1335	0.8	
135	Co-synthesis of H2 and ZnO by in-situ Zn aerosol formation and hydrolysis. AICHE Journal, 2006, 52, 32	97 ₅ 3 630	3 49
134	Annular Compound Parabolic Concentrator. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2006 , 128, 121-124	2.3	12
133	Experimental Determination of the Extinction Coefficient for a Packed-Bed Particulate Medium. Experimental Heat Transfer, 2006 , 19, 69-79	2.4	17
132	CO2 Sequestration by Direct GasBolid Carbonation of Air Pollution Control (APC) Residues. <i>Energy & Energy Fuels</i> , 2006 , 20, 1933-1940	4.1	55
131	Kinetic Modeling for the Combined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500¶520 K Range. <i>Energy & Fuels</i> , 2006 , 20, 1250-1258	4.1	42
130	Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power: Reactor Experimentation With Slurry Feeding 2006 , 23		2

Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls 129 Containing an Array of Tubular Absorbers 2006, 15 Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide. 128 7.9 43 Energy, **2006**, 31, 3171-3185 Unsteady radiative heat transfer within a suspension of ZnO particles undergoing thermal 127 4.4 32 dissociation. Chemical Engineering Science, 2006, 61, 7029-7035 CO2 capture from air and co-production of H2 via the Ca(OH)2faCO3 cycle using concentrated 126 96 7.9 solar powerThermodynamic analysis. Energy, 2006, 31, 1715-1725 In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn 6.7 125 134 water-splitting thermochemical cycle. International Journal of Hydrogen Energy, 2006, 31, 55-61 Hydrogen production by steam-gasification of petroleum coke using concentrated solar power[] 124 6.7 147 Reactor design, testing, and modeling. International Journal of Hydrogen Energy, 2006, 31, 797-811 Hydrogen production via the solar thermal decarbonization of fossil fuels. Solar Energy, 2006, 80, 1333-1687 123 56 Purification of metallurgical grade silicon by a solar process. Solar Energy Materials and Solar Cells, 6.4 122 62 2006, 90, 2099-2106 A Novel High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps: Optimization of the 2 121 Ellipsoidal Reflector and Optical Configuration 2005, 175 Development Steps for Concentrating Solar Power Technologies With Maximum Impact on Cost 8 120 Reduction: Results of the European ECOSTAR Study 2005, 773 Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for The Co-Production of Zinc 119 2.3 23 and Syngas. Journal of Solar Energy Engineering, Transactions of the ASME, 2005, 127, 102-108 Two-Dimensional Axi-Symmetric Model of a Solar-Thermal Fluid-Wall Aerosol Flow Reactor. Journal 118 2.3 7 of Solar Energy Engineering, Transactions of the ASME, 2005, 127, 76-85 TRANSIENT RADIATION HEAT TRANSFER WITHIN A NONGRAY NONISOTHERMAL ABSORBING-EMITTING-SCATTERING SUSPENSION OF REACTING PARTICLES UNDERGOING 117 1.3 27 SHRINKAGE. Numerical Heat Transfer, Part B: Fundamentals, 2005, 47, 443-457 Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal RadiationModeling and Experimental Validation. Industrial & Engineering Chemistry 116 3.9 55 Research, 2005, 44, 3852-3861 Solar thermochemical production of hydrogen review. Solar Energy, 2005, 78, 603-615 6.8 966 115 Economic evaluation of the industrial solar production of lime. Energy Conversion and Management, 10.6 78 114 2005, 46, 905-926 H2 production by Zn hydrolysis in a hot-wall aerosol reactor. AICHE Journal, 2005, 51, 1966-1970 113 3.6 43 Transient radiative heat transfer within a suspension of coal particles undergoing steam 112 32 gasification. Heat and Mass Transfer, 2005, 41, 1021-1032

111	Hydrogen production by steam-gasification of petroleum coke using concentrated solar power Thermodynamic and kinetic analyses. <i>International Journal of Hydrogen Energy</i> , 2005 , 30, 605-618	6.7	92
110	Special Issue on Wind Energy. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2005 , 127, 437-437	2.3	2
109	Solar Carbothermic Production of Zinc From Zinc Oxide: Solzinc 2005,		2
108	Solar Fuels and Materials 2004 , 623-637		33
107	Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for the Co-Production of Zinc and Syngas 2004 , 547		
106	Radiative Exchange Within a Two-Cavity Configuration With a Spectrally Selective Window. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2004 , 126, 819-822	2.3	13
105	Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-cavity Solar Reactor. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2004 , 126, 633-637	2.3	66
104	Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 627-633	6.7	67
103	Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 47-55	6.7	152
102	Reflections on the design of solar thermal chemical reactors: thoughts in transformation. <i>Energy</i> , 2004 , 29, 727-744	7.9	67
101	Heterogeneous thermochemical decomposition under direct irradiation. <i>International Journal of Heat and Mass Transfer</i> , 2004 , 47, 1907-1916	4.9	41
100	Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane. <i>Chemical Engineering Science</i> , 2004 , 59, 5771-5778	4.4	60
99	Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor. <i>Industrial & amp;</i> Engineering Chemistry Research, 2004 , 43, 5489-5495	3.9	86
98	Solar Carbothermal Reduction of ZnO: Shrinking Packed-Bed Reactor Modeling and Experimental Validation. <i>Industrial & Discrete Manage Chemistry Research</i> , 2004 , 43, 7981-7988	3.9	63
97	Interface lessons for fully and semi-autonomous mobile robots 2004,		27
96	Combined Thermoneutral Processes for CO2 Emission Avoidance and Fuel Saving in the Metallurgical and Lime Industries. <i>Studies in Surface Science and Catalysis</i> , 2004 , 481-486	1.8	3
95	Two-Dimensional Axi-Symmetric Model of a Solar-Thermal Fluid-Wall Aerosol Flow Reactor 2004 , 477		
94	TRANSIENT RADIATIVE HEAT TRANSFER WITHIN A PARTICLE SUSPENSION UNDERGOING ENDOTHERMAL DECOMPOSITION - SHRINKING VS. NON-SHRINKING PARTICLES 2004 ,		3

(2001-2003)

93	A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2003 , 125, 117-120	2.3	73
92	Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor 2003 , 101		2
91	Solar Thermochemical Process Technology 2003 , 237-256		32
90	Hydrogen Production Via the Solar Thermal Decarbonization of Fossil Fuels 2003, 107		
89	Kinetic investigation on steam gasification of charcoal under direct high-flux irradiation. <i>Chemical Engineering Science</i> , 2003 , 58, 5111-5119	4.4	61
88	The solar thermal gasification of coal Lenergy conversion efficiency and CO2 mitigation potential. <i>Energy</i> , 2003 , 28, 441-456	7.9	101
87	Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation. <i>Environmental Science & Environmental Science &</i>	10.3	31
86	Thermoneutral Coproduction of Calcium Oxide and Syngas by Combined Decomposition of Calcium Carbonate and Partial Oxidation/CO2-Reforming of Methane. <i>Energy & Decomposition (Co2)</i> , 17, 774-778	4.1	13
85	Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2003 , 125, 120-123	2.3	22
84	Operational Performance of a 5-kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2003 , 125, 124-126	2.3	37
83	Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. <i>International Journal of Hydrogen Energy</i> , 2002 , 27, 611-619	6.7	536
82	Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons. <i>Energy</i> , 2002 , 27, 1069-1084	7.9	17
81	Solar Thermal Reduction of ZnO Using CH4:ZnO and C:ZnO Molar Ratios Less Than 1. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2002 , 124, 55-62	2.3	31
80	On Indirectly Irradiated Solar Receiver-Reactors for High-Temperature Thermochemical Processes 2002 , 251		1
79	Operational Performance of a 5 kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas 2002 , 257		1
78	Pulsed Gas Feeding for Stoichiometric Operation of a Gas-Solid Vortex Flow Solar Chemical Reactor. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2001 , 123, 133-137	2.3	22
77	Solar Production of Zinc from the Zinc Silicate Ore Willemite. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2001 , 123, 98-101	2.3	5
76	Rear-End CollisionWarning System: Design and Evaluation via Simulation. <i>Transportation Research Record</i> , 2001 , 1759, 52-60	1.7	12

75	The solar thermal decarbonization of natural gas. <i>International Journal of Hydrogen Energy</i> , 2001 , 26, 1023-1033	6.7	72
74	Experimental Investigation of a Vortex-Flow Solar Chemical Reactor for the Combined ZnO-Reduction and CH4-Reforming*. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2001 , 123, 237-243	2.3	46
73	Snowplow Steering Guidance with Gain Stabilization. Vehicle System Dynamics, 2001, 36, 279-305	2.8	6
72	Chemische Brennstoffe aus Sonnenlicht. <i>MTZ - Motortechnische Zeitschrift</i> , 2001 , 62, 242-249	0.2	1
71	Emergence of a Cognitive Car-Following Driver Model: Application to Rear-End Crashes with a Stopped Lead Vehicle. <i>Transportation Research Record</i> , 2000 , 1724, 29-38	1.7	12
70	Thermogravimetric analysis of the ZnO/Zn water splitting cycle. <i>Thermochimica Acta</i> , 2000 , 359, 69-75	2.9	98
69	Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas. <i>Energy</i> , 2000 , 25, 395-409	7.9	44
68	Recycling of Hazardous Solid Waste Material Using High-Temperature Solar Process Heat. 1. Thermodynamic Analysis. <i>Environmental Science & Environmental Science & Environment</i>	10.3	19
67	Experimental Investigations on the Crystallization of Zinc by Direct Irradiation of Zinc Oxide in a Solar Furnace. <i>Chemistry of Materials</i> , 2000 , 12, 2175-2181	9.6	27
66	The Solar Chemistry Program of the International Energy AgencyN Implementing Agreement SolarPACES 2000 , 64-70		
65	The Production of Zinc by Thermal Dissociation of Zinc Oxide Solar Chemical Reactor Design 2000 , 539-543		1
64	Solar thermal production of zinc: Program strategy and status of research. <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr3-313-Pr3-318		8
63	A New High-Flux Solar Furnace for High-Temperature Thermochemical Research. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 1999 , 121, 77-80	2.3	82
62	The production of zinc by thermal dissociation of zinc oxideBolar chemical reactor design. <i>Solar Energy</i> , 1999 , 67, 161-167	6.8	144
61	DIRECT SOLAR THERMAL DISSOCIATION OF ZINC OXIDE: CONDENSATION AND CRYSTALLISATION OF ZINC IN THE PRESENCE OF OXYGEN. <i>Solar Energy</i> , 1999 , 65, 59-69	6.8	95
60	DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM. <i>Solar Energy</i> , 1999 , 65, 43-53	6.8	177
59	Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon. <i>Chemical Engineering Science</i> , 1999 , 54, 3341-3348	4.4	29
58	International R & D collaboration in developing solar thermal technologies for electric power and solar chemistry: The solarPACES program of the International Energy Agency (IEA). <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr3-9-Pr3-15		6

57	Solar thermal chemical processing 1999 , 961-966		1
56	Production of catalytic filamentous carbon by solar thermal decomposition of hydrocarbons. <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr3-393-Pr3-398		6
55	CO2 abatement by producing new solar energy carriers-product formation in high temperature solar chemistry 1999 , 967-971		
54	The production of Zn from ZnO in a high-temperature solar decomposition quench process The scientific framework for the process. <i>Chemical Engineering Science</i> , 1998 , 53, 2503-2517	4.4	144
53	Intracranial ependymoma in the adult patient: successful treatment with surgery and radiotherapy. <i>Journal of Neuro-Oncology</i> , 1998 , 37, 131-3	4.8	28
52	Economic evaluation of the solar thermalco-production of zinc and synthesis gas. <i>Energy Conversion and Management</i> , 1998 , 39, 1513-1518	10.6	33
51	Multiple myeloma of an extremity: must the entire bone be treated?. <i>International Journal of Radiation Oncology Biology Physics</i> , 1998 , 40, 117-9	4	22
50	Solar-processed metals as clean energy carriers and water-splitters. <i>International Journal of Hydrogen Energy</i> , 1998 , 23, 767-774	6.7	185
49	A solar chemical reactor for co-production of zinc and synthesis gas. <i>Energy</i> , 1998 , 23, 803-814	7.9	156
48	Non-stoichiometric Ferrites for Solar Energy Conversion into H2 Energy. <i>Journal of the Magnetics Society of Japan</i> , 1998 , 22, S1_417-418		
47	Thermochemical Solar/Fossil Energy Mixing Using Metal Oxides. <i>Journal of the Magnetics Society of Japan</i> , 1998 , 22, S1_411-412		
46	Production of Carbon from Carbon Dioxide with Iron Oxides and High-Temperature Solar Energy. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 645-648	3.9	28
45	High-temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry. <i>Energy</i> , 1997 , 22, 311-316	7.9	38
44	The coal/Fe3O4 system for mixing of solar and fossil energies. <i>Energy</i> , 1997 , 22, 337-342	7.9	30
43	Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane. <i>Chemical Engineering Science</i> , 1997 , 52, 3599-3603	4.4	59
42	Coal Gasification Using the ZnO/Zn Redox System. <i>Energy & Energy </i>	4.1	26
41	Final results of a phase II chemoradiation protocol for locally advanced cervical cancer: RTOG 85-15. <i>Gynecologic Oncology</i> , 1996 , 61, 221-6	4.9	35
40	Coal gasification by the coal/CH4?ZnO?Zn?H2O solar energy conversion system. <i>Energy Conversion and Management</i> , 1996 , 37, 1315-1320	10.6	11

39	CH4-utilization and CO2-mitigation in the metallurgical industry via solar thermochemistry. <i>Energy Conversion and Management</i> , 1996 , 37, 1327-1332	10.6	10
38	Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat. <i>Energy</i> , 1996 , 21, 205-222	7.9	58
37	Modeling of a novel high-temperature solar chemical reactor. <i>Chemical Engineering Science</i> , 1996 , 51, 3181-3186	4.4	47
36	Solar thermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes. <i>International Journal of Hydrogen Energy</i> , 1995 , 20, 793-804	6.7	113
35	Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. <i>Energy</i> , 1995 , 20, 325-330	7.9	185
34	Thermoanalysis of the combined Fe3O4-reduction and CH4-reforming processes. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 1995 , 26, 509-515	2.5	30
33	Nonisothermal Nongray Absorbing-Emitting-Scattering Suspension of Fe3O4 Particles Under Concentrated Solar Irradiation. <i>Journal of Heat Transfer</i> , 1995 , 117, 346-354	1.8	29
32	Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. <i>Energy</i> , 1995 , 20, 695-70	0 4 .9	92
31	Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries. <i>Energy</i> , 1994 , 19, 1077-1081	7.9	32
30	Experimental Setup of a Laser Diagnostics System for a High-Temperature Solar Receiver/Reactor. Journal of Solar Energy Engineering, Transactions of the ASME, 1994, 116, 206-211	2.3	2
29	Demand-flow airway pressure release ventilation as a partial ventilatory support mode: comparison with synchronized intermittent mandatory ventilation and pressure support ventilation. <i>Critical Care Medicine</i> , 1994 , 22, 1431-7	1.4	15
28	High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4-reduction with methane. <i>Energy</i> , 1993 , 18, 239-249	7.9	127
27	Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy, 1993, 50, 19	- 25 8	191
26	Radiative transfer in a diffusely/specularly reflecting spherical cavity containing a gray medium. Heat and Mass Transfer, 1993 , 28, 65-68		4
25	Experimental Investigation of an Atmospheric-Open Cyclone Solar Reactor for Solid-Gas Thermochemical Reactions. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 1992 , 114, 171-174	2.3	45
24	Cone Compared to CPC as Secondary Concentrator in Tandem With a Paraboloidal Dish Primary. Journal of Solar Energy Engineering, Transactions of the ASME, 1992 , 114, 201-202	2.3	7
23	Exchange factor between two spheres placed at the foci of a specularly reflecting ellipsoidal cavity. <i>International Communications in Heat and Mass Transfer</i> , 1991 , 18, 19-26	5.8	8
22	Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy. <i>Energy</i> , 1991 , 16, 1011-1019	7.9	46

21	Apparent absorptance for diffusely and specularly reflecting spherical cavities. <i>International Journal of Heat and Mass Transfer</i> , 1991 , 34, 1895-1897	4.9	16
20	A SPHERICAL RECEIVER-REACTOR WITH SPECULARLY REFLECTING INNER SURFACES FOR HIGH-TEMPERATURE SOLAR FURNACE APPLICATIONS 1990 ,		2
19	The ACR Practice Accreditation Program for radiation oncology. <i>Administrative Radiology: AR</i> , 1990 , 9, 27, 29-30, 32		
18	A solar receiver-reactor with specularly reflecting walls for high-temperature thermoelectrochemical and thermochemical processes. <i>Energy</i> , 1988 , 13, 301-311	7.9	6
17	Solar energy absorption efficiency of an ellipsoidal receiver-reactor with specularly reflecting walls. <i>Energy</i> , 1988 , 13, 609-614	7.9	5
16	Controversies in management of stages I and II testicular seminomas. <i>Urology</i> , 1988 , 31, 202-6	1.6	7
15	Carcinoid of the cervix: natural history and implications for therapy. <i>Gynecologic Oncology</i> , 1988 , 30, 11	4_≠9 9	17
14	Brain metastases from ovarian cancer. <i>Journal of Neuro-Oncology</i> , 1987 , 5, 211-5	4.8	26
13	Design procedure for a greenhouse space heating system utilizing geothermal warm water. <i>Bioresource Technology</i> , 1987 , 6, 27-34		
12	Incidence of developmental handicaps among the offspring of men treated for testicular seminoma. <i>Journal of Developmental and Physical Disabilities</i> , 1987 , 10, 385-7		15
11	Radiotherapeutic prophylaxis of estrogen-induced gynecomastia: a study of late sequela. <i>International Journal of Radiation Oncology Biology Physics</i> , 1986 , 12, 407-8	4	33
10	A SIMULATION MODEL FOR SOLAR THIN-LAYER DRYING PROCESS. <i>Drying Technology</i> , 1986 , 4, 535-554	4 2.6	25
9	Renal angiosarcoma. American Journal of Kidney Diseases, 1986, 8, 131-3	7.4	17
8	Carcinomatous meningitis from transitional cell carcinoma of bladder. <i>Urology</i> , 1985 , 25, 520-1	1.6	27
7	A child with 18q- syndrome and cerebellar astrocytoma. <i>Journal of Pediatrics</i> , 1983 , 103, 600-2	3.6	7
6	Leiomyosarcoma arising in an arteriovenous fistula. <i>Cancer</i> , 1983 , 52, 390-2	6.4	5
5	Synthesis and conformational analysis of cyclo-TRI[l-valyl-d-hexahydromandelyl]. <i>Bioorganic Chemistry</i> , 1974 , 3, 184-203	5.1	5
4	A robotic walker that provides guidance		82

Development of the side component of the transit integrated collision warning system

Thermochemical Hydrogen Storage via the Reversible Reduction and Oxidation of Metal Oxides.

Energy & Development of the side component of the transit integrated collision warning system

Vacuum Distillation of Aluminum and Silicon Via Carbothermal Reduction of Their Oxides with Concentrated Solar Energy 175-181