Douglas B Weibel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1339674/publications.pdf

Version: 2024-02-01

95 papers

9,233 citations

45 h-index 93 g-index

104 all docs

104 docs citations

times ranked

104

12650 citing authors

#	Article	IF	CITATIONS
1	Microfabrication meets microbiology. Nature Reviews Microbiology, 2007, 5, 209-218.	13.6	699
2	Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Proteinâ [°] Ligand Binding. Chemical Reviews, 2008, 108, 946-1051.	23.0	638
3	Bacteria–surface interactions. Soft Matter, 2013, 9, 4368.	1.2	549
4	Physicochemical regulation of biofilm formation. MRS Bulletin, 2011, 36, 347-355.	1.7	457
5	Escherichia coli swim on the right-hand side. Nature, 2005, 435, 1271-1274.	13.7	432
6	The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature, 2018, 559, 617-621.	13.7	388
7	Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology, 2006, 10, 584-591.	2.8	378
8	Microoxen: Microorganisms to move microscale loads. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11963-11967.	3.3	355
9	Cardiolipin microdomains localize to negatively curved regions of <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6264-6269.	3.3	304
10	Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter, 2009, 5, 1174.	1.2	264
11	Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Molecular Microbiology, 2012, 84, 874-891.	1.2	212
12	Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on A Chip, 2012, 12, 1629.	3.1	204
13	Reconstitution of DNA Segregation Driven by Assembly of a Prokaryotic Actin Homolog. Science, 2007, 315, 1270-1274.	6.0	194
14	Torque-Actuated Valves for Microfluidics. Analytical Chemistry, 2005, 77, 4726-4733.	3.2	183
15	Encapsulating Bacteria in Agarose Microparticles Using Microfluidics for High-Throughput Cell Analysis and Isolation. ACS Chemical Biology, 2011, 6, 260-266.	1.6	166
16	Bacterial Cell Mechanics. Biochemistry, 2017, 56, 3710-3724.	1.2	166
17	Localization of Anionic Phospholipids in Escherichia coli Cells. Journal of Bacteriology, 2014, 196, 3386-3398.	1.0	151
18	Controlling the Shape of Filamentous Cells of Escherichia coli. Nano Letters, 2005, 5, 1819-1823.	4.5	149

#	Article	IF	CITATIONS
19	Bacterial cell curvature through mechanical control of cell growth. EMBO Journal, 2009, 28, 1208-1219.	3.5	147
20	Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials, 2005, 26, 7636-7641.	5.7	132
21	A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab on A Chip, 2012, 12, 1052-1059.	3.1	129
22	Bacterial Printing Press that Regenerates Its Ink:  Contact-Printing Bacteria Using Hydrogel Stamps. Langmuir, 2005, 21, 6436-6442.	1.6	121
23	Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter, 2014, 10, 88-95.	1.2	106
24	Targeting the Bacterial Division Protein FtsZ. Journal of Medicinal Chemistry, 2016, 59, 6975-6998.	2.9	93
25	Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomaterialia, 2015, 12, 129-138.	4.1	87
26	Organization and function of anionic phospholipids in bacteria. Applied Microbiology and Biotechnology, 2016, 100, 4255-4267.	1.7	86
27	Imaging mycobacterial growth and division with a fluorogenic probe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5271-5276.	3.3	77
28	MinD and MinE Interact with Anionic Phospholipids and Regulate Division Plane Formation in Escherichia coli. Journal of Biological Chemistry, 2012, 287, 38835-38844.	1.6	76
29	Pinoresinol: A lignol of plant origin serving for defense in a caterpillar. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15497-15501.	3.3	73
30	Quorum Sensing between <i>Pseudomonas aeruginosa</i> Biofilms Accelerates Cell Growth. Journal of the American Chemical Society, 2011, 133, 5966-5975.	6.6	73
31	Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments. Journal of Bacteriology, 2013, 195, 368-377.	1.0	65
32	Propulsion of flexible polymer structures in a rotating magnetic field. Journal of Physics Condensed Matter, 2009, 21, 204110.	0.7	63
33	Polar localization of <scp><i>E</i></scp> <i>scherichia coli</i> chemoreceptors requires an intact <scp>Tol</scp> â€" <scp>Pal</scp> complex. Molecular Microbiology, 2014, 92, 985-1004.	1.2	61
34	Using Liquid Crystals to Reveal How Mechanical Anisotropy Changes Interfacial Behaviors of Motile Bacteria. Biophysical Journal, 2014, 107, 255-265.	0.2	61
35	Direct Correlation between Motile Behavior and Protein Abundance in Single Cells. PLoS Computational Biology, 2016, 12, e1005041.	1.5	60
36	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 3799-3799.	7.2	55

3

#	Article	IF	CITATIONS
37	Studying the Dynamics of Flagella in Multicellular Communities of <i>Escherichia coli</i> by Using Biarsenical Dyes. Applied and Environmental Microbiology, 2010, 76, 1241-1250.	1.4	55
38	Enabling the Development and Deployment of Next Generation Point-of-Care Diagnostics. PLoS Neglected Tropical Diseases, 2015, 9, e0003676.	1.3	55
39	Field-Applicable Recombinase Polymerase Amplification Assay for Rapid Detection of Mycoplasma capricolum subsp. capripneumoniae. Journal of Clinical Microbiology, 2015, 53, 2810-2815.	1.8	55
40	DCAP: A Broad-Spectrum Antibiotic That Targets the Cytoplasmic Membrane of Bacteria. Journal of the American Chemical Society, 2012, 134, 11322-11325.	6.6	53
41	Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nature Microbiology, 2017, 2, 17115.	5.9	52
42	Combining microscience and neurobiology. Current Opinion in Neurobiology, 2005, 15, 560-567.	2.0	51
43	Chemical–Biological Studies of Subcellular Organization in Bacteria. Biochemistry, 2011, 50, 7719-7734.	1.2	49
44	Bacterial transport of colloids in liquid crystalline environments. Soft Matter, 2015, 11, 8404-8408.	1.2	49
45	Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness. Cell Systems, 2016, 2, 402-411.	2.9	48
46	Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane). Lab on A Chip, 2007, 7, 1832.	3.1	47
47	Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform. Applied and Environmental Microbiology, 2017, 83, .	1.4	47
48	Inhibitors of bacterial tubulin target bacterial membranes <i>in vivo</i> . MedChemComm, 2013, 4, 112-119.	3.5	45
49	Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli. Molecular Cell, 2015, 60, 374-384.	4.5	45
50	Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films. Soft Matter, 2015, 11, 6821-6831.	1.2	44
51	Fabrication of Microbial Biofilm Arrays by Geometric Control of Cell Adhesion. Langmuir, 2009, 25, 4643-4654.	1.6	43
52	Microfluidics for High School Chemistry Students. Journal of Chemical Education, 2014, 91, 112-115.	1.1	40
53	Mayolenes: Labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6822-6827.	3.3	39
54	Synthesis of Polyether Exomethylene Paracyclophanes via an Intramolecular Pd-Catalyzed Bis-Enyne Benzannulation Protocol. Journal of Organic Chemistry, 1998, 63, 1217-1220.	1.7	36

#	Article	IF	CITATIONS
55	Simultaneous 3D cell distribution and bioactivity enhancement of bacterial cellulose (BC) scaffold for articular cartilage tissue engineering. Cellulose, 2019, 26, 2513-2528.	2.4	35
56	Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature. PLoS ONE, 2013, 8, e84143.	1.1	35
57	The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. Journal of Biological Chemistry, 2018, 293, 1623-1641.	1.6	30
58	Modeling the Anodic Half-Cell of a Low-Temperature Coal Fuel Cell. Angewandte Chemie - International Edition, 2005, 44, 5682-5686.	7.2	29
59	Bacterial Cellulose as a Substrate for Microbial Cell Culture. Applied and Environmental Microbiology, 2014, 80, 1926-1932.	1.4	28
60	Cardiolipin Alters <i>Rhodobacter sphaeroides</i> Cell Shape by Affecting Peptidoglycan Precursor Biosynthesis. MBio, 2019, 10, .	1.8	28
61	Characterization of Caulobacter crescentus FtsZ Protein Using Dynamic Light Scattering. Journal of Biological Chemistry, 2012, 287, 23878-23886.	1.6	26
62	Gyramides Prevent Bacterial Growth by Inhibiting DNA Gyrase and Altering Chromosome Topology. ACS Chemical Biology, 2014, 9, 1312-1319.	1.6	26
63	A Cardiolipin-Deficient Mutant of Rhodobacter sphaeroides Has an Altered Cell Shape and Is Impaired in Biofilm Formation. Journal of Bacteriology, 2015, 197, 3446-3455.	1.0	26
64	Iridoid biosynthesis in staphylinid rove beetles (Coleoptera: Staphylinidae, Philonthinae). Insect Biochemistry and Molecular Biology, 2001, 31, 583-591.	1.2	24
65	Mechanical Genomic Studies Reveal the Role of d -Alanine Metabolism in Pseudomonas aeruginosa Cell Stiffness. MBio, $2018,9,.$	1.8	24
66	Chiral Silylation Reagents for the Determination of Absolute Configuration by NMR Spectroscopy. Organic Letters, 2000, 2, 2381-2383.	2.4	22
67	The Oral Bacterium Fusobacterium nucleatum Binds Staphylococcus aureus and Alters Expression of the Staphylococcal Accessory Regulator sarA. Microbial Ecology, 2019, 78, 336-347.	1.4	22
68	New Silyl Ether Reagents for the Absolute Stereochemical Determination of Secondary Alcohols. Organic Letters, 2003, 5, 1745-1748.	2.4	20
69	Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 8424-8437.	1.2	20
70	Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device. PLoS ONE, 2012, 7, e41245.	1.1	20
71	<i>N</i> -Benzyl-3-sulfonamidopyrrolidines Are a New Class of Bacterial DNA Gyrase Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 289-292.	1.3	19
72	Building communities one bacterium at a time. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18075-18076.	3.3	18

#	Article	IF	CITATIONS
73	The Synthesis and Antimicrobial Activity of Heterocyclic Derivatives of Totarol. ACS Medicinal Chemistry Letters, 2012, 3, 818-822.	1.3	18
74	Divin: A Small Molecule Inhibitor of Bacterial Divisome Assembly. Journal of the American Chemical Society, 2013, 135, 9768-9776.	6.6	17
75	Straining soft colloids in aqueous nematic liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5564-5569.	3.3	17
76	Bacterial Swarming Reduces Proteus mirabilis and Vibrio parahaemolyticus Cell Stiffness and Increases \hat{l}^2 -Lactam Susceptibility. MBio, 2019, 10, .	1.8	17
77	Chiral Silylation Reagents:  Determining Configuration via NMR-Spectroscopic Coanalysis. Organic Letters, 2004, 6, 3019-3022.	2.4	16
78	Rcs Phosphorelay Activation in Cardiolipin-Deficient Escherichia coli Reduces Biofilm Formation. Journal of Bacteriology, 2019, 201, .	1.0	15
79	Structure–Activity Studies of Divin: An Inhibitor of Bacterial Cell Division. ACS Medicinal Chemistry Letters, 2013, 4, 880-885.	1.3	13
80	Synthesis of Mayolene-16 and Mayolene-18:Â Larval Defensive Lipids from the European Cabbage Butterfly. Journal of Organic Chemistry, 2002, 67, 5896-5900.	1.7	12
81	Dissecting microbiological systems using materials science. Trends in Microbiology, 2009, 17, 100-108.	3.5	11
82	Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria. ACS Medicinal Chemistry Letters, 2015, 6, 466-471.	1.3	11
83	Studying the Symbiotic Bacterium Xenorhabdus nematophila in Individual, Living <i>Steinernema carpocapsae</i> Nematodes Using Microfluidic Systems. MSphere, 2018, 3, .	1.3	11
84	Small Molecule Chelators Reveal That Iron Starvation Inhibits Late Stages of Bacterial Cytokinesis. ACS Chemical Biology, 2018, 13, 235-246.	1.6	10
85	Targeting quinolone- and aminocoumarin-resistant bacteria with new gyramide analogs that inhibit DNA gyrase. MedChemComm, 2017, 8, 942-951.	3.5	9
86	Oligochlorophens Are Potent Inhibitors of <i>Bacillus anthracis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3988-3990.	1.4	8
87	Maspin binds to cardiolipin in mitochondria and triggers apoptosis. FASEB Journal, 2019, 33, 6354-6364.	0.2	8
88	5-Alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5539-5544.	1.0	5
89	Decoding the Chemical Language of Motile Bacteria by Using Highâ€Throughput Microfluidic Assays. ChemBioChem, 2015, 16, 2151-2155.	1.3	4
90	Exploring Predatory Nematode Chemotaxis Using Low-Cost and Easy-to-Use Microfluidics. American Biology Teacher, 2017, 79, 753-762.	0.1	3

#	Article	IF	CITATIONS
91	Spatial Structure of Microbes in Nature and the Biophysics of Cell–Cell Communication. Biological and Medical Physics Series, 2015, , 53-81.	0.3	3
92	Soft Materials that Intercept, Respond to, and Sequester Bacterial Siderophores. Chemistry of Materials, 2021, 33, 5401-5412.	3.2	2
93	Cycloalkene budding: mass spectrometric studies of competitive and dual cycloalkene extrusion reactions from doubly unsaturated aldehydeN,N-dimethylhydrazones. Rapid Communications in Mass Spectrometry, 2000, 14, 1105-1109.	0.7	1
94	Laboratory Activity Using Accessible Microfluidics to Study Nematode Behavior in an Electrical Field. Journal of Microbiology and Biology Education, $2018,19,.$	0.5	1
95	A chemist building paths to cell biology. Molecular Biology of the Cell, 2013, 24, 3264-3266.	0.9	0