## Jan Demel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1339386/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Polymeric Membranes Containing Iodine-Loaded UiO-66 Nanoparticles as Water-Responsive<br>Antibacterial and Antiviral Surfaces. ACS Applied Nano Materials, 2022, 5, 1244-1251.                                                                                | 2.4 | 6         |
| 2  | Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorganic Chemistry, 2022, , .                                                                                                                                                | 1.9 | 4         |
| 3  | Metal–organic frameworks <i>vs.</i> buffers: case study of UiO-66 stability. Inorganic Chemistry<br>Frontiers, 2021, 8, 720-734.                                                                                                                              | 3.0 | 65        |
| 4  | Phosphinic acids as building units in materials chemistry. Coordination Chemistry Reviews, 2021, 433, 213748.                                                                                                                                                 | 9.5 | 16        |
| 5  | Tetrazine-Based Metal-Organic Frameworks as Scaffolds for Post-Synthetic Modification by the Click<br>Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 461-466.                                                                                 | 1.0 | 17        |
| 6  | Exploring Structural Disorders in Aluminum-Containing Metal–Organic Frameworks: Comparison of<br>Solid-State <sup>27</sup> Al NMR Powder Spectra to DFT Calculations on Bulk Periodic Structures.<br>Journal of Physical Chemistry C, 2020, 124, 12569-12579. | 1.5 | 1         |
| 7  | Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of<br>Bisphenol A. Inorganic Chemistry, 2020, 59, 5538-5545.                                                                                                              | 1.9 | 17        |
| 8  | Novel Cerium Bisphosphinate Coordination Polymer and Unconventional Metal–Organic Framework.<br>Crystals, 2019, 9, 303.                                                                                                                                       | 1.0 | 8         |
| 9  | New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals, 2019, 9, 270.                                                                                                                                                                        | 1.0 | 81        |
| 10 | Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex.<br>Inorganic Chemistry, 2019, 58, 16546-16552.                                                                                                                   | 1.9 | 29        |
| 11 | Multifunctional polystyrene nanofiber membrane with bounded polyethyleneimine and NO<br>photodonor: dark- and light-induced antibacterial effect and enhanced CO2 adsorption. Journal of<br>Materials Science, 2019, 54, 2740-2753.                           | 1.7 | 5         |
| 12 | Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria.<br>ACS Applied Materials & Interfaces, 2018, 10, 8527-8535.                                                                                                  | 4.0 | 102       |
| 13 | Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte<br>Chemie - International Edition, 2018, 57, 5016-5019.                                                                                                       | 7.2 | 53        |
| 14 | Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte<br>Chemie, 2018, 130, 5110-5113.                                                                                                                              | 1.6 | 14        |
| 15 | The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy.<br>Beilstein Journal of Nanotechnology, 2018, 9, 2960-2967.                                                                                                 | 1.5 | 12        |
| 16 | Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance<br>for Organophosphate Degradation. Inorganic Chemistry, 2018, 57, 14290-14297.                                                                               | 1.9 | 100       |
| 17 | Phosphinatophenylporphyrins tailored for high photodynamic efficacy. Organic and Biomolecular Chemistry, 2018, 16, 7274-7281.                                                                                                                                 | 1.5 | 13        |
| 18 | Nanoscaled porphyrinic metal–organic frameworks: photosensitizer delivery systems for photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 1815-1821.                                                                                             | 2.9 | 62        |

Jan Demel

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 2017, 499, 138-144.                                                                                              | 5.0 | 19        |
| 20 | Postsynthetic modification of a zirconium metal–organic framework at the inorganic secondary<br>building unit with diphenylphosphinic acid for increased photosensitizing properties and stability.<br>Chemical Communications, 2017, 53, 8557-8560. | 2.2 | 40        |
| 21 | Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity. RSC Advances, 2016, 6, 44279-44287.                                                                                                             | 1.7 | 38        |
| 22 | MollCluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the<br>Suzuki-Miyaura Coupling Reaction. European Journal of Inorganic Chemistry, 2016, 2016, 4668-4673.                                                    | 1.0 | 10        |
| 23 | Facile synthesis of CuO nanosheets via the controlled delamination of layered copper hydroxide acetate. Journal of Colloid and Interface Science, 2015, 452, 174-179.                                                                                | 5.0 | 23        |
| 24 | Insight into the Structure of Layered Zinc Hydroxide Salts Intercalated with Dodecyl Sulfate Anions.<br>Journal of Physical Chemistry C, 2014, 118, 27131-27141.                                                                                     | 1.5 | 35        |
| 25 | Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water. Dalton Transactions, 2014, 43, 10484.                                                                                    | 1.6 | 23        |
| 26 | High Photocatalytic Activity of Transparent Films Composed of ZnO Nanosheets. Langmuir, 2014, 30, 380-386.                                                                                                                                           | 1.6 | 29        |
| 27 | Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers. Journal of Materials Chemistry A, 2013, 1, 11429.                                                                                                      | 5.2 | 23        |
| 28 | Lanthanide-Porphyrin Hybrids: from Layered Structures to Metal–Organic Frameworks with<br>Photophysical Properties. Inorganic Chemistry, 2013, 52, 2779-2786.                                                                                        | 1.9 | 69        |
| 29 | Layered Hydroxide-Porphyrin Hybrid Materials: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2012, 2012, 5154-5164.                                                                                                  | 1.0 | 40        |
| 30 | Few-Layer ZnO Nanosheets: Preparation, Properties, and Films with Exposed {001} Facets. Journal of Physical Chemistry C, 2011, 115, 24702-24706.                                                                                                     | 1.5 | 26        |
| 31 | Photoactive Self-Standing Films Made of Layered Double Hydroxides with Arranged Porphyrin<br>Molecules. Journal of Physical Chemistry C, 2011, 115, 21700-21706.                                                                                     | 1.5 | 16        |
| 32 | Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups. Journal of Molecular Catalysis A, 2011, 341, 97-102.                                                    | 4.8 | 12        |
| 33 | Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs. Journal of Colloid and Interface Science, 2011, 360, 532-539.                                                               | 5.0 | 35        |
| 34 | Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction. Journal of Molecular Catalysis A, 2010, 329, 13-20.                                                          | 4.8 | 29        |
| 35 | Inorganicâ^'Organic Hybrid Materials: Layered Zinc Hydroxide Salts with Intercalated Porphyrin Sensitizers. Journal of Physical Chemistry C, 2010, 114, 16321-16328.                                                                                 | 1.5 | 35        |
| 36 | Palladium Catalysts Supported on Mesoporous Molecular Sieves Bearing Nitrogen Donor Groups:<br>Preparation and Use in Heck and Suzuki CC Bondâ€Forming Reactions. ChemSusChem, 2009, 2, 442-451.                                                    | 3.6 | 40        |

Jan Demel

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the Heck reaction. Journal of Molecular Catalysis A, 2009, 302, 28-35.        | 4.8 | 34        |
| 38 | The use of palladium nanoparticles supported with MCM-41 and basic (Al)MCM-41 mesoporous sieves in microwave-assisted Heck reaction. Catalysis Today, 2008, 132, 63-67.                                       | 2.2 | 29        |
| 39 | Phosphinoferrocenyl-terminated amidoamines: Synthesis and catalytic utilization in<br>palladium-mediated C–C bond forming reactions. Journal of Molecular Catalysis A, 2008, 285, 41-47.                      | 4.8 | 30        |
| 40 | Heterogeneous catalysts containing basic and palladium centres for Heck reaction. Studies in Surface<br>Science and Catalysis, 2008, , 1283-1286.                                                             | 1.5 | 0         |
| 41 | Synthesis, coordination and catalytic use of 1-(diphenylphosphino)-1′-carbamoylferrocenes with pyridyl-containing N-substituents. Dalton Transactions, 2007, , 2802-2811.                                     | 1.6 | 51        |
| 42 | Grafting of palladium nanoparticles onto mesoporous molecular sieve MCM-41: Heterogeneous<br>catalysts for the formation of an N-substituted pyrrol. Journal of Molecular Catalysis A, 2007, 263,<br>259-265. | 4.8 | 21        |
| 43 | The use of palladium nanoparticles supported on MCM-41 mesoporous molecular sieves in Heck reaction: A comparison of basic and neutral supports. Journal of Molecular Catalysis A, 2007, 274, 127-132.        | 4.8 | 37        |
| 44 | Preparation and catalytic application of MCM-41 modified with a ferrocene carboxyphosphine and a ruthenium complex. Journal of Molecular Catalysis A, 2004, 224, 161-169.                                     | 4.8 | 30        |
| 45 | Direct Phenylation of <i>nido</i> -B <sub>10</sub> H <sub>14</sub> . Journal of Organic Chemistry, 0, , .                                                                                                     | 1.7 | 3         |