Tian Jian Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1338970/publications.pdf

Version: 2024-02-01

113 papers	5,065 citations	33 h-index	9	68 g-index
118 all docs	118 docs citations	118 times ranked		8002 citing authors

#	Article	IF	Citations
1	Ultralight micro-perforated sandwich panel with hierarchical honeycomb core for sound absorption. Journal of Sandwich Structures and Materials, 2022, 24, 201-217.	2.0	9
2	3D Free Vibration Analysis of Functionally Graded Plates with Arbitrary Boundary Conditions in Thermal Environment. Advanced Engineering Materials, 2022, 24, 2100636.	1.6	7
3	On the modelling of heat and fluid transport in fibrous porous media: Analytical fractal models for permeability and thermal conductivity. International Journal of Thermal Sciences, 2022, 172, 107270.	2.6	20
4	Multiple ballistic impacts of thin metallic plates: Numerical simulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 7962-7973.	1.1	2
5	Stress state sensitivity for plastic flow and ductile fracture of L907A low-alloy marine steel: From tension to shear. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142689.	2.6	11
6	Cylindrical compressible liquid inclusion with surface effects. Journal of the Mechanics and Physics of Solids, 2022, 161, 104813.	2.3	14
7	Springback of a fully-clamped metallic beam loaded impulsively. International Journal of Mechanics and Materials in Design, 2022, 18, 435-459.	1.7	3
8	Localization of elastic waves in one-dimensional detuned phononic crystals with flexoelectric effect. International Journal of Smart and Nano Materials, 2022, 13, 244-262.	2.0	6
9	Oblique crushing of truncated conical sandwich shell with corrugated core. Mechanics of Advanced Materials and Structures, 2021, 28, 2458-2471.	1.5	8
10	Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness. Composite Structures, 2021, 256, 112994.	3.1	21
11	Confinement effects on compressive and ballistic performance of ceramics: a review. International Materials Reviews, 2021, 66, 287-312.	9.4	19
12	Crashworthiness of hierarchical truncated conical shells with corrugated cores. International Journal of Mechanical Sciences, 2021, 193, 106171.	3.6	15
13	A theory of mechanobiological sensation: strain amplification/attenuation of coated liquid inclusion with surface tension. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 145-155.	1.5	4
14	Bending Response of 3D-Printed Titanium Alloy Sandwich Panels with Corrugated Channel Cores. Materials, 2021, 14, 556.	1.3	14
15	Characterizing in situ poroelastic properties of cytoplasm by the translation of a rigid spherical inclusion. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 194-200.	1.5	2
16	Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: From low-frequency to ultra-broadband. Applied Physics Letters, 2021, 118, .	1.5	52
17	Janus Vitrification of Droplet via Cold Leidenfrost Phenomenon. Small, 2021, 17, e2007325.	5.2	7
18	Janus Particles: Janus Vitrification of Droplet via Cold Leidenfrost Phenomenon (Small 17/2021). Small, 2021, 17, 2170075.	5.2	0

#	Article	IF	Citations
19	Dynamics of capillary flow in an undulated tube. Physics of Fluids, 2021, 33, .	1.6	21
20	The Role of Secondary Flows and Separation in Convective Heat Transfer in a Rotating Radial Vane Brake Disk. Journal of Heat Transfer, 2021, 143 , .	1.2	4
21	Anomalous Loss of Stiffness with Increasing Reinforcement in a Photoâ€Activated Nanocomposite. Macromolecular Rapid Communications, 2021, 42, 2100147.	2.0	0
22	Theory of fluid saturated porous media with surface effects. Journal of the Mechanics and Physics of Solids, 2021, 151, 104392.	2.3	11
23	Sound absorption of petal shaped micro-channel porous materials. Physics of Fluids, 2021, 33, 063606.	1.6	6
24	Effects of coating on dynamic stress concentration in fiber reinforced composites. International Journal of Solids and Structures, 2021, 222-223, 111029.	1.3	2
25	Evaporation-Induced Diffusion Acceleration in Liquid-Filled Porous Materials. ACS Omega, 2021, 6, 21646-21654.	1.6	8
26	Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter, 2021, 4, 2886-2901.	5.0	59
27	Out-of-plane compression of a novel hybrid corrugated core sandwich panel. Composite Structures, 2021, 272, 114222.	3.1	7
28	Enhancement of UHMWPE encapsulation on the ballistic performance of bi-layer mosaic armors. Composites Part B: Engineering, 2021, 221, 109023.	5.9	12
29	A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophysical Journal, 2021, 120, 3764-3775.	0.2	1
30	Analytical fractal models for permeability and conductivity of open-cell metallic foams. International Journal of Heat and Mass Transfer, 2021, 177, 121509.	2.5	25
31	Torsional and translational vibrations of a eukaryotic nucleus, and the prospect of vibrational mechanotransduction and therapy. Journal of the Mechanics and Physics of Solids, 2021, 155, 104572.	2.3	3
32	Design of a novel LED bulb with entire surface thermally activated for passive cooling. Applied Thermal Engineering, 2021, 198, 117466.	3.0	4
33	The Plasticity of Nanofibrous Matrix Regulates Fibroblast Activation in Fibrosis. Advanced Healthcare Materials, 2021, 10, e2001856.	3.9	12
34	Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nature Communications, 2021, 12, 6229.	5.8	40
35	Microstructural effects on permeability of Nitrocellulose membranes for biomedical applications. Journal of Membrane Science, 2020, 595, 117502.	4.1	34
36	Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Materials Horizons, 2020, 7, 203-213.	6.4	70

#	Article	IF	Citations
37	Forced convection in additively manufactured sandwich-walled cylinders with thermo-mechanical multifunctionality. International Journal of Heat and Mass Transfer, 2020, 149, 119161.	2.5	8
38	Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds. ACS Applied Materials & Diterfaces, 2020, 12, 2049-2058.	4.0	31
39	Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks. Applied Physics Letters, 2020, 117 , .	1.5	58
40	Mechanics tuning of liquid inclusions via bio-coating. Extreme Mechanics Letters, 2020, 41, 101049.	2.0	4
41	Biomechanics in plant resistance to drought. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 1142-1157.	1.5	2
42	Sound propagation in porous materials containing rough tubes. Physics of Fluids, 2020, 32, .	1.6	16
43	Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 2020, 6, eaax1909.	4.7	69
44	A physically-based failure analysis framework for fiber-reinforced composite laminates under multiaxial loading. Composite Structures, 2020, 241, 112125.	3.1	7
45	Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 2020, 138, 103920.	2.3	18
46	Sound absorption theory for micro-perforated panel with petal-shaped perforations. Journal of the Acoustical Society of America, 2020, 148, 18-24.	0.5	12
47	Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation. Composite Structures, 2020, 252, 112686.	3.1	41
48	The acoustic radiation force of a focused ultrasound beam on a suspended eukaryotic cell. Ultrasonics, 2020, 108, 106205.	2.1	21
49	Hydrostatic pressure and interfacial tension induce mode instability in wave propagation along a liquid-filled microtubule. Physics of Fluids, 2020, 32, 031901.	1.6	2
50	3d printed continuous fiber reinforced composite auxetic honeycomb structures. Composites Part B: Engineering, 2020, 187, 107858.	5.9	161
51	Vibration of a liquid-filled capillary tube. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103745.	1.5	0
52	Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact. Composites Part B: Engineering, 2020, 197, 108135.	5.9	27
53	Regulation of Cell Behavior by Hydrostatic Pressure. Applied Mechanics Reviews, 2019, 71, 0408031-4080313.	4.5	34
54	Influence of prestress on ballistic performance of bi-layer ceramic composite armors: Experiments and simulations. Composite Structures, 2019, 227, 111258.	3.1	23

#	Article	IF	CITATIONS
55	A laboratory experimental technique for simulating combined blast and impact loading. International Journal of Impact Engineering, 2019, 134, 103382.	2.4	26
56	Mathematical modeling of Stokes flow in petal shaped pipes. Physics of Fluids, 2019, 31, .	1.6	15
57	Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 338-342.	1.5	7
58	Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 265-269.	1.5	16
59	Role of Jakob number in Leidenfrost phenomena unveiled by theoretical modeling. Physics of Fluids, 2019, 31, 042109.	1.6	6
60	Underwater Acoustic Absorption of Composite Anechoic Layers With Inner Holes. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	11
61	Regulation on mechanical properties of spherically cellular fruits under osmotic stress. Journal of the Mechanics and Physics of Solids, 2019, 127, 182-190.	2.3	8
62	A mechanoelectrical coupling model of neurons under stretching. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 213-221.	1.5	12
63	Dual-level stress plateaus in honeycombs subjected to impact loading: perspectives from bucklewaves, buckling and cell-wall progressive folding. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 70-77.	1.5	5
64	Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12374-12389.	4.0	48
65	Droplet based vitrification for cell aggregates: Numerical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 383-393.	1.5	7
66	Hydrogel Electronics: Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors (Small 36/2018). Small, 2018, 14, 1870166.	5.2	14
67	Axial compressive collapse of ultralight corrugated sandwich cylindrical shells. Materials and Design, 2018, 160, 325-337.	3.3	40
68	Heterostructured Silk-Nanofiber-Reduced Graphene Oxide Composite Scaffold for SH-SY5Y Cell Alignment and Differentiation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39228-39237.	4.0	64
69	The protective effects of acupoint gel embedding on rats with myocardial ischemia-reperfusion injury. Life Sciences, 2018, 211, 51-62.	2.0	14
70	The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 160-169.	1.5	16
71	Ultrarapid Inductive Rewarming of Vitrified Biomaterials with Thin Metal Forms. Annals of Biomedical Engineering, 2018, 46, 1857-1869.	1.3	23
72	Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Small, 2018, 14, e1801711.	5.2	144

#	Article	IF	Citations
73	3D Spatiotemporal Mechanical Microenvironment: A Hydrogelâ€Based Platform for Guiding Stem Cell Fate. Advanced Materials, 2018, 30, e1705911.	11.1	162
74	The Arabidopsis trichome is an active mechanosensory switch. Plant, Cell and Environment, 2017, 40, 611-621.	2.8	54
75	Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes. Soft Matter, 2017, 13, 2919-2927.	1.2	3
76	Non-invasive tracking of hydrogel degradation using upconversion nanoparticles. Acta Biomaterialia, 2017, 55, 410-419.	4.1	38
77	Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 2017, 22-23, 88-119.	1.5	67
78	The race to the nociceptor: mechanical versus temperature effects in thermal pain of dental neurons. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 260-266.	1.5	4
79	Bioinspired Structures: Collective Wetting of a Natural Fibrous System and Its Application in Pumpâ€Free Droplet Transfer (Adv. Funct. Mater. 22/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
80	Collective Wetting of a Natural Fibrous System and Its Application in Pumpâ€Free Droplet Transfer. Advanced Functional Materials, 2017, 27, 1606607.	7.8	18
81	Fabrication of fluorescent composite hydrogel usingin situsynthesis of upconversion nanoparticles. Nanotechnology, 2017, 28, 175702.	1.3	10
82	Paper-based capacitive sensors for identification and quantification of chemicals at the point of care. Talanta, 2017, 165, 419-428.	2.9	12
83	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
84	Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors and Bioelectronics, 2017, 90, 525-533.	5.3	263
85	Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Critical Reviews in Biotechnology, 2016, 36, 1-13.	5.1	39
86	In vitrospatially organizing the differentiation in individual multicellular stem cell aggregates. Critical Reviews in Biotechnology, 2016, 36, 20-31.	5.1	24
87	Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon. Scientific Reports, 2016, 6, 28574.	1.6	13
88	Gradient Mechanical Properties Facilitate <i>Arabidopsis</i> Trichome as Mechanosensor. ACS Applied Materials & Discourse (1988) Applied (1988	4.0	20
89	A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control. Analytica Chimica Acta, 2016, 935, 207-212.	2.6	17
90	An approach to quantifying 3D responses of cells to extreme strain. Scientific Reports, 2016, 6, 19550.	1.6	30

#	Article	IF	CITATIONS
91	Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7. Scientific Reports, 2016, 6, 33067.	1.6	46
92	An Integrated Stochastic Model of Matrix-Stiffness-Dependent Filopodial Dynamics. Biophysical Journal, 2016, 111, 2051-2061.	0.2	30
93	Recent Advances in Penâ€Based Writing Electronics and their Emerging Applications. Advanced Functional Materials, 2016, 26, 165-180.	7.8	84
94	Graphene-based field effect transistor in two-dimensional paper networks. Analytica Chimica Acta, 2016, 917, 101-106.	2.6	19
95	Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology Advances, 2016, 34, 305-320.	6.0	128
96	Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Materials, 2016, 8, e238-e238.	3.8	49
97	Hydrogel Fibers: Chineseâ€Noodleâ€Inspired Muscle Myofiber Fabrication (Adv. Funct. Mater. 37/2015). Advanced Functional Materials, 2015, 25, 6020-6020.	7.8	2
98	High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing. Scientific Reports, 2015, 5, 17928.	1.6	26
99	Chineseâ€Noodleâ€Inspired Muscle Myofiber Fabrication. Advanced Functional Materials, 2015, 25, 5999-6008.	7.8	56
100	Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering. Advanced Functional Materials, 2015, 25, 5726-5738.	7.8	159
101	Tissue Engineering: Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5875-5875.	7.8	2
102	Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers. Scientific Reports, 2015, 5, 7779.	1.6	171
103	Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2015, 21, 288-297.	2.5	5
104	Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics. Scientific Reports, 2015, 5, 11488.	1.6	27
105	Fabrication of Microscale Hydrogels with Tailored Microstructures based on Liquid Bridge Phenomenon. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11134-11140.	4.0	26
106	Near-infrared light activated delivery platform for cancer therapy. Advances in Colloid and Interface Science, 2015, 226, 123-137.	7.0	42
107	Selective enhancement of red emission from upconversion nanoparticles via surface plasmon-coupled emission. RSC Advances, 2015, 5, 76825-76835.	1.7	27
108	Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H532-H542.	1.5	58

TIAN JIAN LU

#	Article	IF	CITATIONS
109	Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today, 2014, 19, 763-773.	3.2	53
110	Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014, 54, 585-597.	5.3	826
111	Synthesis of upconversion NaYF ₄ :Yb ³⁺ ,Er ³⁺ particles with enhanced luminescent intensity through control of morphology and phase. Journal of Materials Chemistry C, 2014, 2, 3671-3676.	2.7	62
112	Engineering cell alignment in vitro. Biotechnology Advances, 2014, 32, 347-365.	6.0	220
113	BioPen: direct writing of functional materials at the point of care. Scientific Reports, 2014, 4, 4872.	1.6	34