

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1338301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal, 2022, 428, 131082.	12.7	30
2	Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework. Chemosphere, 2022, 286, 131853.	8.2	16
3	Electrochemical remediation of perfluoroalkyl substances from water. Electrochimica Acta, 2022, 403, 139635.	5.2	19
4	Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chemical Engineering Research and Design, 2022, 178, 267-288.	5.6	25
5	Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. Science Advances, 2022, 8, eabk1888.	10.3	22
6	Synthesis and covalent immobilization of redox-active metallopolymers for organic phase electrochemistry. Polymer, 2022, 244, 124656.	3.8	7
7	Membrane-based electrochemical technologies: III. Selective ion removal and recovery. , 2022, , 403-444.		1
8	Recent advances in wastewater treatment using semiconductor photocatalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100644.	5.9	33
9	Rate, Efficiency, and Mechanisms of Electrochemical Perfluorooctanoic Acid Degradation with Boron-Doped Diamond and Plasma Electrodes. Langmuir, 2022, 38, 8975-8986.	3.5	5
10	Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chemical Engineering Journal, 2021, 420, 127715.	12.7	39
11	Iron phosphomolybdate complexes in electrocatalytic reduction of aqueous disinfection byproducts. Chemical Engineering Journal, 2021, 408, 127354.	12.7	5
12	Redox-copolymers for the recovery of rare earth elements by electrochemically regenerated ion-exchange. Journal of Materials Chemistry A, 2021, 9, 20068-20077.	10.3	31
13	Emerging investigator series: electrochemically-mediated remediation of GenX using redox-copolymers. Environmental Science: Water Research and Technology, 2021, 7, 2231-2240.	2.4	9
14	Structure and Potentialâ€Dependent Selectivity in Redoxâ€Metallopolymers: Electrochemically Mediated Multicomponent Metal Separations. Advanced Functional Materials, 2021, 31, 2009307.	14.9	30
15	Electrosorption: Structure and Potentialâ€Dependent Selectivity in Redoxâ€Metallopolymers: Electrochemically Mediated Multicomponent Metal Separations (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170103.	14.9	0
16	Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. IScience, 2021, 24, 102374.	4.1	46
17	Parametric investigation of the desalination performance in multichannel membrane capacitive deionization (MC-MCDI). Desalination, 2021, 503, 114950.	8.2	24
18	Advances and challenges in metal ion separation from water. Trends in Chemistry, 2021, 3, 819-831.	8.5	14

#	Article	IF	CITATIONS
19	Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chemical Engineering Journal, 2021, 421, 129765.	12.7	18
20	Corrigendum to "Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal–organic framework―[Chem. Eng. J. 421 (2021) 129765]. Chemical Engineering Journal, 2021, 426, 130667.	12.7	1
21	Redox-Active Interfaces for Electrochemical Reactive Separations and Process Intensification. ECS Meeting Abstracts, 2021, MA2021-02, 841-841.	0.0	0
22	Structural and Potential-Dependent Metal Anion Selectivity of Redox-Metallopolymer Electrosorbents. ECS Meeting Abstracts, 2021, MA2021-02, 759-759.	0.0	0
23	Redox Copolymers for the Electrochemically-Mediated Removal of per- and Polyfluoroalkyl Substances from Water. ECS Meeting Abstracts, 2021, MA2021-02, 1531-1531.	0.0	1
24	Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nature Communications, 2021, 12, 6554.	12.8	56
25	Perspective and challenges in electrochemical approaches for reactive CO2 separations. IScience, 2021, 24, 103422.	4.1	28
26	Electrochemistry for Recycling. Electrochemical Society Interface, 2021, 30, 41-43.	0.4	4
27	Capacitive deionization and electrosorption for heavy metal removal. Environmental Science: Water Research and Technology, 2020, 6, 258-282.	2.4	92
28	Rapid Inversion of Surface Charges in Heteroatomâ€Doped Porous Carbon: A Route to Robust Electrochemical Desalination. Advanced Functional Materials, 2020, 30, 1909387.	14.9	38
29	Asymmetric Redoxâ€Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic. Advanced Materials, 2020, 32, e1906877.	21.0	77
30	Semiconducting Polymer Interfaces for Electrochemically Assisted Mercury Remediation. ACS Applied Materials & amp; Interfaces, 2020, 12, 49713-49722.	8.0	22
31	Electrochemical interfaces for chemical and biomolecular separations. Current Opinion in Colloid and Interface Science, 2020, 46, 77-93.	7.4	40
32	Molecular Tuning of Redoxâ€Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020, 30, 2004635.	14.9	34
33	Capacitive Deionization: Rapid Inversion of Surface Charges in Heteroatomâ€Doped Porous Carbon: A Route to Robust Electrochemical Desalination (Adv. Funct. Mater. 9/2020). Advanced Functional Materials, 2020, 30, 2070054.	14.9	0
34	An Asymmetric Ironâ€Based Redoxâ€Active System for Electrochemical Separation of Ions in Aqueous Media. Advanced Functional Materials, 2020, 30, 1910363.	14.9	39
35	Electrochemical Reactive Separation: Asymmetric Redoxâ€Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic (Adv. Mater. 6/2020). Advanced Materials, 2020, 32, 2070040.	21.0	1
36	Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 2020, 5, 517-538.	48.7	360

#	Article	IF	CITATIONS
37	Electrochemical Remediation: Molecular Tuning of Redox opolymers for Selective Electrochemical Remediation (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070346.	14.9	3
38	Electrochemical Separations for Metal Recycling. Electrochemical Society Interface, 2020, 29, 55-61.	0.4	18
39	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	32.8	111
40	(Invited) Molecular Engineering of Redox-Active Electrodes for Selective Ion Separations and Process Intensification. ECS Meeting Abstracts, 2019, , .	0.0	0
41	Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nature Communications, 2018, 9, 4701.	12.8	193
42	Ferroceneâ€Containing Inverse Opals by Meltâ€5hear Organization of Core/Shell Particles. Macromolecular Rapid Communications, 2018, 39, e1800428.	3.9	24
43	Magnesium Thiodialkanoates: Dually-Functional Additives to Organic Coatings. Industrial & Engineering Chemistry Research, 2018, 57, 10992-11004.	3.7	0
44	Electrochemically Mediated Reduction of Nitrosamines by Hemin-Functionalized Redox Electrodes. Environmental Science and Technology Letters, 2017, 4, 161-167.	8.7	36
45	Postsynthetic Functionalization of Mg-MOF-74 with Tetraethylenepentamine: Structural Characterization and Enhanced CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 11299-11306.	8.0	131
46	Asymmetric Faradaic systems for selective electrochemical separations. Energy and Environmental Science, 2017, 10, 1272-1283.	30.8	143
47	Redox Interfaces for Electrochemically Controlled Protein–Surface Interactions: Bioseparations and Heterogeneous Enzyme Catalysis. Chemistry of Materials, 2017, 29, 5702-5712.	6.7	35
48	Chitosan/sericin blend membranes for adsorption of bovine serum albumin. Canadian Journal of Chemical Engineering, 2017, 95, 954-960.	1.7	10
49	Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. Physical Chemistry Chemical Physics, 2017, 19, 23570-23584.	2.8	71
50	Redox-electrodes for selective electrochemical separations. Advances in Colloid and Interface Science, 2017, 244, 6-20.	14.7	132
51	Anionâ€5elective Redox Electrodes: Electrochemically Mediated Separation with Heterogeneous Organometallic Interfaces. Advanced Functional Materials, 2016, 26, 3394-3404.	14.9	106
52	Redox Electrodes: Anion-Selective Redox Electrodes: Electrochemically Mediated Separation with Heterogeneous Organometallic Interfaces (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3552-3552.	14.9	0
53	Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats. ACS Applied Materials & Interfaces, 2016, 8, 17555-17564.	8.0	18
54	Functional Networks of Organic and Coordination Polymers: Catalysis of Fructose Conversion. Chemistry of Materials, 2014, 26, 6257-6264.	6.7	58

#	Article	IF	CITATIONS
55	Bromine-Catalyzed Conversion of CO ₂ and Epoxides to Cyclic Carbonates under Continuous Flow Conditions. Journal of the American Chemical Society, 2013, 135, 18497-18501.	13.7	130
56	Aldehyde Self-Condensation Catalysis by Aluminum Aminoterephthalate Metal–Organic Frameworks Modified with Aluminum Isopropoxide. Chemistry of Materials, 2013, 25, 1636-1642.	6.7	25
57	Heteropolyacid-Functionalized Aluminum 2-Aminoterephthalate Metal-Organic Frameworks As Reactive Aldehyde Sorbents and Catalysts. ACS Applied Materials & Interfaces, 2013, 5, 5468-5477.	8.0	56
58	Density of Ocular Components of the Bovine Eye. Optometry and Vision Science, 2009, 86, 1187-1195.	1.2	27
59	Reactive Fibrous Materials for Decontamination of Chemical and Biological Threats. Key Engineering Materials, 0, 893, 3-10.	0.4	1