Edward Szczerbicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1338298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart Virtual Product Development: Manufacturing Capability Analysis and Process Planning Module. Cybernetics and Systems, 2022, 53, 468-481.	1.6	1
2	Smart Knowledge Engineering for Cognitive Systems: A Brief Overview. Cybernetics and Systems, 2022, 53, 384-402.	1.6	3
3	Decisional DNA (DDNA) Based Machine Monitoring and Total Productive Maintenance in Industry 4.0 Framework. Cybernetics and Systems, 2022, 53, 510-519.	1.6	5
4	The Development of a Conceptual Framework for Knowledge Sharing in Agile IT Projects. Cybernetics and Systems, 2022, 53, 529-540.	1.6	2
5	Evaluating Industry 4.0 Implementation Challenges Using Interpretive Structural Modeling and Fuzzy Analytic Hierarchy Process. Cybernetics and Systems, 2021, 52, 350-378.	1.6	26
6	Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET). Cybernetics and Systems, 2021, 52, 445-460.	1.6	6
7	Cognitive Systems, Concepts, Processes, and Techniques for the Age of Industry 4.0. Cybernetics and Systems, 2021, 52, 293-295.	1.6	0
8	Where Did Knowledge Management Go?: A Comprehensive Survey. Cybernetics and Systems, 2021, 52, 461-476.	1.6	3
9	Experience-Based Product Inspection Planning for Industry 4.0. Cybernetics and Systems, 2021, 52, 296-312.	1.6	7
10	Toward Intelligent Recommendations Using the Neural Knowledge DNA. Cybernetics and Systems, 2021, 52, 419-428.	1.6	1
11	A new multi-process collaborative architecture for time series classification. Knowledge-Based Systems, 2021, 220, 106934.	4.0	20
12	A Comprehensive Investigation of Knowledge Management Publications. , 2021, , .		0
13	A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multihead Convolutional Attention. IEEE Internet of Things Journal, 2020, 7, 1072-1080.	5.5	116
14	Industry 4.0 Implementation Challenges in Manufacturing Industries: an Interpretive Structural Modelling Approach. Procedia Computer Science, 2020, 176, 2384-2393.	1.2	28
15	Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization. Procedia Computer Science, 2020, 176, 3093-3102.	1.2	0
16	Smart Virtual Product Development (SVPD) System to Support Product Inspection Planning in Industry 4.0. Procedia Computer Science, 2020, 176, 2596-2604.	1.2	5
17	Smart Data, Information, and Knowledge Processing for Intelligence Amplification: Approaches, Models and Case Studies. Cybernetics and Systems, 2020, 51, 81-83.	1.6	0
18	Enhancing Product Manufacturing through Smart Virtual Product Development (SVPD) for Industry 4.0. Cybernetics and Systems, 2020, 51, 246-257.	1.6	8

#	Article	IF	CITATIONS
19	Knowledge-Based Virtual Modeling and Simulation of Manufacturing Processes for Industry 4.0. Cybernetics and Systems, 2020, 51, 84-102.	1.6	5
20	The Neural Knowledge DNA Based Smart Internet of Things. Cybernetics and Systems, 2020, 51, 258-264.	1.6	0
21	Stream Reasoning to Improve Decision-Making in Cognitive Systems. Cybernetics and Systems, 2020, 51, 214-231.	1.6	2
22	Experience-Based Cognition for Driving Behavioral Fingerprint Extraction. Cybernetics and Systems, 2020, 51, 103-114.	1.6	1
23	Context-Aware Indexing and Retrieval for Cognitive Systems Using SOEKS and DDNA. Advances in Intelligent Systems and Computing, 2020, , 7-16.	0.5	3
24	Image Representation for Cognitive Systems Using SOEKS and DDNA: A Case Study for PPE Compliance. Lecture Notes in Computer Science, 2020, , 214-225.	1.0	2
25	Assessing Industry 4.0 Features Using SWOT Analysis. Communications in Computer and Information Science, 2020, , 216-225.	0.4	7
26	Smart Decisional DNA Technology to Enhance Industry 4.0 Environment in Conjunction with Conventional Manufacturing. Intelligent Systems Reference Library, 2020, , 83-126.	1.0	0
27	Smart Blue Cities. Europa XXI, 2020, 36, 77-88.	0.8	3
28	Experience Based Clinical Decision Support Systems: An Overview and Case Studies. Intelligent Systems Reference Library, 2020, , 151-188.	1.0	1
29	Smart Embedded Systems with Decisional DNA Knowledge Representation. Intelligent Systems Reference Library, 2020, , 127-150.	1.0	Ο
30	A Framework for Enhancing Supplier Selection Process by Using SOEKS and Decisional DNA. Communications in Computer and Information Science, 2020, , 558-565.	0.4	1
31	Visual Content Representation for Cognitive Systems: Towards Augmented Intelligence. Intelligent Systems Reference Library, 2020, , 49-81.	1.0	2
32	Smart Innovation Engineering Using Set of Experience and Decisional DNA. Intelligent Systems Reference Library, 2020, , 201-248.	1.0	0
33	Set of Experience and Decisional DNA: Experience-Based Knowledge Structures. Intelligent Systems Reference Library, 2020, , 1-47.	1.0	0
34	Smart Virtual Product Development (SVPD): Experience Based Product Development System for Industry 4.0. Intelligent Systems Reference Library, 2020, , 189-200.	1.0	1
35	Computational collective intelligence for enterprise information systems. Enterprise Information Systems, 2019, 13, 933-934.	3.3	6
36	Decisional DNA based intelligent knowledge model for flexible manufacturing system. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7155-7167.	0.8	0

#	Article	IF	CITATIONS
37	Proposition of the methodology for Data Acquisition, Analysis and Visualization in support of Industry 4.0. Procedia Computer Science, 2019, 159, 1976-1985.	1.2	12
38	Smart Virtual Product Development (SVPD) to Enhance Product Manufacturing in Industry 4.0. Procedia Computer Science, 2019, 159, 2232-2239.	1.2	14
39	Visual content representation and retrieval for Cognitive Cyber Physical Systems. Procedia Computer Science, 2019, 159, 2249-2257.	1.2	10
40	Building collective intelligence through experience: a survey on the use of the KREM model. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7141-7153.	0.8	0
41	Experience based decisional DNA to support smart product design. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7179-7187.	0.8	Ο
42	A Set of Experience-Based Smart Synergy Security Mechanism in Internet of Vehicles. Cybernetics and Systems, 2019, 50, 230-237.	1.6	4
43	Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC). Cybernetics and Systems, 2019, 50, 197-207.	1.6	4
44	Towards Experience-Based Smart Product Design for Industry 4.0. Cybernetics and Systems, 2019, 50, 165-175.	1.6	23
45	Decisional-DNA Based Smart Production Performance Analysis Model. Cybernetics and Systems, 2019, 50, 154-164.	1.6	5
46	Establishing intelligent enterprise through community of practice for product innovation. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7169-7178.	0.8	3
47	Collective intelligence in information systems. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7113-7115.	0.8	5
48	Experience based knowledge representation for Internet of Things and Cyber Physical Systems with case studies. Future Generation Computer Systems, 2019, 92, 604-616.	4.9	42
49	Towards Knowledge Formalization and Sharing in a Cognitive Vision Platform for Hazard Control (CVP-HC). Lecture Notes in Computer Science, 2019, , 53-61.	1.0	6
50	Implementing Smart Virtual Product Development (SVPD) to Support Product Manufacturing. Lecture Notes in Computer Science, 2019, , 464-475.	1.0	2
51	Smart Data, Information, and Knowledge Engineering: Approaches, Techniques, and Case Studies. Cybernetics and Systems, 2018, 49, 257-260.	1.6	0
52	Support Product Development Framework by Means of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA. Studies in Computational Intelligence, 2018, , 257-267.	0.7	0
53	Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA. Cybernetics and Systems, 2018, 49, 412-419.	1.6	4
54	Manufacturing Data Analysis in Internet of Things/Internet of Data (IoT/IoD) Scenario. Cybernetics and Systems, 2018, 49, 280-295.	1.6	15

#	Article	IF	CITATIONS
55	Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning. Cybernetics and Systems, 2018, 49, 355-367.	1.6	4
56	Smart Innovation Engineering: Toward Intelligent Industries of the Future. Cybernetics and Systems, 2018, 49, 339-354.	1.6	6
57	From Knowledge based Vision Systems to Cognitive Vision Systems: A Review. Procedia Computer Science, 2018, 126, 1855-1864.	1.2	15
58	Contextual Knowledge to Enhance Workplace Hazard Recognition and Interpretation in a Cognitive Vision Platform. Procedia Computer Science, 2018, 126, 1837-1846.	1.2	3
59	Experience-Based Decisional DNA (DDNA) to Support Product Development. Cybernetics and Systems, 2018, 49, 399-411.	1.6	7
60	Video Classification Technology in a Knowledge-Vision-Integration Platform for Personal Protective Equipment Detection: An Evaluation. Lecture Notes in Computer Science, 2018, , 443-453.	1.0	5
61	Community of Practice for Product Innovation Towards the Establishment of Industry 4.0. Lecture Notes in Computer Science, 2018, , 651-660.	1.0	4
62	Hazard Control in Industrial Environments: A Knowledge-Vision-Based Approach. Advances in Intelligent Systems and Computing, 2018, , 243-252.	0.5	1
63	Experience-Oriented Intelligence for Internet of Things. Cybernetics and Systems, 2017, 48, 162-181.	1.6	7
64	Adding Intelligence to Cars Using the Neural Knowledge DNA. Cybernetics and Systems, 2017, 48, 267-273.	1.6	8
65	Towards neural knowledge DNA. Journal of Intelligent and Fuzzy Systems, 2017, 32, 1575-1584.	0.8	12
66	Manufacturing collective intelligence by the means of Decisional DNA and virtual engineering objects, process and factory. Journal of Intelligent and Fuzzy Systems, 2017, 32, 1585-1599.	0.8	11
67	A Semiautomatic Experience-Based Tool for Solving Product Innovation Problem. Cybernetics and Systems, 2017, 48, 231-248.	1.6	9
68	Guest Editorial: Information and Experience Engineering in Semantic Society: Some Challenges, Approaches, and Case Studies. Cybernetics and Systems, 2017, 48, 137-139.	1.6	0
69	Towards an experience based collective computational intelligence for manufacturing. Future Generation Computer Systems, 2017, 66, 89-99.	4.9	12
70	Smart innovation process enhancement using SOEKS and decisional DNA. Journal of Information and Telecommunication, 2017, 1, 290-303.	2.2	5
71	Enhancing Product Innovation Through Smart Innovation Engineering System. Lecture Notes in Computer Science, 2017, , 325-334.	1.0	2
72	Designing Intelligent Factory: Conceptual Framework and Empirical Validation. Procedia Computer Science, 2016, 96, 1801-1808.	1.2	10

#	Article	IF	CITATIONS
73	When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing. Cybernetics and Systems, 2016, 47, 140-148.	1.6	2
74	Toward Smart Innovation Engineering: Decisional DNA-Based Conceptual Approach. Cybernetics and Systems, 2016, 47, 149-159.	1.6	14
75	Guest Editorial: Smart Experience and Knowledge Engineering for Optimization, Learning, and Classification/Recommendation Problems. Cybernetics and Systems, 2016, 47, 1-3.	1.6	0
76	Virtual Engineering Factory: Creating Experience Base for Industry 4.0. Cybernetics and Systems, 2016, 47, 32-47.	1.6	78
77	Virtual engineering process (VEP): a knowledge representation approach for building bio-inspired distributed manufacturing DNA. International Journal of Production Research, 2016, 54, 7129-7142.	4.9	22
78	Smart Innovation Management in Product Life Cycle. Advances in Intelligent Systems and Computing, 2016, , 183-192.	0.5	8
79	Framework for Product Innovation Using SOEKS and Decisional DNA. Lecture Notes in Computer Science, 2016, , 480-489.	1.0	7
80	Set of experience and decisional DNA: Toward brains for cyber-physical systems and industry of the future. , 2015, , .		2
81	Virtual Engineering Object / Virtual Engineering Process: A specialized form of Cyber Physical System for Industrie 4.0. Procedia Computer Science, 2015, 60, 1146-1155.	1.2	122
82	Applying Decisional DNA to Internet of Things: The Concept and Initial Case Study. Cybernetics and Systems, 2015, 46, 84-93.	1.6	6
83	Virtual Engineering Object (VEO): Toward Experience-Based Design and Manufacturing for Industry 4.0. Cybernetics and Systems, 2015, 46, 35-50.	1.6	132
84	Extended Reflexive Ontologies for the Generation of Clinical Recommendations. Cybernetics and Systems, 2015, 46, 4-18.	1.6	4
85	Guest Editorial: Knowledge and Experience Engineering: Recent Advances with Applications. Cybernetics and Systems, 2015, 46, 1-3.	1.6	1
86	Evolutionary algorithm and decisional DNA for multiple travelling salesman problem. Neurocomputing, 2015, 150, 50-57.	3.5	21
87	Experience-Oriented Enhancement of Smartness For Internet of Things. Lecture Notes in Computer Science, 2015, , 506-515.	1.0	3
88	Smart experience engineering to support collaborative design problems based on constraints modelling. Journal of Intelligent and Fuzzy Systems, 2014, 27, 655-666.	0.8	1
89	Viability of Decisional DNA in Robotics. Procedia Computer Science, 2014, 35, 653-661.	1.2	0
90	A Smart Experience-based Knowledge Analysis System (SEKAS). Procedia Computer Science, 2014, 35, 598-605.	1.2	0

#	Article	IF	CITATIONS
91	Implementing Virtual Engineering Objects (VEO) with the Set of Experience Knowledge Structure (SOEKS). Procedia Computer Science, 2014, 35, 644-652.	1.2	13
92	Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA): Past, Present and Future. Cybernetics and Systems, 2014, 45, 200-215.	1.6	47
93	Guest Editorial: Designing and Developing Smart Cognitive Systems: Implementation Lessons from the Real World. Cybernetics and Systems, 2014, 45, 89-91.	1.6	0
94	Decisional DNA for modeling and reuse of experiential clinical assessments in breast cancer diagnosis and treatment. Neurocomputing, 2014, 146, 308-318.	3.5	11
95	The Hybrid Fuzzy - SOEKS Approach to the Polish Internet Mortgage Market. Procedia Computer Science, 2014, 35, 1185-1192.	1.2	0
96	Decisional DNA Based Framework for Representing Virtual Engineering Objects. Lecture Notes in Computer Science, 2014, , 422-431.	1.0	11
97	Specification of Extended Reflexive Ontologies in the context of CDSS. Studies in Health Technology and Informatics, 2014, 207, 234-43.	0.2	1
98	PREDICTION BASED ON INTEGRATION OF DECISIONAL DNA AND A FEATURE SELECTION ALGORITHM RELIEF-F. Cybernetics and Systems, 2013, 44, 173-183.	1.6	13
99	A PROPOSAL FOR A KNOWLEDGE MARKET BASED ON QUANTITY AND QUALITY OF KNOWLEDGE. Cybernetics and Systems, 2013, 44, 118-132.	1.6	5
100	Bridging challenges of clinical decision support systems with a semantic approach. A case study on breast cancer. Pattern Recognition Letters, 2013, 34, 1758-1768.	2.6	25
101	CURRENT RESEARCH ADVANCES AND IMPLEMENTATIONS IN SMART KNOWLEDGE-BASED SYSTEMS: PART II. Cybernetics and Systems, 2013, 44, 184-186.	1.6	0
102	CURRENT RESEARCH ADVANCES AND IMPLEMENTATIONS IN SMART KNOWLEDGE-BASED SYSTEMS: PART I. Cybernetics and Systems, 2013, 44, 95-97.	1.6	5
103	TOWARD A FUZZY MODEL OF POLISH INTERNET MORTGAGE MARKET. Cybernetics and Systems, 2013, 44, 264-274.	1.6	1
104	IMPACT OF REFLEXIVE ONTOLOGIES IN SEMANTIC CLINICAL DECISION SUPPORT SYSTEMS. Cybernetics and Systems, 2013, 44, 187-203.	1.6	9
105	IMPLEMENTING FUZZY LOGIC TO GENERATE USER PROFILE IN DECISIONAL DNA TELEVISION: THE CONCEPT AND INITIAL CASE STUDY. Cybernetics and Systems, 2013, 44, 275-283.	1.6	9
106	BUILDING DOMAIN ONTOLOGIES FROM ENGINEERING STANDARDS. Cybernetics and Systems, 2012, 43, 114-126.	1.6	6
107	DECISIONAL DNA: THE CONCEPT AND ITS IMPLEMENTATION PLATFORMS. Cybernetics and Systems, 2012, 43, 67-80.	1.6	22
108	MAKING DIGITAL TV SMARTER: CAPTURING AND REUSING EXPERIENCE IN DIGITAL TV. Cybernetics and Systems, 2012, 43, 127-135.	1.6	5

#	Article	IF	CITATIONS
109	QUALITY ASSESSMENT OF EXPERIENTIAL KNOWLEDGE. Cybernetics and Systems, 2012, 43, 96-113.	1.6	5
110	GUEST EDITORIAL: ONTOLOGIES, SET OF EXPERIENCE, AND DECISIONAL DNA: SMART TOOLS AND TECHNIQUES FOR KNOWLEDGE ENGINEERING. Cybernetics and Systems, 2012, 43, 63-66.	1.6	0
111	INTRODUCING THE CONCEPT OF DECISIONAL DNA–BASED WEB CONTENT MINING. Cybernetics and Systems, 2012, 43, 136-142.	1.6	7
112	GUEST EDITORIAL: LEARNING, SCHEDULING, RESOURCE OPTIMIZATION, AND EVOLUTION IN SMART ARTIFICIAL SYSTEMS: CHALLENGES AND SUPPORT. Cybernetics and Systems, 2012, 43, 257-260.	1.6	1
113	ESTIMATING KNOWLEDGE QUANTITY IN THE E-DECISIONAL COMMUNITY. Cybernetics and Systems, 2012, 43, 276-291.	1.6	3
114	HYBRID MODEL OF THE EVOLUTION OF INFORMATION TECHNOLOGY (IT) SUPPORT ORGANIZATION. Cybernetics and Systems, 2012, 43, 292-302.	1.6	7
115	USING SET OF EXPERIENCE KNOWLEDGE STRUCTURE TO EXTEND A RULE SET OF CLINICAL DECISION SUPPORT SYSTEM FOR ALZHEIMER'S DISEASE DIAGNOSIS. Cybernetics and Systems, 2012, 43, 81-95.	1.6	30
116	Decisional DNA: A multi-technology shareable knowledge structure for decisional experience. Neurocomputing, 2012, 88, 42-53.	3.5	57
117	GUEST EDITORIAL: KNOWLEDGE PROCESSING METHODOLOGIES IN INTELLIGENT AUTONOMOUS SYSTEMS. Cybernetics and Systems, 2011, 42, 283-286.	1.6	0
118	GUEST EDITORIAL: SMART MODELING SUPPORT FOR MANAGING COMPLEXITIES AND DYNAMICS OF KNOWLEDGE-BASED SYSTEMS $\hat{a} \in $ PART 2. Cybernetics and Systems, 2011, 42, 65-67.	1.6	0
119	SMART DECISION INFRASTRUCTURE: ARCHITECTURE DISCUSSION. Cybernetics and Systems, 2011, 42, 139-155.	1.6	3
120	AN APPROACH TO SMART EXPERIENCE MANAGEMENT. Cybernetics and Systems, 2011, 42, 156-164.	1.6	3
121	An Approach to Measure Quality of Knowledge in the e-Decisional Community. Lecture Notes in Computer Science, 2011, , 621-630.	1.0	2
122	Application of Decisional DNA in Web Data Mining. Lecture Notes in Computer Science, 2011, , 631-639.	1.0	4
123	A Concept for Comprehensive Knowledge Management System. Lecture Notes in Computer Science, 2011, , 640-649.	1.0	1
124	SMART KNOWLEDGE-SHARING PLATFORM FOR E-DECISIONAL COMMUNITY. Cybernetics and Systems, 2010, 41, 17-30.	1.6	23
125	GUEST EDITORIAL: SMART MODELING SUPPORT FOR MANAGING COMPLEXITIES AND DYNAMICS OF KNOWLEDGE-BASED SYSTEMS—PART 1. Cybernetics and Systems, 2010, 41, 549-553.	1.6	0

126 Towards Decisional DNA-based Cognitive Embedded Systems. , 2010, , .

#	Article	IF	CITATIONS
127	USING HUMAN BEHAVIOR TO DEVELOP KNOWLEDGE-BASED VIRTUAL ORGANIZATIONS. Cybernetics and Systems, 2010, 41, 577-591.	1.6	5
128	Knowledge-Based Virtual Organizations for the E-Decisional Community. Lecture Notes in Computer Science, 2010, , 553-562.	1.0	3
129	GAINING KNOWLEDGE THROUGH EXPERIENCE: DEVELOPING DECISIONAL DNA APPLICATIONS IN ROBOTICS. Cybernetics and Systems, 2010, 41, 628-637.	1.6	5
130	EDITORIAL: APPLIED INTELLIGENCE AND KNOWLEDGE BASED SYSTEMS: APPROACHES AND CASE STUDIES – PART 2. Cybernetics and Systems, 2010, 41, 1-3.	1.6	1
131	Decisional DNA Applied to Robotics. Lecture Notes in Computer Science, 2010, , 563-570.	1.0	4
132	Intelligence Infrastructure: Architecture Discussion: Performance, Availability and Management. Lecture Notes in Computer Science, 2010, , 601-610.	1.0	1
133	Conceptual Fuzzy Model of the Polish Internet Mortgage Market. Lecture Notes in Computer Science, 2010, , 515-522.	1.0	2
134	IMPLEMENTING DECISIONAL TRUST: A FIRST APPROACH FOR SMART RELIABLE SYSTEMS. Cybernetics and Systems, 2009, 40, 85-98.	1.6	2
135	WORKFLOW CENTERED EXPERIENCE MANAGEMENT. Cybernetics and Systems, 2009, 40, 739-746.	1.6	1
136	EXPERIENCE-BASED KNOWLEDGE REPRESENTATION: SOEKS. Cybernetics and Systems, 2009, 40, 99-122.	1.6	65
137	Domain Modeling Based on Engineering Standards. Lecture Notes in Computer Science, 2009, , 95-102.	1.0	6
138	INVESTIGATING THE ROLE OF KNOWLEDGE-BASED TECHNOLOGIES IN THE SECTOR OF NONGOVERNMENTAL ORGANIZATIONS. Cybernetics and Systems, 2009, 40, 724-738.	1.6	0
139	EDITORIAL: APPLIED INTELLIGENT SYSTEMS. Cybernetics and Systems, 2009, 40, 65-67.	1.6	1
140	EDITORIAL: APPLIED INTELLIGENCE AND KNOWLEDGE-BASED SYSTEMS: CHALLENGES, APPROACHES, AND CASE STUDIES – PART 1. Cybernetics and Systems, 2009, 40, 653-656.	1.6	0
141	Application of a Multi-domain Knowledge Structure: The Decisional DNA. Studies in Computational Intelligence, 2009, , 65-86.	0.7	35
142	Smart Use of Knowledge: A Case Study of Constructing Decisional DNA on Renewable Energy. , 2009, , 281-289.		0
143	Constructing Decisional DNA on Renewable Energy: A Case Study. Lecture Notes in Computer Science, 2009, , 663-671.	1.0	0
144	On the construction of Decisional DNA: A reflexive knowledge structure. , 2008, , .		0

#	Article	IF	CITATIONS
145	A Decisional Trust Implementation on a Maintenance System by the Means of Decisional DNA and Reflexive Ontologies. , 2008, , .		2
146	EDITORIAL: INFORMATION AND KNOWLEDGE ENGINEERING FOR INTELLIGENT SYSTEMS—PART II. Cybernetics and Systems, 2008, 39, 669-671.	1.6	0
147	SMART SYSTEMS INTEGRATION: TOWARD OVERCOMING THE PROBLEM OF COMPLEXITY. Cybernetics and Systems, 2008, 39, 190-198.	1.6	11
148	SMART FUTURE OF KNOWLEDGE MANAGEMENT. Cybernetics and Systems, 2008, 39, 109-112.	1.6	0
149	REFLEXIVE ONTOLOGIES: ENHANCING ONTOLOGIES WITH SELF-CONTAINED QUERIES. Cybernetics and Systems, 2008, 39, 171-189.	1.6	27
150	EDITORIAL: INFORMATION AND KNOWLEDGE ENGINEERING FOR INTELLIGENT SYSTEMS—PART I. Cybernetics and Systems, 2008, 39, 539-541.	1.6	0
151	COMBINING TECHNOLOGIES TO ACHIEVE DECISIONAL TRUST. Cybernetics and Systems, 2008, 39, 743-752.	1.6	3
152	Towards a technology of trust: Decisional DNA and Reflexive Ontologies. , 2008, , .		1
153	GENETIC ALGORITHMS FOR DECISIONAL DNA: SOLVING SETS OF EXPERIENCE KNOWLEDGE STRUCTURE. Cybernetics and Systems, 2007, 38, 475-494.	1.6	14
154	EDITORIAL: KNOWLEDGE MANAGEMENT AND ONTOLOGIES—PART II. Cybernetics and Systems, 2007, 38, 755-757.	1.6	1
155	DISSIMILAR SETS OF EXPERIENCE KNOWLEDGE STRUCTURE: A NEGOTIATION PROCESS FOR DECISIONAL DNA. Cybernetics and Systems, 2007, 38, 455-473.	1.6	10
156	Knowledge Based Industrial Maintenance Using Portable Devices and Augmented Reality. , 2007, , 295-302.		15
157	TOWARDS THE CONSTRUCTION OF DECISIONAL DNA: A SET OF EXPERIENCE KNOWLEDGE STRUCTURE JAVA CLASS WITHIN AN ONTOLOGY SYSTEM. Cybernetics and Systems, 2007, 38, 859-878.	1.6	54
158	INFORMATION AND KNOWLEDGE MANAGEMENT: ADVANCES, APPROACHES, CHALLENGES, AND CRITICAL ISSUES. Cybernetics and Systems, 2006, 37, 93-95.	1.6	0
159	EXTENDING SET OF EXPERIENCE KNOWLEDGE STRUCTURE INTO A TRANSPORTABLE LANGUAGE eXTENSIBLE MARKUP LANGUAGE. Cybernetics and Systems, 2006, 37, 97-117.	1.6	30
160	Modelling of Complex Economic Systems. International Journal of Enterprise Information Systems, 2006, 2, 67-78.	0.6	2
161	INTELLIGENT INFORMATION, KNOWLEDGE, AND TECHNOLOGY MANAGEMENT. Cybernetics and Systems, 2006, 37, 505-508.	1.6	0
162	DEVELOPING HETEROGENEOUS SIMILARITY METRICS FOR KNOWLEDGE ADMINISTRATION. Cybernetics and Systems, 2006, 37, 553-565.	1.6	5

#	Article	IF	CITATIONS
163	A KNOWLEDGE BASE FOR INTELLIGENT INFORMATION MANAGEMENT. Cybernetics and Systems, 2006, 37, 673-683.	1.6	2
164	Similarity Metrics for Set of Experience Knowledge Structure. Lecture Notes in Computer Science, 2006, , 663-670.	1.0	2
165	Using Set of Experience in the Process of Transforming Information into Knowledge. International Journal of Enterprise Information Systems, 2006, 2, 45-62.	0.6	29
166	Using XML for Implementing Set of Experience Knowledge Structure. Lecture Notes in Computer Science, 2005, , 946-952.	1.0	17
167	DESCRIPTIVE MODELING OF VIRTUAL TRANSACTIONS. Cybernetics and Systems, 2004, 35, 559-573.	1.6	1
168	CONCURRENT ENGINEERING DESIGN FOR ENVIRONMENT. Cybernetics and Systems, 2004, 35, 667-681.	1.6	3
169	GUEST EDITORIAL SYSTEMS MODELING AND SIMULATION FOR ENVIRONMENTAL MANAGEMENT. Cybernetics and Systems, 2004, 35, 575-577.	1.6	0
170	INTEGRATION PLATFORM FOR MULTI-AGENT SYSTEMS IN INFORMATION-RICH ENVIRONMENTS. Cybernetics and Systems, 2004, 35, 523-534.	1.6	0
171	Qualitative and Quantitative Mechanisms in Managing it Projects in Concurrent Engineering Environment. Systems Analysis Modelling Simulation, 2003, 43, 219-230.	0.1	4
172	Hard and Soft Modelling Based Knowledge Capture for Information Flow Management. , 2003, , 75-100.		1
173	Conceptual System Development in a Concurrent Environment. Systems Analysis Modelling Simulation, 2002, 42, 103-133.	0.1	3
174	Evaluation of Information Technology Projects. Cybernetics and Systems, 2002, 33, 659-673.	1.6	6
175	SOFT MODELING SUPPORT FOR INFORMATION MANAGEMENT. Cybernetics and Systems, 2002, 33, 413-426.	1.6	2
176	SPECIAL ISSUE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS FOR INDUSTRY - VOLUME I: ADVANCES IN SOFT MODELING TECHNIQUES AND DECISION SUPPORT. Cybernetics and Systems, 2002, 33, 293-296.	1.6	1
177	INTELLIGENT ENTERPRISE MANAGEMENT. Cybernetics and Systems, 2001, 32, 697-699.	1.6	1
178	EDITORIAL FOR SPECIAL ISSUE ON INTELLIGENT METHODS FOR PERFORMANCE ENHANCEMENT IN INDUSTRIAL SYSTEMS VOLUME II: INTELLIGENT SYSTEMS DEVELOPMENT - TOOLS AND METHODOLOGIES. Cybernetics and Systems, 2000, 31, 465-468.	1.6	0
179	SIMULATION MODELLING FOR COMPLEX PRODUCTION SYSTEMS. Cybernetics and Systems, 2000, 31, 333-351.	1.6	3
180	EDITORIAL FOR SPECIAL ISSUE ON INTELLIGENT MODELLING AND SIMULATION FOR COMPLEX SYSTEMS, VOLUME II: INTELLIGENT MODELLING TOOLS. Cybernetics and Systems, 1998, 29, 635-637.	1.6	1

#	Article	IF	CITATIONS
181	Cost-constrained planning for concurrency satisfaction. International Journal of Systems Science, 1997, 28, 83-89.	3.7	0
182	QUALITATIVE SUPPORT FOR KNOWLEDGE RETRIEVAL FOR AUTONOMOUS AGENTS. Cybernetics and Systems, 1997, 28, 59-78.	1.6	0
183	Decision trees and neural networks for reasoning and knowledge acquisition for autonomous agents. International Journal of Systems Science, 1996, 27, 233-239.	3.7	8
184	Signed directed graphs and reasoning for agents and multi-agent systems. International Journal of Systems Science, 1996, 27, 1009-1015.	3.7	3
185	External environment of an autonomous manufacturing agent: dynamics and representation. International Journal of Systems Science, 1996, 27, 1211-1218.	3.7	4
186	Model-based generation of knowledge for autonomous systems. International Journal of Systems Science, 1994, 25, 453-472.	3.7	2
187	TRANSFORMATION FROM CONCEPTUAL TO EMBODIMENT DESIGN. IIE Transactions, 1993, 25, 6-12.	2.1	20
188	Modelling and identification of manufacturing systems: decomposition stage. International Journal of Systems Science, 1993, 24, 1509-1518.	3.7	1
189	Functioning of autonomous groups: the role of delayed information. International Journal of Systems Science, 1993, 24, 1275-1284.	3.7	2
190	Rule-based integration of autonomous multi-agent systems. International Journal of Systems Science, 1993, 24, 2117-2134.	3.7	6
191	Design of an atomized organization structure: a graph-theoretic approach. International Journal of Systems Science, 1992, 23, 109-118.	3.7	1
192	Intelligent design synthesis: an object-oriented approach. International Journal of Production Research, 1991, 29, 1291-1308.	4.9	31
193	Structuring an information flow for autonomous systems. International Journal of Systems Science, 1991, 22, 2599-2609.	3.7	2
194	A novel approach to decomposition of design specifications and search for solutions. International Journal of Production Research, 1991, 29, 1391-1406.	4.9	19
195	Autonomous group functioning: the role of correlation and interaction. International Journal of Systems Science, 1990, 21, 2037-2047.	3.7	5
196	Decisional DNA and the Smart Knowledge Management System. , 0, , 149-175.		31
197	Towards Knowledge Sharing Oriented Adaptive Control. Cybernetics and Systems, 0, , 1-9.	1.6	0
198	Adding Interpretability to Neural Knowledge DNA. Cybernetics and Systems, 0, , 1-10.	1.6	0