
Krzysztof Jankowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 369-375.	2.9	61
2	Sensitive determination of Hg together with Mn, Fe, Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry. Talanta, 2017, 167, 279-285.	5.5	50
3	Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchemical Journal, 2019, 145, 1169-1175.	4.5	43
4	Feasibility study of the determination of selenium, antimony and arsenic in drinking and mineralwater by ICP-OES using a dual-flow ultrasonic nebulizer and direct hydride generation. Journal of Analytical Atomic Spectrometry, 2010, 25, 210-214.	3.0	37
5	Recent developments in instrumentation of microwave plasma sources for optical emission and mass spectrometry: Tutorial review. Journal of Analytical Atomic Spectrometry, 2013, 28, 1196.	3.0	37
6	Characteristics of nebulizers for microwave induced plasma atomic emission spectrometry. II. Ultrasonic nebulizers. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1813-1823.	2.9	34
7	Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 517-521.	2.9	32
8	Vertically positioned axially viewed aerosol cooled plasma — a new design approach for microwave induced plasma optical spectrometry with solution nebulization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 515-525.	2.9	29
9	Evaluation of analytical performance of low-power MIP-AES with direct solution nebulization for environmental analysis. Journal of Analytical Atomic Spectrometry, 1999, 14, 1419-1423.	3.0	28
10	Spectroscopic diagnostics for evaluation of the analytical potential of argon + helium microwave-induced plasma with solution nebulization. Journal of Analytical Atomic Spectrometry, 2007, 22, 1076.	3.0	26
11	Study of an effect of easily ionizable elements on the excitation of 35 elements in an Ar-MIP system coupled with solution nebulization. Journal of Analytical Atomic Spectrometry, 2000, 15, 269-274.	3.0	25
12	Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 135-140.	2.8	24
13	Direct spectrometric determination of total fluorine in geological materials by continuous powder introduction into helium microwave induced plasma. Journal of Analytical Atomic Spectrometry, 2007, 22, 386.	3.0	21
14	Determination of selenium in dietary supplements by optical emission spectrometry after alkaline dissolution and subsequent headspace solid phase microextraction. Journal of Pharmaceutical and Biomedical Analysis, 2013, 74, 268-272.	2.8	20
15	A three phase rotating field microwave plasma design for a low-flow helium plasma generation. Journal of Analytical Atomic Spectrometry, 2010, 25, 44-47.	3.0	19
16	Preconcentration of selenium by living bacteria immobilized on silica for microwave induced plasma optical emission spectrometry with continuous powder introduction. Analytical Methods, 2011, 3, 659.	2.7	19
17	Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion. Microchemical Journal, 2001, 70, 41-49.	4.5	17
18	A low-flow low-power helium microwave induced plasma for optical and mass spectrometry with solution nebulization. Journal of Analytical Atomic Spectrometry, 2008, 23, 1234.	3.0	17

#	Article	IF	CITATIONS
19	Sensitive determination of bioaccessible mercury in complex matrix samples by combined photochemical vapor generation and solid phase microextraction coupled with microwave induced plasma optical emission spectrometry. Talanta, 2020, 219, 121162.	5.5	17
20	Characteristics of nebulizers for microwave-induced plasma atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1801-1812.	2.9	16
21	Multielement determination of major elements in polymer additives by microwave induced plasma atomic emission spectrometry after microwave digestion. Analytica Chimica Acta, 2001, 440, 215-221.	5.4	15
22	Synthesis and purification of trimethylgallium for MOCVD: molecular structure of (KF)4�4(Me3Ga). Applied Organometallic Chemistry, 2000, 14, 616-622.	3.5	14
23	Direct atomic spectrometric analysis of aluminium oxide by continuous powder introduction into microwave induced plasma. Journal of Analytical Atomic Spectrometry, 2005, 20, 981.	3.0	14
24	Some spatial effects observed in the axially viewed filament argon microwave induced plasma with solution nebulization. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 853-863.	2.9	13
25	Photochemical vapor generation combined with headspace solid phase microextraction for determining mercury species by microwave-induced plasma optical emission spectrometry. Microchemical Journal, 2022, 172, 106905.	4.5	13
26	Effect of temperature on direct chemical vapor generation for plasma optical emission spectrometry: An application of programmable temperature spray chamber. Microchemical Journal, 2016, 124, 1-8.	4.5	12
27	Selective non-chromatographic determination of tributyltin in sediments using EDTA and diphenylcarbazone as masking agent. International Journal of Environmental Analytical Chemistry, 2018, 98, 295-307.	3.3	11
28	Implementation of acoustic, radiofrequency and microwave rotating fields in analytical plasma sources. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 500-507.	2.9	10
29	Investigation of interaction between biogenic selenium nanoparticles and human serum albumin using microwave plasma optical emission spectrometry operating in a single-particle mode. Monatshefte FA1/4r Chemie, 2020, 151, 1283-1290.	1.8	9
30	Direct determination of trace amounts of sodium in water-soluble organic pharmaceuticals by microwave induced plasma atomic emission spectrometry. Talanta, 2001, 54, 855-862.	5.5	8
31	Spectroscopic diagnostics of axially viewed inductively coupled plasma and microwave induced plasma coupled to photochemical vapor generation with pneumatic nebulization inside a programmable temperature spray chamber. Journal of Analytical Atomic Spectrometry, 2017, 32, 1885-1892.	3.0	8
32	Efficient use of the NAR-1 pneumatic nebulizer in plasma spectrometry at sub-milliliter liquid consumption rates. Journal of Analytical Atomic Spectrometry, 2008, 23, 1290.	3.0	7
33	Determination of Aqueous Fluoride by Continuous Powder Introduction Microwave-Induced Plasma Optical Emission Spectrometry after Preconcentration on Various Sorbents. Spectroscopy Letters, 2010, 43, 91-100.	1.0	7
34	Determination of nanopowders using microwave plasma optical emission spectrometry operating in a single particle mode. Analytica Chimica Acta, 2019, 1089, 25-31.	5.4	7
35	A digitally controlled rotating field plasma source for analytical spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1287.	3.0	6
36	Development of a portable analyzer using solid-phase microextraction coupled with thermal desorption digitally-controlled plasma optical emission spectrometry for the determination of mercury volatile compounds released from sediments. Spectroscopy Letters, 2019, 52, 12-20	1.0	4

#	Article	IF	CITATIONS
37	Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction. Chromatography (Basel), 2015, 2, 239-252.	1.2	0
38	Spatially resolved measurements and diagnostics of digitally controlled rotating field pulsed plasma operated in helium at 20 kHz. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 130, 45-52.	2.9	0
39	Green synthesis of selenium nanoparticles: characterization and application. , 2021, , 171-190.		0
40	CHAPTER 12. Assay of Selenium in Dietary Supplements. Food and Nutritional Components in Focus, 2015, , 221-239.	0.1	0