Qing-Hai Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337742/publications.pdf

Version: 2024-02-01

30	1,422	17 h-index	32
papers	citations		g-index
32	32	32	1556
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enantioselective Iron-Catalyzed Azidation of \hat{l}^2 -Keto Esters and Oxindoles. Journal of the American Chemical Society, 2013, 135, 5356-5359.	6.6	223
2	Highly Enantioselective Copper-Catalyzed Electrophilic Trifluoromethylation of \hat{l}^2 -Ketoesters. Journal of the American Chemical Society, 2012, 134, 10769-10772.	6.6	216
3	Copper–Boxmi Complexes as Highly Enantioselective Catalysts for Electrophilic Trifluoromethylthiolations. Chemistry - A European Journal, 2014, 20, 93-97.	1.7	140
4	The Synthesis of a New Class of Chiral Pincer Ligands and Their Applications in Enantioselective Catalytic Fluorinations and the Nozaki–Hiyama–Kishi Reaction. Chemistry - A European Journal, 2011, 17, 14922-14928.	1.7	132
5	Ruthenium-Catalyzed One-Pot Carbenoid Nâ^'H Insertion Reactions and Diastereoselective Synthesis of Prolines. Organic Letters, 2008, 10, 1529-1532.	2.4	103
6	Highly Enantioselective Copper-Catalyzed Alkylation of \hat{l}^2 -Ketoesters and Subsequent Cyclization to Spirolactones/Bi-spirolactones. Journal of the American Chemical Society, 2012, 134, 2946-2949.	6.6	74
7	Electron-Deficient Alkynes as Dipolarophile in Pd-Catalyzed Enantioselective (3 + 2) Cycloaddition Reaction with Vinyl Cyclopropanes. Organic Letters, 2019, 21, 6805-6810.	2.4	47
8	Trapping Reactive Metal–Carbene Complexes by a Bisâ€Pocket Porphyrin: Xâ€ray Crystal Structures of RuCHCO ₂ Et and <i>trans</i> ê{Ru(CHR)(CO)] Species and Highly Selective Carbenoid Transfer Reactions. Chemistry - A European Journal, 2009, 15, 10707-10712.	1.7	41
9	Radical Changes in Lewis Acid Catalysis: Matching Metal and Substrate. Angewandte Chemie - International Edition, 2016, 55, 7852-7856.	7.2	41
10	Iron-catalyzed trifluoromethylation of vinylcyclopropanes: facile synthesis of CF ₃ –containing dihydronaphthalene derivatives. Organic Chemistry Frontiers, 2016, 3, 934-938.	2.3	31
11	Difluorocarbene-derived trifluoromethylselenolation of benzyl halides. Chemical Communications, 2019, 55, 1410-1413.	2.2	30
12	Nucleophilic Substitution of <i>gem</i> -Difluoroalkenes with TMSNu Promoted by Catalytic Amounts of Cs ₂ CO ₃ . Journal of Organic Chemistry, 2019, 84, 6557-6564.	1.7	30
13	Enantioselective Copper-Catalyzed Electrophilic Dearomative Azidation of \hat{I}^2 -Naphthols. Organic Letters, 2019, 21, 7315-7319.	2.4	29
14	Synthesis of \hat{I}^2 -Alkyl 2-Hydroxychalcones by Rhodium-Catalyzed Coupling of $\langle i \rangle N \langle i \rangle$ -Phenoxyacetamides and Nonterminal Propargyl Alcohols. Organic Letters, 2018, 20, 5808-5812.	2.4	25
15	Tailoring Sensors and Solvents for Optimal Analysis of Complex Mixtures Via Discriminative ¹⁹ F NMR Chemosensing. Analytical Chemistry, 2021, 93, 2968-2973.	3.2	24
16	Radical Changes in Lewis Acid Catalysis: Matching Metal and Substrate. Angewandte Chemie, 2016, 128, 7983-7987.	1.6	17
17	Iron-Catalyzed Nitrene Transfer Reaction of 4-Hydroxystilbenes with Aryl Azides: Synthesis of Imines via Câ•€ Bond Cleavage. Organic Letters, 2019, 21, 8389-8394.	2.4	16
18	Iron(II) Chlorideâ€Catalyzed Nitrene Transfer Reaction for Dearomative Amination of βâ€Naphthols with Aryl Azides. Advanced Synthesis and Catalysis, 2018, 360, 4720-4725.	2.1	15

#	Article	IF	CITATIONS
19	Rhodium-Catalyzed Successive C–H Bond Functionalizations To Synthesize Complex Indenols Bearing a Benzofuran Unit. Organic Letters, 2019, 21, 9598-9602.	2.4	13
20	Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation. Organometallics, 2018, 37, 4186-4188.	1.1	12
21	Copperâ€catalyzed Intramolecular Carbotrifluoromethylation of Eneâ€lmines for the Construction of 3â€(2,2,2â€Trifluoro)ethylated 4â€Aminoâ€Chromans. Advanced Synthesis and Catalysis, 2018, 360, 1402-1406.	2.1	10
22	Metalâ€Free Azidoarylation of Vinylcyclopropanes for the Synthesis of N ₃ â€Containing Dihydronaphthalenes. Asian Journal of Organic Chemistry, 2018, 7, 432-438.	1.3	10
23	Zinc-catalyzed asymmetric nitrooxylation of \hat{l}^2 -keto esters/amides with a benziodoxole-derived nitrooxy transfer reagent. Organic Chemistry Frontiers, 2020, 7, 3509-3514.	2.3	10
24	Copper-catalyzed nitrene transfer/cyclization cascade to synthesize 3a-nitrogenous furoindolines and pyrroloindolines. Organic Chemistry Frontiers, 2019, 6, 3934-3938.	2.3	9
25	Practical copper-catalyzed chloronitration of alkenes with TMSCl and guanidine nitrate. Organic Chemistry Frontiers, 2020, 7, 2449-2455.	2.3	8
26	Expanding the Boxmi Ligand Family: Synthesis and Application of NON and NSN Ligands. Journal of Organic Chemistry, 2020, 85, 6719-6731.	1.7	6
27	Palladium-Catalyzed [3+2] Cycloaddition of Vinylcyclopropane and Ketones. Synlett, 2019, 30, 947-950.	1.0	5
28	Acid-Free Copper-Catalyzed Electrophilic Nitration of Electron-Rich Arenes with Guanidine Nitrate. Journal of Organic Chemistry, 2022, 87, 3834-3840.	1.7	3
29	Inside Cover: Highly Selective Metal Catalysts for Intermolecular Carbenoid Insertion into Primary Ci£¿H Bonds and Enantioselective Ci£¿C Bond Formation (Angew. Chem. Int. Ed. 50/2008). Angewandte Chemie - International Edition, 2008, 47, 9576-9576.	7.2	2
30	Synthesis of amidines $\langle i \rangle via \langle i \rangle$ iron-catalyzed dearomative amination of \hat{l}^2 -naphthols with oxadiazolones. Organic Chemistry Frontiers, 2022, 9, 380-385.	2.3	1