Craig G Crandall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337648/publications.pdf Version: 2024-02-01

		50244	74108
237	7,648	46	75
papers	citations	h-index	g-index
237	237	237	4352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Autonomic Neural Control of Dynamic Cerebral Autoregulation in Humans. Circulation, 2002, 106, 1814-1820.	1.6	398
2	Cutaneous Active Vasodilation in Humans Is Mediated by Cholinergic Nerve Cotransmission. Circulation Research, 1995, 77, 1222-1228.	2.0	304
3	The cardiovascular challenge of exercising in the heat. Journal of Physiology, 2008, 586, 45-53.	1.3	285
4	Neural control and mechanisms of eccrine sweating during heat stress and exercise. Journal of Applied Physiology, 2006, 100, 1692-1701.	1.2	240
5	Cardiovascular function in the heatâ€stressed human. Acta Physiologica, 2010, 199, 407-423.	1.8	189
6	Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. Journal of Applied Physiology, 2006, 100, 221-224.	1.2	151
7	Effects of passive heating on central blood volume and ventricular dimensions in humans. Journal of Physiology, 2008, 586, 293-301.	1.3	147
8	Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1443-R1448.	0.9	137
9	Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. Journal of Applied Physiology, 2011, 111, 818-824.	1.2	135
10	Human Cardiovascular Responses to Passive Heat Stress. , 2015, 5, 17-43.		129
11	Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans. Journal of Applied Physiology, 2002, 93, 85-91.	1.2	115
12	Mechanism of Cocaine-Induced Hyperthermia in Humans. Annals of Internal Medicine, 2002, 136, 785.	2.0	103
13	Sex differences in postsynaptic sweating and cutaneous vasodilation. Journal of Applied Physiology, 2013, 114, 394-401.	1.2	102
14	Effects of Heat Stress on Thermoregulatory Responses in Congestive Heart Failure Patients. Circulation, 2005, 112, 2286-2292.	1.6	101
15	Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1717-H1723.	1.5	98
16	Mechanisms and controllers of eccrine sweating in humans. Frontiers in Bioscience - Scholar, 2010, S2, 685-696.	0.8	92
17	Mechanism of blood pressure and Râ€R variability: insights from ganglion blockade in humans. Journal of Physiology, 2002, 543, 337-348.	1.3	91
18	The Effect of Iontophoresis on the Cutaneous Vasculature: Evidence for Current-Induced Hyperemia. Microvascular Research, 1995, 50, 444-452.	1.1	90

#	Article	IF	CITATIONS
19	The effects of reduced endâ€ŧidal carbon dioxide tension on cerebral blood flow during heat stress. Journal of Physiology, 2009, 587, 3921-3927.	1.3	89
20	Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans. Journal of Applied Physiology, 2010, 109, 1301-1306.	1.2	89
21	Effect of Thermal Stress on Cardiac Function. Exercise and Sport Sciences Reviews, 2011, 39, 12-17.	1.6	88
22	Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during wholeâ€body heating in humans. Journal of Physiology, 2001, 536, 615-623.	1.3	86
23	Cerebral Hemodynamics During the Valsalva Maneuver. Stroke, 2004, 35, 843-847.	1.0	83
24	Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress. Journal of Applied Physiology, 2002, 93, 1947-1951.	1.2	80
25	Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans. Journal of Applied Physiology, 2001, 91, 1679-1686.	1.2	78
26	Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans. Autonomic Neuroscience: Basic and Clinical, 2002, 97, 122-128.	1.4	77
27	Human temperature regulation under heat stress in health, disease, and injury. Physiological Reviews, 2022, 102, 1907-1989.	13.1	69
28	Function of human eccrine sweat glands during dynamic exercise and passive heat stress. Journal of Applied Physiology, 2001, 90, 1877-1881.	1.2	67
29	Sympathetic nerve activity and whole body heat stress in humans. Journal of Applied Physiology, 2011, 111, 1329-1334.	1.2	65
30	Acute volume expansion preserves orthostatic tolerance during wholeâ€body heat stress in humans. Journal of Physiology, 2009, 587, 1131-1139.	1.3	64
31	Non-Thermoregulatory Modulation of Sweating in Humans. Exercise and Sport Sciences Reviews, 2003, 31, 34-39.	1.6	62
32	Cardiac systolic and diastolic function during whole body heat stress. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1150-H1156.	1.5	62
33	Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H89-H97.	1.5	62
34	Orthostatic challenge does not alter skin sympathetic nerve activity in heat-stressed humans. Autonomic Neuroscience: Basic and Clinical, 2004, 116, 54-61.	1.4	57
35	Effect of local acetylcholinesterase inhibition on sweat rate in humans. Journal of Applied Physiology, 2001, 90, 757-762.	1.2	55
36	Mechanisms of orthostatic intolerance during heat stress. Autonomic Neuroscience: Basic and Clinical, 2016, 196, 37-46.	1.4	54

#	Article	IF	CITATIONS
37	Muscle metaboreceptor modulation of cutaneous active vasodilation. Medicine and Science in Sports and Exercise, 1998, 30, 490-496.	0.2	54
38	Cerebrovascular responsiveness to steady-state changes in end-tidal CO ₂ during passive heat stress. Journal of Applied Physiology, 2008, 104, 976-981.	1.2	53
39	Insufficient cutaneous vasoconstriction leading up to and during syncopal symptoms in the heat stressed human. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1168-H1173.	1.5	53
40	Modelflow underestimates cardiac output in heat-stressed individuals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R486-R491.	0.9	53
41	Cognitive and perceptual responses during passive heat stress in younger and older adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R847-R854.	0.9	51
42	Effect of skin surface cooling on central venous pressure during orthostatic challenge. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2429-H2433.	1.5	50
43	Nitric oxide inhibits cutaneous vasoconstriction to exogenous norepinephrine. Journal of Applied Physiology, 2008, 105, 1504-1508.	1.2	50
44	Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R252-R258.	0.9	49
45	Spectral characteristics of skin sympathetic nerve activity in heat-stressed humans. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1601-H1609.	1.5	49
46	α-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg. Journal of Physiology, 2010, 588, 3799-3808.	1.3	49
47	Heat Stress and Baroreflex Regulation ofBlood Pressure. Medicine and Science in Sports and Exercise, 2008, 40, 2063-2070.	0.2	47
48	Pilocarpine-induced sweat gland function in individuals with multiple sclerosis. Journal of Applied Physiology, 2005, 98, 1740-1744.	1.2	46
49	Endogenous nitric oxide attenuates neutrally mediated cutaneous vasoconstriction. Journal of Physiology, 2007, 585, 627-634.	1.3	46
50	Muscle sympathetic nerve activity during lower body negative pressure is accentuated in heat-stressed humans. Journal of Applied Physiology, 2004, 96, 2103-2108.	1.2	45
51	Dynamic autoregulation of cutaneous circulation: differential control in glabrous versus nonglabrous skin. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H385-H391.	1.5	45
52	Inhibition of nitric oxide synthase does not alter dynamic cerebral autoregulation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H863-H869.	1.5	44
53	Modified iodine-paper technique for the standardized determination of sweat gland activation. Journal of Applied Physiology, 2012, 112, 1419-1425.	1.2	43
54	Sympathetic activity during passive heat stress in healthy aged humans. Journal of Physiology, 2015, 593, 2225-2235.	1.3	43

#	Article	IF	CITATIONS
55	Vasoconstriction during venous congestion: effects of venoarteriolar response, myogenic reflexes, and hemodynamics of changing perfusion pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1354-R1359.	0.9	42
56	Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. Journal of Applied Physiology, 2009, 107, 1722-1729.	1.2	41
57	Dynamic cerebral autoregulation during passive heat stress in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1598-R1605.	0.9	41
58	Cutaneous vascular and sudomotor responses in human skin grafts. Journal of Applied Physiology, 2010, 109, 1524-1530.	1.2	41
59	Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1221-R1226.	0.9	39
60	Effects of mode of exercise recovery on thermoregulatory and cardiovascular responses. Journal of Applied Physiology, 2002, 93, 1918-1924.	1.2	38
61	Cutaneous blood flow and sweat rate responses to exogenous administration of acetylcholine and methacholine. Journal of Applied Physiology, 2007, 102, 1856-1861.	1.2	38
62	Impaired Cutaneous Vasodilation and Sweating in Grafted Skin During Whole-Body Heating. Journal of Burn Care and Research, 2007, 28, 427-434.	0.2	38
63	Sustained Impairments in Cutaneous Vasodilation and Sweating in Grafted Skin Following Long-Term Recovery. Journal of Burn Care and Research, 2009, 30, 675-685.	0.2	38
64	Neurally mediated vasoconstriction is capable of decreasing skin blood flow during orthostasis in the heat-stressed human. Journal of Physiology, 2006, 575, 953-959.	1.3	37
65	Effect of passive heat stress on arterial stiffness. Experimental Physiology, 2011, 96, 919-926.	0.9	36
66	Skin blood flow measurements during heat stress: technical and analytical considerations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R57-R69.	0.9	36
67	Effects of muscle metaboreceptor stimulation on cutaneous blood flow from glabrous and nonglabrous skin in mildly heated humans. Journal of Applied Physiology, 2003, 94, 1829-1835.	1.2	35
68	Cutaneous and hemodynamic responses during hot flashes in symptomatic postmenopausal women. Menopause, 2008, 15, 290-295.	0.8	35
69	Muscle mechanoreceptor modulation of sweat rate during recovery from moderate exercise. Journal of Applied Physiology, 2004, 96, 2115-2119.	1.2	34
70	Spectral analysis of muscle sympathetic nerve activity in heat-stressed humans. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1101-H1106.	1.5	33
71	Mean body temperature does not modulate eccrine sweat rate during upright tilt. Journal of Applied Physiology, 2005, 98, 1207-1212.	1.2	33
72	Central Command is Capable of Modulating Sweating from Nonâ€Glabrous Human Skin. Journal of Physiology, 2003, 553, 999-1004.	1.3	31

#	Article	IF	CITATIONS
73	Hypercoagulability in response to elevated body temperature and central hypovolemia. Journal of Surgical Research, 2013, 185, e93-e100.	0.8	31
74	Aerobic Fitness Is Disproportionately Low in Adult Burn Survivors Years After Injury. Journal of Burn Care and Research, 2015, 36, 513-519.	0.2	31
75	Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. , 2017, 8, 103-151.		31
76	Temporal Thermometry Fails to Track Body Core Temperature during Heat Stress. Medicine and Science in Sports and Exercise, 2007, 39, 1029-1035.	0.2	30
77	Mechanisms of cutaneous vasodilation during the postmenopausal hot flash. Menopause, 2011, 18, 359-365.	0.8	30
78	Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1756-H1761.	1.5	30
79	Nongrafted Skin Area Best Predicts Exercise Core Temperature Responses in Burned Humans. Medicine and Science in Sports and Exercise, 2015, 47, 2224-2232.	0.2	30
80	Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity. Medicine and Science in Sports and Exercise, 2017, 49, 2333-2342.	0.2	30
81	Effects of heat stress on baroreflex function in humans. Acta Physiologica Scandinavica, 2003, 177, 321-328.	2.3	29
82	Skin Grafting Impairs Postsynaptic Cutaneous Vasodilator and Sweating Responses. Journal of Burn Care and Research, 2007, 28, 435-441.	0.2	29
83	Active recovery attenuates the fall in sweat rate but not cutaneous vascular conductance after supine exercise. Journal of Applied Physiology, 2004, 96, 668-673.	1.2	28
84	Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?. Experimental Physiology, 2017, 102, 202-213.	0.9	28
85	Sweating as a heat loss thermoeffector. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 211-232.	1.0	28
86	Central command and the cutaneous vascular response to isometric exercise in heated humans. Journal of Physiology, 2005, 565, 667-673.	1.3	27
87	Carotid baroreceptor stimulation alters cutaneous vascular conductance during whole-body heating in humans. Journal of Physiology, 2006, 577, 925-933.	1.3	27
88	Cerebral vasomotor reactivity: steadyâ€state <i>versus</i> transient changes in carbon dioxide tension. Experimental Physiology, 2014, 99, 1499-1510.	0.9	27
89	Plasma hyperosmolality attenuates skin sympathetic nerve activity during passive heat stress in humans. Journal of Physiology, 2016, 594, 497-506.	1.3	27
90	Cardiac and Thermal Strain of Elderly Adults Exposed to Extreme Heat and Humidity With and Without Electric Fan Use. JAMA - Journal of the American Medical Association, 2016, 316, 989.	3.8	27

#	Article	IF	CITATIONS
91	Effects of community-based exercise in children with severe burns: A randomized trial. Burns, 2016, 42, 41-47.	1.1	27
92	Baroreflex control of muscle sympathetic nerve activity during skin surface cooling. Journal of Applied Physiology, 2007, 103, 1284-1289.	1.2	26
93	Heat stress attenuates the increase in arterial blood pressure during the cold pressor test. Journal of Applied Physiology, 2010, 109, 1354-1359.	1.2	26
94	Effect of elevated local temperature on cutaneous vasoconstrictor responsiveness in humans. Journal of Applied Physiology, 2009, 106, 571-575.	1.2	25
95	End-tidal carbon dioxide tension reflects arterial carbon dioxide tension in the heat-stressed human with and without simulated hemorrhage. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R978-R983.	0.9	25
96	Pulmonary Artery and Intestinal Temperatures during Heat Stress and Cooling. Medicine and Science in Sports and Exercise, 2012, 44, 857-862.	0.2	25
97	Sweat loss during heat stress contributes to subsequent reductions in lowerâ€body negative pressure tolerance. Experimental Physiology, 2013, 98, 473-480.	0.9	25
98	Effects of 14 days of head-down tilt bed rest on cutaneous vasoconstrictor responses in humans. Journal of Applied Physiology, 2003, 94, 2113-2118.	1.2	24
99	Exercise throughout 6° head-down tilt bed rest preserves thermoregulatory responses. Journal of Applied Physiology, 2003, 95, 1817-1823.	1.2	24
100	Effect of whole body heat stress on peripheral vasoconstriction during leg dependency. Journal of Applied Physiology, 2009, 107, 1704-1709.	1.2	24
101	Comparing resting skin sympathetic nerve activity between groups: caution needed. Journal of Applied Physiology, 2009, 106, 1751-1752.	1.2	24
102	Colloid volume loading does not mitigate decreases in central blood volume during simulated haemorrhage while heat stressed. Journal of Physiology, 2012, 590, 1287-1297.	1.3	24
103	Keeping older individuals cool in hot and moderately humid conditions: wetted clothing with and without an electric fan. Journal of Applied Physiology, 2020, 128, 604-611.	1.2	24
104	Healthy aging does not compromise the augmentation of cardiac function during heat stress. Journal of Applied Physiology, 2016, 121, 885-892.	1.2	24
105	Methodological assessment of skin and limb blood flows in the human forearm during thermal and baroreceptor provocations. Journal of Applied Physiology, 2010, 109, 895-900.	1.2	23
106	Heat-stress-induced changes in central venous pressure do not explain interindividual differences in orthostatic tolerance during heat stress. Journal of Applied Physiology, 2011, 110, 1283-1289.	1.2	22
107	Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. Journal of Applied Physiology, 2015, 119, 69-76.	1.2	22
108	Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H407-H419.	1.5	21

#	Article	IF	CITATIONS
109	Nitric oxide synthase inhibition attenuates cutaneous vasodilation during postmenopausal hot flash episodes. Menopause, 2010, 17, 978-982.	0.8	21
110	Hypercapnia-induced increases in cerebral blood flow do not improve lower body negative pressure tolerance during hyperthermia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R604-R609.	0.9	21
111	Effect of Human Skin Grafts on Whole-Body Heat Loss During Exercise Heat Stress. Journal of Burn Care and Research, 2013, 34, e263-e270.	0.2	21
112	Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest. Journal of Applied Physiology, 2011, 110, 1592-1597.	1.2	20
113	Normothermic central hypovolemia tolerance reflects hyperthermic tolerance. Clinical Autonomic Research, 2014, 24, 119-126.	1.4	20
114	The role of cardiac sympathetic innervation and skin thermoreceptors on cardiac responses during heat stress. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1336-H1342.	1.5	20
115	Ageâ€related changes to cardiac systolic and diastolic function during wholeâ€body passive hyperthermia. Experimental Physiology, 2015, 100, 422-434.	0.9	20
116	Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin?. Journal of Applied Physiology, 2007, 102, 1839-1843.	1.2	19
117	Effect of increases in cardiac contractility on cerebral blood flow in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1155-H1161.	1.5	19
118	Intradermal administration of ATP does not mitigate tyramine-stimulated vasoconstriction in human skin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1417-R1420.	0.9	18
119	Validity of auscultatory and Penaz blood pressure measurements during profound heat stress alone and with an orthostatic challenge. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1510-R1516.	0.9	18
120	Muscle sympathetic responses during orthostasis in heat-stressed individuals. Clinical Autonomic Research, 2011, 21, 381-387.	1.4	18
121	Progressive exercise training improves maximal aerobic capacity in individuals with well-healed burn injuries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R563-R570.	0.9	18
122	Local Passive Heat for the Treatment of Hypertension in Autonomic Failure. Journal of the American Heart Association, 2021, 10, e018979.	1.6	18
123	A diminished aortic-cardiac reflex during hypotension in aerobically fit young men. Medicine and Science in Sports and Exercise, 1993, 25, 1024???1030.	0.2	17
124	Palmar Skin Blood Flow and Temperature Responses Throughout Endoscopic Sympathectomy. Anesthesia and Analgesia, 2005, 100, 277-283.	1.1	17
125	Combined heat and mental stress alters neurovascular control in humans. Journal of Applied Physiology, 2010, 109, 1880-1886.	1.2	17
126	Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage. Journal of Applied Physiology, 2013, 114, 1730-1735.	1.2	17

#	Article	IF	CITATIONS
127	An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults. Journal of Thermal Biology, 2016, 59, 26-33.	1.1	17
128	Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers. Cell Stress and Chaperones, 2016, 21, 793-804.	1.2	17
129	Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H658-H666.	1.5	17
130	Hyperthermia does not alter the increase in cerebral perfusion during cognitive activation. Experimental Physiology, 2013, 98, 1597-1607.	0.9	16
131	Post Junctional Sudomotor and Cutaneous Vascular Responses in Noninjured Skin Following Heat Acclimation in Burn Survivors. Journal of Burn Care and Research, 2017, 38, e284-e292.	0.2	16
132	Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R145-R156.	0.9	16
133	Neural and nonâ€neural control of skin blood flow during isometric handgrip exercise in the heat stressed human. Journal of Physiology, 2009, 587, 2101-2107.	1.3	15
134	Beneficial effects of elevating cardiac preload on left-ventricular diastolic function and volume during heat stress: implications toward tolerance during a hemorrhagic insult. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1036-R1041.	0.9	15
135	The Effect of Passive Heat Stress and Exercise-Induced Dehydration on the Compensatory Reserve During Simulated Hemorrhage. Shock, 2016, 46, 74-82.	1.0	15
136	Increased postural sway in persons with multiple sclerosis during short-term exposure to warm ambient temperatures. Gait and Posture, 2017, 53, 230-235.	0.6	15
137	Cardiovascular responses to cold and submaximal exercise in patients with coronary artery disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R768-R776.	0.9	15
138	Whole body heat stress attenuates baroreflex control of muscle sympathetic nerve activity during postexercise muscle ischemia. Journal of Applied Physiology, 2009, 106, 1125-1131.	1.2	14
139	Impact of environmental stressors on tolerance to hemorrhage in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R88-R100.	0.9	14
140	Rehabilitative Exercise Training for Burn Injury. Sports Medicine, 2021, 51, 2469-2482.	3.1	14
141	Low dose ketamine reduces pain perception and blood pressure, but not muscle sympathetic nerve activity, responses during a cold pressor test. Journal of Physiology, 2021, 599, 67-81.	1.3	13
142	The effect of elevations in internal temperature on event-related potentials during a simple cognitive task in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R33-R38.	0.9	12
143	Early sympathetic neural responses during a cold pressor test linked to pain perception. Clinical Autonomic Research, 2021, 31, 215-224.	1.4	12
144	Brain blood flow and cardiovascular responses to hot flashes in postmenopausal women. Menopause, 2013, 20, 299-304.	0.8	12

#	Article	IF	CITATIONS
145	Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R822-R827.	0.9	11
146	Fluid restriction during exercise in the heat reduces tolerance to progressive central hypovolaemia. Experimental Physiology, 2015, 100, 926-934.	0.9	11
147	Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress. Journal of Applied Physiology, 2015, 118, 449-454.	1.2	11
148	Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults. Journal of Physiology, 2017, 595, 6489-6498.	1.3	11
149	Exercise Thermoregulation with a Simulated Burn Injury: Impact of Air Temperature. Medicine and Science in Sports and Exercise, 2020, 52, 712-719.	0.2	11
150	Does nitric oxide buffer arterial blood pressure variability in humans?. Journal of Applied Physiology, 2002, 93, 1466-1470.	1.2	10
151	Cardiac Structure and Function in Well-Healed Burn Survivors. Journal of Burn Care and Research, 2019, 40, 235-241.	0.2	10
152	Effects of Community-Based Exercise in Adults With Severe Burns: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 2020, 101, S36-S41.	0.5	10
153	Nitric oxide synthase inhibition does not affect regulation of muscle sympathetic nerve activity during head-up tilt. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2105-H2110.	1.5	9
154	Comments on Point:Counterpoint: Humans do/do not demonstrate selective brain cooling during hyperthermia. Journal of Applied Physiology, 2011, 110, 575-580.	1.2	9
155	Adenosine receptor inhibition attenuates the decrease in cutaneous vascular conductance during wholeâ€body cooling from hyperthermia. Experimental Physiology, 2014, 99, 196-204.	0.9	9
156	Electric fan use during heat waves: Turn off for the elderly?. Temperature, 2017, 4, 104-106.	1.6	9
157	Cutaneous Vasoconstriction during Whole-Body and Local Cooling in Grafted Skin Five to Nine Months Postsurgery. Journal of Burn Care and Research, 2008, 29, 36-41.	0.2	8
158	Heat Acclimation of an Adult Female With a Large Surface Area of Grafted Skin. Journal of Burn Care and Research, 2008, 29, 848-851.	0.2	8
159	Heat stress alters hemodynamic responses during the Valsalva maneuver. Journal of Applied Physiology, 2010, 108, 1591-1594.	1.2	8
160	Tissue oxygen saturation during hyperthermic progressive central hypovolemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R731-R736.	0.9	8
161	Vasodilator function is impaired in burn injury survivors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1054-R1060.	0.9	8
162	Folic acid supplementation does not attenuate thermoregulatory or cardiovascular strain of older adults exposed to extreme heat and humidity. Experimental Physiology, 2018, 103, 1123-1131.	0.9	8

#	Article	IF	CITATIONS
163	Is core temperature the trigger of a menopausal hot flush?. Menopause, 2019, 26, 1016-1023.	0.8	8
164	No Thermoregulatory Impairment in Skin Graft Donor Sites during Exercise-Heat Stress. Medicine and Science in Sports and Exercise, 2019, 51, 868-873.	0.2	8
165	Exercise Core Temperature Response with a Simulated Burn Injury: Effect of Body Size. Medicine and Science in Sports and Exercise, 2020, 52, 705-711.	0.2	8
166	Lowâ€dose ketamine affects blood pressure, but not muscle sympathetic nerve activity, during progressive central hypovolemia without altering tolerance. Journal of Physiology, 2020, 598, 5661-5672.	1.3	8
167	Mechanisms and modulators of temperature regulation. Journal of Applied Physiology, 2010, 109, 1219-1220.	1.2	7
168	Thermal Comfort and Safety of Cotton Blankets Warmed at 130°F and 200°F. Journal of Perianesthesia Nursing, 2013, 28, 337-346.	0.3	7
169	Forehead versus forearm skin vascular responses at presyncope in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R908-R913.	0.9	7
170	Arterial stiffness during wholeâ€body passive heat stress in healthy older adults. Physiological Reports, 2019, 7, e14094.	0.7	7
171	Exercise Training Improves Microvascular Function in Burn Injury Survivors. Medicine and Science in Sports and Exercise, 2020, 52, 2430-2436.	0.2	7
172	Atrial Natriuretic Peptide and Acute Changes in Central Blood Volume by Hyperthermia in Healthy Humans. Open Neuroendocrinology Journal (Online), 2012, 5, 1-4.	0.4	7
173	Low-dose fentanyl reduces pain perception, muscle sympathetic nerve activity responses, and blood pressure responses during the cold pressor test. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R64-R76.	0.9	7
174	Cardiopulmonary and arterial baroreceptor unloading during passive hyperthermia does not contribute to hyperthermiaâ€induced hyperventilation. Experimental Physiology, 2015, 100, 1309-1318.	0.9	6
175	Burn Injury Does Not Exacerbate Heat Strain during Exercise while Wearing Body Armor. Medicine and Science in Sports and Exercise, 2020, 52, 2235-2241.	0.2	6
176	Central aortic hemodynamics following acute lower and upper-body exercise in a cold environment among patients with coronary artery disease. Scientific Reports, 2021, 11, 2550.	1.6	6
177	Interaction of Exercise Intensity and Simulated Burn Injury Size on Thermoregulation. Medicine and Science in Sports and Exercise, 2021, 53, 367-374.	0.2	6
178	Low-dose morphine reduces tolerance to central hypovolemia in healthy adults without affecting muscle sympathetic outflow. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H89-H99.	1.5	6
179	Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans. Shock, 2016, 46, 42-49.	1.0	5
180	Augmented venoarteriolar response with ageing is associated with morning blood pressure surge. Experimental Physiology, 2018, 103, 1448-1455.	0.9	5

#	Article	IF	CITATIONS
181	Exercise heat acclimation causes post-exercise hypotension and favorable improvements in lipid and immune profiles: A crossover randomized controlled trial. Journal of Thermal Biology, 2019, 84, 266-273.	1.1	5
182	The benefits of an unsupervised exercise program in persons with well-healed burn injuries within the International Classification of Functioning, Disability and Health (ICF). Burns, 2020, 46, 1280-1288.	1.1	5
183	Impaired sweating in multiple sclerosis leads to increased reliance on skin blood flow for heat dissipation. FASEB Journal, 2010, 24, 991.25.	0.2	5
184	Low-dose fentanyl does not alter muscle sympathetic nerve activity, blood pressure, or tolerance during progressive central hypovolemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R55-R63.	0.9	5
185	Human Heat Physiology. , 2018, , 15-30.		4
186	Greater fluid loss does not fully explain the divergent hemodynamic balance mediating postexercise hypotension in endurance-trained men. Journal of Applied Physiology, 2018, 124, 1264-1273.	1.2	4
187	Low-Dose Morphine Reduces Pain Perception and Blood Pressure, but Not Muscle Sympathetic Outflow, Responses During the Cold Pressor Test. American Journal of Physiology - Heart and Circulatory Physiology, 0, , .	1.5	4
188	One of these things is not like the other: the heterogeneity of the cerebral circulation. Journal of Physiology, 2013, 591, 395-397.	1.3	3
189	Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge. Experimental Physiology, 2017, 102, 255-264.	0.9	3
190	Safety of Rolled and Folded Cotton Blankets Warmed in 130°F and 200°F Cabinets. Journal of Perianesthesia Nursing, 2017, 32, 600-608.	0.3	3
191	Plasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R273-R280.	0.9	3
192	Tolerance to a haemorrhagic challenge during heat stress is improved with inspiratory resistance breathing. Experimental Physiology, 2018, 103, 1243-1250.	0.9	3
193	An assessment of hypercapnia-induced elevations in regional cerebral perfusion during combined orthostatic and heat stresses. Journal of Physiological Sciences, 2020, 70, 25.	0.9	3
194	Cardiovascular responses to dynamic and static upper-body exercise in a cold environment in coronary artery disease patients. European Journal of Applied Physiology, 2022, 122, 223-232.	1.2	3
195	Edward F. Adolph Distinguished Lecture. It's more than skin deep: thermoregulatory and cardiovascular consequences of severe burn injuries in humans. Journal of Applied Physiology, 2021, 131, 1852-1866.	1.2	3
196	Adults with wellâ€healed burn injuries have lower pulmonary function values decades after injury. Physiological Reports, 2022, 10, e15264.	0.7	3
197	Thermoregulatory Responses with Size-matched Simulated Torso or Limb Skin Grafts. Medicine and Science in Sports and Exercise, 2021, 53, 2190-2195.	0.2	2
198	The effect of passive leg heating on alphaâ€adrenergic mediated vasoconstriction in humans. FASEB Journal, 2007, 21, A563.	0.2	2

#	Article	IF	CITATIONS
199	Control Of Cutaneous Vascular Conductance During Presyncope In The Heat Stressed Human. Medicine and Science in Sports and Exercise, 2005, 37, S221.	0.2	2
200	Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R623-R627.	0.9	1
201	Dietary nitrate supplementation does not influence thermoregulatory or cardiovascular strain in older individuals during severe ambient heat stress. Experimental Physiology, 2020, 105, 1730-1741.	0.9	1
202	Attenuated increases in sweat rate but not skin blood flow to increasing doses of methacholine in aged skin. FASEB Journal, 2010, 24, .	0.2	1
203	Release of acetylcholine during wholeâ€body heating in aged skin. FASEB Journal, 2012, 26, 1084.5.	0.2	1
204	Reply to Brengelmann. Journal of Applied Physiology, 2011, 111, 1226-1226.	1.2	0
205	T6 Burn Survivors Can Perform Mild/moderate-intensity Exercise in Thermoneutral Conditions Without a Risk of Excessive Elevations in Core Body Temperature. Journal of Burn Care and Research, 2021, 42, S5-S6.	0.2	0
206	Mechanisms of cutaneous vasoconstriction during orthostasis in heat stressed individuals. Japanese Journal of Physical Fitness and Sports Medicine, 2006, 55, 20-20.	0.0	0
207	Endogenous NO decreases cutaneous vasoconstrictor responsiveness during lowerâ€body negative pressure (LBNP) in the heat stressed individual. FASEB Journal, 2007, 21, A1298.	0.2	0
208	Effect of hypercapnia on skin blood flow during normothermia and wholeâ€body heating. FASEB Journal, 2007, 21, A1313.	0.2	0
209	Heat stress attenuates increases in arterial blood pressure during a cold pressor test (CPT). FASEB Journal, 2007, 21, A563.	0.2	0
210	Heat stress decreases baroreflex sensitivity during muscle metaboreceptor stimulation. FASEB Journal, 2007, 21, A571.	0.2	0
211	Dynamic cerebral autoregulation during passive heat stress. FASEB Journal, 2008, 22, 956.8.	0.2	0
212	Neural control of cutaneous vasoconstriction during lowerâ€body negative pressure (LBNP) in the heat stressed individual. FASEB Journal, 2008, 22, 956.11.	0.2	0
213	Tissue Doppler indices of cardiac contractile function during wholeâ€body heat stress. FASEB Journal, 2008, 22, 970.24.	0.2	0
214	Effect of wholeâ€body heat stress on peripheral vasoconstriction during engagement of the venoarteriolar response. FASEB Journal, 2009, 23, 788.9.	0.2	0
215	Changes in central venous pressure during heat stress as a possible predictor of compromised blood pressure control during simulated hemorrhage. FASEB Journal, 2010, 24, 991.18.	0.2	0
216	Combined Heat and Mental Stress Alters Neurovascular Control in Humans. FASEB Journal, 2010, 24, .	0.2	0

#	Article	IF	CITATIONS
217	Comparison of Pulmonary Artery Blood and Intestinal Temperatures in Humans. FASEB Journal, 2011, 25, 1053.11.	0.2	0
218	Local, but not indirect whole body heating, increases human skeletal muscle blood flow. FASEB Journal, 2011, 25, .	0.2	0
219	Acute volume infusion improves left ventricular diastolic function during heat stress. FASEB Journal, 2011, 25, 1053.5.	0.2	0
220	Cardiac output at preâ€syncope in the heatâ€stressed human. FASEB Journal, 2011, 25, 1053.4.	0.2	0
221	Dehydration during wholeâ€body heat stress contributes to subsequent reductions in lowerâ€body negative pressure (LBNP) tolerance. FASEB Journal, 2011, 25, .	0.2	Ο
222	Hypercapnia does not improve hyperthermic simulated hemorrhagic tolerance. FASEB Journal, 2012, 26, 1080.8.	0.2	0
223	Improved temperature regulation following heat acclimation in wellâ€healed skin graft subjects exercising in the heat. FASEB Journal, 2012, 26, 1079.9.	0.2	Ο
224	Infrared thermal imaging of human skin temperature during combined simulated hemorrhage and thermal stress. FASEB Journal, 2012, 26, .	0.2	0
225	Local skin temperature alters cutaneous vasoconstrictor responses to a simulated hemorrhagic challenge while heat stressed. FASEB Journal, 2012, 26, 1080.11.	0.2	Ο
226	Tolerance to a hemorrhagic challenge during heat stress is improved with inspiratory resistance breathing. FASEB Journal, 2012, 26, 1080.9.	0.2	0
227	Hyperthermic hyperventilation is not mitigated by cardiopulmonary baroreceptor loading. FASEB Journal, 2013, 27, 1201.14.	0.2	Ο
228	Warm Water Immersion Similarly Reduces Arterial Blood Pressure in Obese Type 2 Diabetic and Healthy Individuals. FASEB Journal, 2015, 29, 993.1.	0.2	0
229	Does Attenuated Skin Blood Flow Lower Sweat Rate and Thereby the Critical Environmental Limit for Heat Balance?. FASEB Journal, 2016, 30, lb670.	0.2	0
230	Effect of Chronic Lower Limb Heating on Cutaneous Microvascular Function in Aged Humans. FASEB Journal, 2018, 32, 722.31.	0.2	0
231	Impaired pulmonary function and right ventricular morphology in wellâ€healed burn survivors is related to aerobic capacity and not severity of burn injury. FASEB Journal, 2019, 33, 535.9.	0.2	0
232	The dynamics of cerebral blood flow leading up to preâ€syncope in heat stressed humans. FASEB Journal, 2019, 33, 528.6.	0.2	0
233	The effect of wholeâ€body skin cooling on dynamic cerebral autoregulation. FASEB Journal, 2020, 34, 1-1.	0.2	0
234	Evidence for Chronotropic Incompetence in Well-healed Burn Survivors. Journal of Burn Care and Research, 2022, , .	0.2	0

#	Article	IF	CITATIONS
235	Cardiac Adjustments During a Very Hot and Dry Heatwave Simulation in Older Adults. FASEB Journal, 2022, 36, .	0.2	0
236	Cardiac Adjustments During a Hot and Humid Heatwave Simulation in Older Adults. FASEB Journal, 2022, 36, .	0.2	0
237	Lower blood pressure, but not muscle sympathetic nerve activity, in female compared to male adults during progressive central hypovolemia. FASEB Journal, 2022, 36, .	0.2	0