Rosa Iacovino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337630/publications.pdf

Version: 2024-02-01

516710 642732 37 696 16 23 h-index citations g-index papers 39 39 39 833 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. International Journal of Molecular Sciences, 2020, 21, 8285.	4.1	8
2	Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Scientific Reports, 2020, 10, 9283.	3.3	11
3	Polypseudorotaxanes of Pluronic® F127 with Combinations of \hat{I}_{\pm} - and \hat{I}_{\pm} -Cyclodextrins for Topical Formulation of Acyclovir. Nanomaterials, 2020, 10, 613.	4.1	19
4	A New Approach for Improving the Antibacterial and Tumor Cytotoxic Activities of Pipemidic Acid by Including It in Trimethyl- \hat{l}^2 -cyclodextrin. International Journal of Molecular Sciences, 2019, 20, 416.	4.1	20
5	Ni(II), Hg(II), and Pb(II) Coordination in the Prokaryotic Zinc-Finger Ros87. Inorganic Chemistry, 2019, 58, 1067-1080.	4.0	17
6	Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy. Bioinorganic Chemistry and Applications, 2017, 2017, 1-7.	4.1	16
7	Alpha- and Beta-Cyclodextrin Inclusion Complexes with 5-Fluorouracil: Characterization and Cytotoxic Activity Evaluation. Molecules, 2016, 21, 1644.	3.8	37
8	The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. Journal of Inorganic Biochemistry, 2016, 161, 91-98.	3.5	18
9	Cyclodextrins as Complexing Agents: Preparation and Applications. Current Organic Chemistry, 2016, 21, 162-176.	1.6	28
10	Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides. Amino Acids, 2015, 47, 2215-2227.	2.7	79
11	Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 497-504.	2.3	17
12	\hat{l}^2 -Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Pipemidic Acid: Characterization and Bioactivity Evaluation. International Journal of Molecular Sciences, 2013, 14, 13022-13041.	4.1	48
13	Physicochemical Characterization and Cytotoxic Activity Evaluation of Hydroxymethylferrocene:Î ² -Cyclodextrin Inclusion Complex. Molecules, 2012, 17, 6056-6070.	3.8	26
14	Crystal and molecular structure of βâ€eyclodextrins functionalized with the antiâ€inflammatory drug Etodolac. Biopolymers, 2009, 91, 1227-1235.	2.4	6
15	Synthesis of Novel Indoleâ€Based Ring Systems by Acidâ€Catalysed Condensation from αâ€Amino Aldehydes and <scp>L</scp> â€Trpâ€OMe. European Journal of Organic Chemistry, 2008, 2008, 1983-1992.	2.4	11
16	Carexanes from Carex distachya Desf.: revised stereochemistry and characterization of four novel polyhydroxylated prenylstilbenes. Tetrahedron, 2008, 64, 7782-7786.	1.9	16
17	Distachyasin: A new antioxidant metabolite from the leaves of Carex distachya. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6096-6101.	2.2	22
18	Reactions of Pd(PPh3)4with 3â€~,5â€~-Di-O-acetylthymidine: Oxidative Addition of Pd(PPh3)4on Thymidine N3 and C4 Atoms. Organometallics, 2005, 24, 3401-3406.	2.3	12

#	Article	IF	CITATIONS
19	New antitumour cyclic astin analogues: synthesis, conformation and bioactivity. Journal of Peptide Science, 2004, 10, 92-102. Synthesis and molecular modelling studies of resorcin[4]arene-capped porphyrinsElectronic	1.4	18
20	supplementary information (ESI) available: Benzene-d6 shifts of compound 7 compared with those of component units, details on the new parameters added to heme29 and cartesian coordinate files of lowest-energy conformations of 3, 5 and 7 (benzene inside) on the molecular modelling studies (pdb) Tj ETQq0 0	0 ² rgBT /O	verlock 10 T
21	Chemistry, 2003, 1, 3131. Cα-Methyl,Cα-allylglycine (Mag) Homooligomers. Macromolecules, 2001, 34, 4263-4269.	4.8	6
22	Crystal-state conformation of C?,?-dialkylated peptides containing chiral ?-homo-residues. Journal of Peptide Science, 2001, 7, 15-26.	1.4	6
23	Solid state structural analysis of the cyclooctapeptide cyclo- (Pro1-Pro-Phe-Phe-Ac6c-lle-D-Ala-Val8). Biopolymers, 2000, 53, 189-199.	2.4	18
24	Conformational restriction through C?i ? C?i cyclization: Ac12c, the largest cycloaliphatic C?,?disubstituted glycine known. Biopolymers, 2000, 53, 200-212.	2.4	18
25	Solid State and Solution Conformation of 6-[4-[N-tert-ButoxycarbonylN-(N′-ethyl)propanamide]imidazolyl]-6-deoxycyclomaltoheptaose: Evidence of Self-Inclusion of the Boc Group within the β-Cyclodextrin Cavity. European Journal of Organic Chemistry, 2000, 2000, 1065-1076.	2.4	18
26	Preferred conformation of peptides based on cycloaliphatic C?,?-disubstituted glycines: 1-amino-cycloundecane-1-carboxylic acid (Ac11c). Journal of Peptide Science, 2000, 6, 571-583.	1.4	9
27	Synthesis and conformation of dipeptide taste ligands containinghomo- \hat{l}^2 -amino acid residues. Journal of Physical Organic Chemistry, 1999, 12, 577-587.	1.9	3
28	Helical screw sense of peptide molecules: The pentapeptide system (Aib)4/L-Val[L-($\hat{l}\pm Me$)Val] in the crystal state. , 1998, 46, 433-443.		35
29	X-ray structures of new dipeptide taste ligands. Journal of Peptide Science, 1998, 4, 229-238.	1.4	11
30	Conformational restriction through Cαiâ€â†â†'â€Cαi cyclization: 1-aminocycloheptane-1-carboxylic acid (Ac7 Journal of the Chemical Society Perkin Transactions II, 1997, , 2023-2032.	'c)9	24
31	Synthesis of C-Alkylcalix [4] arenes. 5. Design, Synthesis, Computational Studies, and Homodimerization of Polymethylene-Bridged Resorc [4] arenes. Journal of Organic Chemistry, 1997, 62, 1788-1794.	3.2	20
32	Title is missing!. International Journal of Peptide Research and Therapeutics, 1997, 4, 129.	0.1	1
33	\hat{l}^2 -amino acid residues: Conformational characterization of an N- and C-protectedhomo- \hat{l}^2 -(S)-leucine. International Journal of Peptide Research and Therapeutics, 1997, 4, 129-134.	0.1	1
34	Conformational Characterization of the 1-Aminocyclobutane-1-carboxylic Acid Residue in Model Peptides., 1997, 3, 110-122.		40
35	Conformational analysis of the dipeptide taste ligandL-aspartyl-D-2-aminobutyric acid-(S)- \hat{l} ±-ethylbenzylamide and its analogues by NMR spectroscopy, computer simulations and X-ray diffraction studies. , 1997, 3, 231-241.		10
36	Conformational characterization of peptides rich in the cycloaliphatic $\hat{Cl}_{\pm},\hat{l}_{\pm}$ -disubstituted glycine 1-amino-cyclononane-1-carboxylic acid. Journal of Peptide Science, 1997, 3, 367-382.	1.4	11

ARTICLE IF CITATIONS

37 Experimental evidence at atomic resolution for intramolecular N(SINGLEBOND)H · · · Ï€ (phenyl)
interactions in a family of amino acid derivatives. , 1997, 42, 1-6.