Jing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337390/publications.pdf

Version: 2024-02-01

2215 2953 41,425 453 99 189 citations h-index g-index papers 500 500 500 24837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	R-isophthalic Acid-based Coordination Polymers (R = Hydrogen or Bromine). Chimia, 2022, 67, 393.	0.6	4
2	Large scale synthesis and propylene purification by a high-performance MOF sorbent Y-abtc. Separation and Purification Technology, 2022, 282, 120010.	7.9	12
3	Achieving a blue-excitable yellow-emitting Ca-LMOF phosphor <i>via</i> water induced phase transformation. Chemical Science, 2022, 13, 1375-1381.	7.4	2
4	A Microporous Metal–Organic Framework Incorporating Both Primary and Secondary Building Units for Splitting Alkane Isomers. Journal of the American Chemical Society, 2022, 144, 3766-3770.	13.7	36
5	Metal–organic frameworks with ftw -type connectivity: design, pore structure engineering, and potential applications. CrystEngComm, 2022, 24, 2189-2200.	2.6	5
6	A Tetrathiafulvalene/Naphthalene Diimide-Containing Metal–Organic Framework with ⟨i⟩fsc⟨/i⟩ Topology for Highly Efficient Near-Infrared Photothermal Conversion. Inorganic Chemistry, 2022, 61, 3078-3085.	4.0	13
7	A Benzothiadiazole-Based Eu ³⁺ Metal–Organic Framework as the Turn-On Luminescent Sensor toward Al ³⁺ and Ga ³⁺ with Potential Bioimaging Application. Inorganic Chemistry, 2022, 61, 3607-3615.	4.0	61
8	Decoding the Gate Opening Mechanism of the Flexible Framework RPM3–Zn upon Hydrocarbon Inclusion. Chemistry of Materials, 2022, 34, 3246-3252.	6.7	3
9	Balancing uptake and selectivity in a copper-based metal–organic framework for xenon and krypton separation. Separation and Purification Technology, 2022, 291, 120932.	7.9	9
10	Full-Color Emission in Multicomponent Metal–Organic Frameworks via Linker Installation. Inorganic Chemistry, 2022, 61, 3363-3367.	4.0	9
11	Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. Journal of the American Chemical Society, 2022, 144, 1681-1689.	13.7	172
12	Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants. National Science Review, 2022, 9, .	9.5	35
13	Adsorption and Release of 1-Methylcyclopropene by Metal–Organic Frameworks for Fruit Preservation. , 2022, 4, 1053-1057.		8
14	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	4.0	13
15	Separation of naphtha on a series of ultramicroporous MOFs: A comparative study with zeolites. Separation and Purification Technology, 2022, 294, 121219.	7.9	12
16	A {Zn4} cluster as a bi-functional luminescence sensor for highly sensitive detection of chloride ions and histidine in aqueous media. Journal of Materials Chemistry C, 2022, 10, 8979-8993.	5 . 5	14
17	A Water-Resistant Hydrogen-Bonded Organic Framework for Ethane/Ethylene Separation in Humid Environments. , 2022, 4, 1227-1232.		33
18	Building an emission library of donor–acceptor–donor type linker-based luminescent metal–organic frameworks. Chemical Science, 2022, 13, 8036-8044.	7.4	15

#	Article	IF	CITATIONS
19	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
20	New Approach toward Dual-Emissive Organic–Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31000-31009.	8.0	11
21	Discrimination of xylene isomers in a stacked coordination polymer. Science, 2022, 377, 335-339.	12.6	94
22	Engineering bidirectional CMC-foam-supported HKUST-1@graphdiyne with enhanced heat/mass transfer for the highly efficient adsorption and regeneration of acetaldehyde. Journal of Materials Chemistry A, 2021, 9, 4066-4074.	10.3	23
23	Calciumâ€Based Metal–Organic Frameworks and Their Potential Applications. Small, 2021, 17, e2005165.	10.0	30
24	Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications. Dalton Transactions, 2021, 50, 6901-6912.	3.3	22
25	Separation of alkane and alkene mixtures by metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 20874-20896.	10.3	54
26	All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chemical Science, 2021, 12, 3805-3817.	7.4	40
27	An antimony based organic–inorganic hybrid coating material with high quantum efficiency and thermal quenching effect. Chemical Communications, 2021, 57, 1754-1757.	4.1	18
28	Nanocage-Based N-Rich Metal–Organic Framework for Luminescence Sensing toward Fe ³⁺ and Cu ²⁺ lons. Inorganic Chemistry, 2021, 60, 671-681.	4.0	97
29	Highâ€Efficiency Separation of <i>n</i> à€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie - International Edition, 2021, 60, 10593-10597.	13.8	42
30	Highâ€Efficiency Separation of <i>n</i> à€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie, 2021, 133, 10687-10691.	2.0	10
31	Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry, 2021, 3, 327-337.	2.2	11
32	Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chemical Engineering Journal, 2021, 409, 128274.	12.7	130
33	Ultrastable Zirconium-Based Cationic Metal–Organic Frameworks for Perrhenate Removal from Wastewater. Inorganic Chemistry, 2021, 60, 11730-11738.	4.0	22
34	Defect Termination in the UiO-66 Family of Metal–Organic Frameworks: The Role of Water and Modulator. Journal of the American Chemical Society, 2021, 143, 6328-6332.	13.7	74
35	Portable smartphone platform integrated with fluorescent test strip based on Eu3+-functionalized copper nanoclusters for on-site visual recognition of a pathogenic biomarker. Sensors and Actuators B: Chemical, 2021, 332, 129495.	7.8	26
36	Il–VI Organic–Inorganic Hybrid Nanostructures with Greatly Enhanced Optoelectronic Properties, Perfectly Ordered Structures, and Shelf Stability of Over 15 Years. ACS Nano, 2021, 15, 10565-10576.	14.6	9

#	Article	IF	Citations
37	Tuning Chromophore-Based LMOF Dimensionality to Enhance Detection Sensitivity for Fe ³⁺ lons. ACS Omega, 2021, 6, 16498-16506.	3.5	10
38	Two-Dimensional Copper Iodide-Based Inorganic–Organic Hybrid Semiconductors: Synthesis, Structures, and Optical and Transport Properties. Chemistry of Materials, 2021, 33, 5317-5325.	6.7	26
39	A New Type of Hybrid Copper Iodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Letters, 2021, 6, 2565-2574.	17.4	46
40	Linker Engineering toward Full-Color Emission of UiO-68 Type Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 10547-10552.	13.7	54
41	Upgrading Octane Number of Naphtha by a Robust and Easily Attainable Metalâ€Organic Framework through Selective Molecular Sieving of Alkane Isomers. Chemistry - A European Journal, 2021, 27, 11795-11798.	3.3	20
42	Flexible Zn-MOF with Rare Underlying <i>scu</i> Topology for Effective Separation of C6 Alkane Isomers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51997-52005.	8.0	22
43	Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 25252-25258.	2.0	5
44	Tuning the Adsorption Properties of Metal–Organic Frameworks through Coadsorbed Ammonia. ACS Applied Materials & Coadsorbed Ammonia. ACS Applied Materi	8.0	6
45	Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 25048-25054.	13.8	39
46	A switchable sensor and scavenger: detection and removal of fluorinated chemical species by a luminescent metal–organic framework. Chemical Science, 2021, 12, 14189-14197.	7.4	26
47	Fluorescent sensors for aldehydes based on luminescent metal–organic frameworks. Dalton Transactions, 2021, 50, 7166-7175.	3.3	26
48	Copper(I) iodide-based organic–inorganic hybrid compounds as phosphor materials. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 759-764.	0.7	6
49	A Cd-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in multifarious water environments. CrystEngComm, 2021, 23, 8392-8403.	2.6	20
50	Efficient separation of xylene isomers by using a robust calcium-based metal–organic framework through a synergetic thermodynamically and kinetically controlled mechanism. Journal of Materials Chemistry A, 2021, 9, 26202-26207.	10.3	7
51	Three Robust Blue-Emitting Anionic Metal–Organic Frameworks with High Stability and Good Proton Conductivities. Inorganic Chemistry, 2021, 60, 17926-17932.	4.0	15
52	Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305.	13.7	72
53	Chromism of three coordination polymers based on 1-(2-carboxyethyl)-4,4′-bipyridinium ligand. Dyes and Pigments, 2020, 172, 107792.	3.7	9
54	Strongly emissive white-light-emitting silver iodide based inorganic–organic hybrid structures with comparable quantum efficiency to commercial phosphors. Chemical Communications, 2020, 56, 1481-1484.	4.1	20

#	Article	IF	CITATIONS
55	Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chemical Science, 2020, 11, 1814-1824.	7.4	43
56	A self-calibrating dual responsive platform for the sensitive detection of sulfite and sulfonic derivatives based on a robust Hf(<scp>iv</scp>) metal–organic framework. Chemical Communications, 2020, 56, 631-634.	4.1	16
57	Crystalline Al ₂ O ₃ modified porous poly(aryl ether ketone) (PAEK) composite separators for high performance lithium-ion batteries <i>via</i> an electrospinning technique. CrystEngComm, 2020, 22, 1577-1585.	2.6	7
58	Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Materials Today Nano, 2020, 9, 100071.	4.6	58
59	Photoresponsive characteristics of five D–A supramolecular assemblies derived from benzenecarboxylate donors and viologen acceptors. Dyes and Pigments, 2020, 174, 108101.	3.7	8
60	A new photochromic Gd-MOF with photoswitchable bluish-white to greenish-yellow emission based on electron transfer. Chemical Communications, 2020, 56, 14689-14692.	4.1	36
61	Blue-shifted aggregation-induced enhancement of a Sn(iv) fluoride complex: the role of fluorine in luminescence enhancement. Chemical Communications, 2020, 56, 9648-9650.	4.1	4
62	Family of Robust and Strongly Luminescent Cul-Based Hybrid Networks Made of Ionic and Dative Bonds. Chemistry of Materials, 2020, 32, 10708-10718.	6.7	49
63	Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu ₄ X ₆ (L) ₂ (X = Br, I) composed of covalent, ionic and coordinate bonds. Journal of Materials Chemistry C, 2020, 8, 16790-16797.	5.5	24
64	Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon. Journal of the American Chemical Society, 2020, 142, 20088-20097.	13.7	62
65	Functionalizing Luminescent Metal–Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 2020, 5, 2671-2680.	17.4	58
66	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	38.1	784
67	Porous Ti-MOF-74 Framework as a Strong-Binding Nitric Oxide Scavenger. Journal of the American Chemical Society, 2020, 142, 16562-16568.	13.7	27
68	Enhanced fluorescence by increasing dimensionality: a novel three-dimensional luminescent metal–organic framework with rigidified ligands. CrystEngComm, 2020, 22, 5946-5948.	2.6	6
69	The Best of Both Worlds: An MOP/COF-Based Hybrid Material for Highly Selective and Very Fast Sequestration of Toxic Oxoanions from Water. ACS Central Science, 2020, 6, 1476-1478.	11.3	4
70	A robust and multifunctional calcium coordination polymer as a selective fluorescent sensor for acetone and iron (+3) and as a tunable proton conductor. Journal of Materials Chemistry C, 2020, 8, 16784-16789.	5 . 5	18
71	Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. Journal of Materials Chemistry C, 2020, 8, 7300-7303.	5.5	35
72	Building a robust 3D Ca-MOF by a new square Ca ₄ O SBU for purification of natural gas. Dalton Transactions, 2020, 49, 8836-8840.	3.3	19

#	Article	IF	CITATIONS
73	Thermally Activated Adsorption in Metal–Organic Frameworks with a Temperature‶unable Diffusion Barrier Layer. Angewandte Chemie - International Edition, 2020, 59, 18468-18472.	13.8	8
74	Separation of ethane and ethylene by a robust ethane-selective calcium-based metal–organic framework. New Journal of Chemistry, 2020, 44, 11933-11936.	2.8	11
75	Luminescence investigation of lanthanum ions (Eu3+ or Tb3+) doped SrLaGa3O7 fluorescent powders. Optical Materials, 2020, 107, 110010.	3 . 6	34
76	Thermally Activated Adsorption in Metal–Organic Frameworks with a Temperature‶unable Diffusion Barrier Layer. Angewandte Chemie, 2020, 132, 18626-18630.	2.0	0
77	Adsorption of Fluorocarbons and Chlorocarbons by Highly Porous and Robust Fluorinated Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 4167-4171.	4.0	23
78	Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal–Organic Framework Material with Optimal Pore Dimensions. Journal of the American Chemical Society, 2020, 142, 6925-6929.	13.7	60
79	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	21.0	182
80	UV and X-ray dual photochromic properties of three CPs based on a new viologen ligand. Dyes and Pigments, 2020, 177, 108276.	3.7	17
81	Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. Journal of the American Chemical Society, 2020, 142, 4242-4253.	13.7	72
82	Metal-dependent chromic properties of three isostructural 1D coordination polymers based on 1-(2-carboxyethyl)-4,4′-bipyridinium ligand. Dyes and Pigments, 2020, 177, 108266.	3.7	12
83	Robust fluorescent calcium coordination polymers as Cu ²⁺ sensors with high sensitivity and fast response. Journal of Materials Chemistry C, 2020, 8, 6820-6825.	5 . 5	30
84	Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chemical Communications, 2019, 55, 10669-10672.	4.1	32
85	Three Models To Encapsulate Multicomponent Dyes into Nanocrystal Pores: A New Strategy for Generating High-Quality White Light. Journal of the American Chemical Society, 2019, 141, 14807-14813.	13.7	116
86	Effect of counter cations on the photochromic behaviors of three Zn–viologen complexes. New Journal of Chemistry, 2019, 43, 12678-12683.	2.8	5
87	High stability of ultra-small and isolated gold nanoparticles in metal–organic framework materials. Journal of Materials Chemistry A, 2019, 7, 17536-17546.	10.3	41
88	Tuning the Channel Size and Structure Flexibility of Metal–Organic Frameworks for the Selective Adsorption of Noble Gases. Inorganic Chemistry, 2019, 58, 15025-15028.	4.0	22
89	Strongly luminescent inorganic–organic hybrid semiconductors with tunable white light emissions by doping. Journal of Materials Chemistry C, 2019, 7, 1484-1490.	5.5	30
90	Blue-Light-Excitable, Quantum Yield Enhanced, Yellow-Emitting, Zirconium-Based Metal–Organic Framework Phosphors Formed by Immobilizing Organic Chromophores. Crystal Growth and Design, 2019, 19, 6850-6854.	3.0	13

#	Article	IF	Citations
91	Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal–Organic Framework. Chemistry of Materials, 2019, 31, 7933-7940.	6.7	21
92	"Induced-Fit Suction―effect: a booster for biofuel storage and separation. Journal of Materials Chemistry A, 2019, 7, 22353-22358.	10.3	4
93	A Robust Multifunctional Eu ₆ -Cluster Based Framework for Gas Separation and Recognition of Small Molecules and Heavy Metal Ions. Crystal Growth and Design, 2019, 19, 6381-6387.	3.0	26
94	Magnesium based coordination polymers: Syntheses, structures, properties and applications. Coordination Chemistry Reviews, 2019, 399, 213025.	18.8	17
95	Photochromism of three supramolecular assemblies derived from benzenecarboxylate donors and viologen acceptors. Polyhedron, 2019, 161, 237-242.	2.2	9
96	Harvesting vapor by hygroscopic acid to create pore: Morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. Journal of Membrane Science, 2019, 577, 1-11.	8.2	35
97	Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. Journal of Materials Chemistry C, 2019, 7, 2625-2632.	5.5	54
98	NanoPOP: Solution-Processable Fluorescent Porous Organic Polymer for Highly Sensitive, Selective, and Fast Naked Eye Detection of Mercury. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27394-27401.	8.0	45
99	Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 2019, 1, 100008.	19.1	76
100	[Ba ₁₃ Sb ₃₆ Cl ₃₄ O ₅₄] ^{8â°'} : high-nuclearity cluster for the assembly of nanocluster-based compounds. Chemical Communications, 2019, 55, 7442-7445.	4.1	7
101	Photochromism of stable crystalline 3D Cd-viologen coordination polymers. Dyes and Pigments, 2019, 170, 107565.	3.7	12
102	A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 2019, 141, 9358-9364.	13.7	162
103	Photochromism of four 1D coordination polymers based on 1-(2-carboxyethyl)-4,4′-bipyridinium ligand. Dyes and Pigments, 2019, 170, 107552.	3.7	11
104	Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains. Chemical Science, 2019, 10, 5363-5372.	7.4	38
105	Microporous Metal–Organic Frameworks for Adsorptive Separation of C5–C6 Alkane Isomers. Accounts of Chemical Research, 2019, 52, 1968-1978.	15.6	160
106	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. Chemistry of Materials, 2019, 31, 2286-2295.	6.7	16
107	Photochromism of supramolecular assemblies based on benzenecarboxylate donors and viologen acceptors. New Journal of Chemistry, 2019, 43, 6607-6614.	2.8	15
108	Fluorescent In based MOFs showing "turn on―luminescence towards thiols and acting as a ratiometric fluorescence thermometer. Journal of Materials Chemistry C, 2019, 7, 3049-3055.	5 . 5	39

#	Article	IF	Citations
109	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	6.7	21
110	Improving LMOF luminescence quantum yield through guest-mediated rigidification. Journal of Materials Chemistry C, 2019, 7, 14739-14744.	5.5	17
111	Mesoporous silica nanobeans dual-functionalized with AlEgens and leaning pillar[6]arene-based supramolecular switches for imaging and stimuli-responsive drug release. Chemical Communications, 2019, 55, 14099-14102.	4.1	36
112	Photochromic properties of three 2D MOFs based on 1-carboxyethyl-4,4′-bipyridinine. RSC Advances, 2019, 9, 33155-33162.	3.6	13
113	Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 2019, 356, 329-340.	12.7	109
114	A new porous Ca(II)-organic framework with acylamide decorated pores for highly efficient CO2 capture. Inorganic Chemistry Communication, 2019, 99, 40-43.	3.9	8
115	General strategies for effective capture and separation of noble gases by metal–organic frameworks. Dalton Transactions, 2018, 47, 4027-4031.	3.3	33
116	Climbing the Volcano of Electrocatalytic Activity while Avoiding Catalyst Corrosion: Ni ₃ P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catalysis, 2018, 8, 4408-4419.	11.2	178
117	Iron-Based Metal–Organic Framework with Hydrophobic Quadrilateral Channels for Highly Selective Separation of Hexane Isomers. ACS Applied Materials & Diterfaces, 2018, 10, 6031-6038.	8.0	43
118	Copper lodide Based Hybrid Phosphors for Energyâ€Efficient General Lighting Technologies. Advanced Functional Materials, 2018, 28, 1705593.	14.9	184
119	Role of Hydrogen Bonding on Transport of Coadsorbed Gases in Metal–Organic Frameworks Materials. Journal of the American Chemical Society, 2018, 140, 856-859.	13.7	26
120	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	12.8	251
121	One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers <i>via</i> temperature- and adsorbate-dependent molecular sieving. Energy and Environmental Science, 2018, 11, 1226-1231.	30.8	103
122	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	38.1	530
123	Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordination Chemistry Reviews, 2018, 373, 116-147.	18.8	169
124	A Cul modified Mg-coordination polymer as a ratiometric fluorescent probe for toxic thiol molecules. Journal of Materials Chemistry C, 2018, 6, 13367-13374.	5.5	12
125	Terbium Oxalatophosphonate as Efficient Multiresponsive Luminescent Sensors for Chromate Anions and Tryptophan Molecules. ACS Omega, 2018, 3, 16735-16742.	3.5	15
126	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	21.0	241

#	Article	IF	Citations
127	A robust two-dimensional zirconium-based luminescent coordination polymer built on a V-shaped dicarboxylate ligand for vapor phase sensing of volatile organic compounds. Chemical Communications, 2018, 54, 8088-8091.	4.1	40
128	Highly Luminescent Metal–Organic Frameworks Based on an Aggregation-Induced Emission Ligand as Chemical Sensors for Nitroaromatic Compounds. Crystal Growth and Design, 2018, 18, 5166-5173.	3.0	46
129	Controlling Chemical Reactions in Confined Environments: Water Dissociation in MOF-74. Applied Sciences (Switzerland), 2018, 8, 270.	2.5	10
130	Layered Inorganic/Organic Hybrid (CdSe) $<$ sub $>$ $<$ i> $>$ $<$ /sub $>$ \hat{A} ·Monoamine Nanobelts: Controllable Solvothermal Synthesis, Multiple Stage Amine De-Intercalation Transformation, and Two-Dimensional Exciton Quantum Confinement Effect. Inorganic Chemistry, 2018, 57, 10781-10790.	4.0	6
131	A dual linker metal-organic framework demonstrating ligand-based emission for the selective detection of carbon tetrachloride. Inorganica Chimica Acta, 2018, 470, 312-317.	2.4	7
132	Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chemistry, 2017, 221, 926-935.	8.2	64
133	A water-stable La-based coordination polymer for highly fluorescent detection of Fe3+ ion and nitrobenzene vapor. Inorganic Chemistry Communication, 2017, 76, 77-80.	3.9	9
134	Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2034-2040.	3.0	24
135	Phthalocyanine supported dinuclear Ln ^{III} complexes: the solvent-induced change of magnetic properties in dysprosium(<scp>iii</scp>) analogues. Dalton Transactions, 2017, 46, 3353-3362.	3.3	28
136	A mechanochemical route toward the rational, systematic, and cost-effective green synthesis of strongly luminescent copper iodide based hybrid phosphors. Journal of Materials Chemistry C, 2017, 5, 5962-5969.	5.5	42
137	Interaction of Acid Gases SO ₂ and NO ₂ with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chemistry of Materials, 2017, 29, 4227-4235.	6.7	99
138	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	38.1	2,457
139	Solid-state NMR Studies of Host–Guest Interaction between UiO-67 and Light Alkane at Room Temperature. Journal of Physical Chemistry C, 2017, 121, 14261-14268.	3.1	25
140	All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals. Journal of the American Chemical Society, 2017, 139, 9281-9290.	13.7	146
141	Facile fabrication of 3D porous hybrid sphere by co-immobilization of multi-enzyme directly from cell lysates as an efficient and recyclable biocatalyst for asymmetric reduction with coenzyme regeneration in situ. International Journal of Biological Macromolecules, 2017, 103, 424-434.	7.5	17
142	Oxygen-selective adsorption in RPM3-Zn metal organic framework. Chemical Engineering Science, 2017, 165, 122-130.	3.8	7
143	A Systematic Approach to Achieving High Performance Hybrid Lighting Phosphors with Excellent Thermal―and Photostability. Advanced Functional Materials, 2017, 27, 1603444.	14.9	125
144	Modulating Single-Molecule Magnetic Behavior of a Dinuclear Erbium(III) Complex by Solvent Exchange. Inorganic Chemistry, 2017, 56, 336-343.	4.0	47

#	Article	IF	Citations
145	Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular tri(4-pyridylphenyl)amine. Dalton Transactions, 2017, 46, 956-961.	3.3	36
146	Nanomaterials for the optical detection of fluoride. Nanoscale, 2017, 9, 17667-17680.	5.6	39
147	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	3.2	6
148	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	3.2	14
149	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	12.8	171
150	Efficient kinetic separation of propene and propane using two microporous metal organic frameworks. Chemical Communications, 2017, 53, 9332-9335.	4.1	91
151	Influence of Metal–Organic Framework Porosity on Hydrogen Generation from Nanoconfined Ammonia Borane. Journal of Physical Chemistry C, 2017, 121, 27369-27378.	3.1	40
152	Functionalized metal organic frameworks for effective capture of radioactive organic iodides. Faraday Discussions, 2017, 201, 47-61.	3.2	38
153	Separation of Light Hydrocarbons through Selective Molecular Exclusion by a Microporous Metal–Organic Framework. ChemPlusChem, 2016, 81, 872-876.	2.8	8
154	Highly Active Palladiumâ€Based Catalyst System for the Aerobic Oxidative Direct Coupling of Benzene to Biphenyl. ChemCatChem, 2016, 8, 448-454.	3.7	16
155	Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption. Chemical Record, 2016, 16, 1298-1310.	5.8	26
156	3D Framework and Supramolecular Structures Assembly from a Carboxyphosphonic Acid and Transition Metals: Sensing of Nitro Compounds and Surface Photovoltage Properties. Chemistry Select, 2016, $1,6783-6791$.	1.5	0
157	Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nature Communications, 2016, 7, 13871.	12.8	60
158	Organically directed heterometallic chalcogenidometalates containing group 12(II)/13(III)/14(IV) metal ions and antimony(III). Coordination Chemistry Reviews, 2016, 322, 41-68.	18.8	61
159	Direct Structural Identification of Gas Induced Gateâ€Opening Coupled with Commensurate Adsorption in a Microporous Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 11816-11825.	3.3	27
160	Chemistry in confined spaces: reactivity of the Zn-MOF-74 channels. Journal of Materials Chemistry A, 2016, 4, 13176-13182.	10.3	7
161	Selective Carbon Dioxide Adsorption by Two Robust Microporous Coordination Polymers. Inorganic Chemistry, 2016, 55, 12923-12929.	4.0	25
162	Cadmium(<scp>ii</scp>) carboxyphosphonates based on mixed ligands: syntheses, crystal structures and recognition properties toward amino acids. RSC Advances, 2016, 6, 92175-92185.	3.6	14

#	Article	IF	Citations
163	Chromophore-immobilized luminescent metal–organic frameworks as potential lighting phosphors and chemical sensors. Chemical Communications, 2016, 52, 10249-10252.	4.1	70
164	Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30294-30303.	8.0	320
165	Two fluorescent lead phosphonates for highly selective sensing of nitroaromatics (NACs), Fe ³⁺ and MnO ₄ ^{â^'} ions. RSC Advances, 2016, 6, 110255-110265.	3.6	31
166	Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chemical Engineering Journal, 2016, 303, 231-237.	12.7	117
167	Cluster assisted water dissociation mechanism in MOF-74 and controlling it using helium. Journal of Materials Chemistry A, 2016, 4, 11524-11530.	10.3	10
168	Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors. Inorganic Chemistry, 2016, 55, 7250-7256.	4.0	74
169	High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4178-4182.	3.0	50
170	A generalized adsorption-phase transition model to describe adsorption rates in flexible metal organic framework RPM3-Zn. Dalton Transactions, 2016, 45, 4242-4257.	3.3	12
171	The moisture-triggered controlled release of a natural food preservative from a microporous metal–organic framework. Chemical Communications, 2016, 52, 2129-2132.	4.1	37
172	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (\hat{l}^3 -MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156
173	Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. Chemistry of Materials, 2016, 28, 1636-1646.	6.7	87
174	Understanding and controlling water stability of MOF-74. Journal of Materials Chemistry A, 2016, 4, 5176-5183.	10.3	155
175	Direct structural evidence of commensurate-to-incommensurate transition of hydrocarbon adsorption in a microporous metal organic framework. Chemical Science, 2016, 7, 759-765.	7.4	24
176	Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous and Mesoporous Materials, 2016, 219, 186-189.	4.4	35
177	Surface and Structural Investigation of a MnO _{<i>x</i>} Birnessite‶ype Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry - A European Journal, 2015, 21, 14218-14228.	3.3	29
178	Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 16209-16215.	13.7	350
179	Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal–organic framework. Chemical Communications, 2015, 51, 3045-3048.	4.1	148
180	Corresponding states interpretation of adsorption in gate-opening metal–organic framework Cu(dhbc)2(4,4′-bpy). Journal of Colloid and Interface Science, 2015, 446, 177-184.	9.4	8

#	Article	IF	Citations
181	Competitive Coadsorption of CO $<$ sub $>$ 2 $<$ /sub $>$ with H $<$ sub $>$ 2 $<$ /sub $>$ 0, NH $<$ sub $>$ 3 $<$ /sub $>$, SO $<$ sub $>$ 2 $<$ /sub $>$, NO, NO $<$ sub $>$ 2 $<$ /sub $>$, N $<$ sub $>$ 2 $<$ /sub $>$, O $<$ sub $>$ 2 $<$ /sub $>$, and CH $<$ sub $>$ 4 $<$ /sub $>$ in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding. Chemistry of Materials, 2015, 27, 2203-2217.	6.7	158
182	In situ spectroscopy studies of CO ₂ adsorption in a dually functionalized microporous metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 4945-4953.	10.3	41
183	New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure. Journal of Solid State Chemistry, 2015, 230, 143-148.	2.9	25
184	The luminescence inner filter effect of Mn2+-doped (ZnS)2Â-octylamine inorganic/organic hybrid thin films and their sensor application for environmental contaminants. RSC Advances, 2015, 5, 70238-70243.	3.6	3
185	A Family of Highly Efficient Cul-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach. Journal of the American Chemical Society, 2015, 137, 9400-9408.	13.7	211
186	Evidence of Amine–CO ₂ Interactions in Two Pillared‣ayer MOFs Probed by Xâ€ray Crystallography. Chemistry - A European Journal, 2015, 21, 7238-7244.	3.3	36
187	Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln ³⁺ lons for White-Light Emission and To Detect Nitroaromatic Explosives. Inorganic Chemistry, 2015, 54, 3290-3296.	4.0	196
188	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	10.3	117
189	Influence of gas packing and orientation on FTIR activity for CO chemisorption to the Cu paddlewheel. Physical Chemistry Chemical Physics, 2015, 17, 26766-26776.	2.8	24
190	Synthesis, structure and enhanced photoluminescence properties of two robust, water stable calcium and magnesium coordination networks. Dalton Transactions, 2015, 44, 20459-20463.	3.3	14
191	A facile and ultrasensitive photoelectrochemical sensor for copper ions using in-situ electrodeposition of cuprous oxide. Sensors and Actuators B: Chemical, 2015, 208, 485-490.	7.8	34
192	Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties. Journal of Solid State Chemistry, 2015, 224, 40-44.	2.9	16
193	Water interactions in metal organic frameworks. CrystEngComm, 2015, 17, 247-260.	2.6	148
194	Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency. Journal of the American Chemical Society, 2014, 136, 16724-16727.	13.7	254
195	Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 2014, 43, 5815-5840.	38.1	3,704
196	Luminescent metal–organic frameworks as explosive sensors. Dalton Transactions, 2014, 43, 10668-10685.	3.3	344
197	Phenanthrene-bridged diarylethenes: Synthesis, photochromism and non-destructive readout. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 277, 45-52.	3.9	6
198	Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal lons: MOF-74. Chemistry of Materials, 2014, 26, 6886-6895.	6.7	149

#	Article	IF	Citations
199	The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chemical Science, 2014, 5, 620-624.	7.4	203
200	A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chemical Communications, 2014, 50, 9636-9639.	4.1	120
201	Effective sensing of RDX via instant and selective detection of ketone vapors. Chemical Science, 2014, 5, 4873-4877.	7.4	112
202	Hydrogen Storage with Spectroscopic Identification of Chemisorption Sites in Cu-TDPAT via Spillover from a Pt/Activated Carbon Catalyst. Journal of Physical Chemistry C, 2014, 118, 26750-26763.	3.1	20
203	Systematic Approach in Designing Rare-Earth-Free Hybrid Semiconductor Phosphors for General Lighting Applications. Journal of the American Chemical Society, 2014, 136, 14230-14236.	13.7	169
204	A molecular Pd(<scp>ii</scp>) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 2014, 16, 3978.	9.0	127
205	Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142.	6.2	29
206	New polyoxomolybdate compounds synthesized in situ using ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate as green solvent. New Journal of Chemistry, 2013, 37, 2894.	2.8	17
207	Selective, Sensitive, and Reversible Detection of Vapor-Phase High Explosives via Two-Dimensional Mapping: A New Strategy for MOF-Based Sensors. Crystal Growth and Design, 2013, 13, 4204-4207.	3.0	107
208	Nanostructured Inorganic–Organic Hybrid Semiconductor Materials. , 2013, , 375-415.		2
209	Storage and delivery of nitric oxide via diazeniumdiolated metal organic framework. Microporous and Mesoporous Materials, 2013, 181, 17-22.	4.4	38
210	Vapor phase detection of nitroaromatic and nitroaliphatic explosives by fluorescence active metal–organic frameworks. CrystEngComm, 2013, 15, 9745.	2.6	95
211	Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nature Communications, 2013, 4, 2717.	12.8	501
212	A Systematic Study of Fluorescenceâ€Based Detection of Nitroexplosives and Other Aromatics in the Vapor Phase by Microporous Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 15964-15971.	3.3	198
213	Mechanism of Preferential Adsorption of SO ₂ into Two Microporous Paddle Wheel Frameworks M(bdc)(ted) _{0.5} . Chemistry of Materials, 2013, 25, 4653-4662.	6.7	127
214	From 1D Chain to 3D Network: A New Family of Inorganic–Organic Hybrid Semiconductors MO ₃ (L) _{<i>x</i>} (M = Mo, W; L = Organic Linker) Built on Perovskite-like Structure Modules. Journal of the American Chemical Society, 2013, 135, 17401-17407.	13.7	47
215	Effect of ligand geometry on selective gas-adsorption: the case of a microporous cadmium metal organic framework with a V-shaped linker. Chemical Communications, 2013, 49, 7055.	4.1	31
216	pH-dependent syntheses and crystal structures, characterizations, and DFT calculations of complexes with 2,2′-biimidazole and terephthalic acid ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 620-627.	1.0	2

#	Article	IF	CITATIONS
217	Monitoring the Activation of a Flexible Metal–Organic Framework Using Structurally Sensitive Spectroscopy Techniques. Journal of Physical Chemistry C, 2013, 117, 20068-20077.	3.1	22
218	Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence. Angewandte Chemie - International Edition, 2013, 52, 1692-1695.	13.8	97
219	Enhancement of <scp>CO₂</scp> Adsorption and <scp>CO₂/N₂</scp> Selectivity on <scp>ZIF</scp> â€8 via Postsynthetic Modification. AICHE Journal, 2013, 59, 2195-2206.	3.6	171
220	The first single-sized (\hat{a}^4 1 nm) and periodically ordered array of In2Te3semiconductor quantum dots self-assembled in solution. Journal of Materials Chemistry A, 2013, 1, 199-202.	10.3	21
221	Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co;) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties. Journal of Solid State Chemistry, 2013, 200, 1-6.	f 50 592 ⁻ 2.9	Td (H2hfipbl
222	Two three-dimensional metal–organic frameworks constructed by thiazole-spaced pyridinecarboxylates exhibiting selective gas sorption or antiferromagnetic coupling. New Journal of Chemistry, 2013, 37, 425-430.	2.8	10
223	Ligand Functionalization and Its Effect on CO ₂ Adsorption in Microporous Metal–Organic Frameworks. Chemistry - an Asian Journal, 2013, 8, 778-785.	3.3	39
224	Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis. Journal of the American Chemical Society, 2013, 135, 3494-3501.	13.7	561
225	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn>> nanomagnet Cu<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:mrow display="inline"><mml:msub><mml:msub><mml:mrow display="inline"><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m< td=""><td>kmml:mn: 3.2</td><td>220</td></m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math></mml:mfrac></mml:mrow>	kmml:mn: 3.2	220
226	Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system. Chemical Communications, 2013, 49, 5724.	4.1	45
227	MOFs for CO ₂ capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chemical Communications, 2013, 49, 653-661.	4.1	564
228	Analyzing the frequency shift of physiadsorbed CO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> in metal organic framework materials. Physical Review B, 2012, 85, .	3.2	46
229	Magnetic specific heat studies of two Ising spin 1/2 chain systems M(N3)2(bpy). Journal of Applied Physics, 2012, 111, 07B332.	2.5	4
230	Synthesis, structure, and magnetic properties of M(N3)2(bpy). Journal of Applied Physics, 2012, 111, 07E335.	2.5	4
231	Nearly-Zero Thermal Expansion Along the Layer-Stacking Axis of ZnSe-Based Inorganic-Organic Hybrid Semiconductor Materials. European Journal of Inorganic Chemistry, 2012, 2012, 5966-5971.	2.0	8
232	Layered Hybrid Selenoantimonates with Reduced Thermal Conductivity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2604-2609.	1.2	10
233	Experimental and theoretical investigations on the MMOF selectivity for CO2vs. N2 in flue gas mixtures. Dalton Transactions, 2012, 41, 4232.	3.3	31
234	Cu-TDPAT, an <i>rht</i> -Type Dual-Functional Metalâ€"Organic Framework Offering Significant Potential for Use in H ₂ and Natural Gas Purification Processes Operating at High Pressures. Journal of Physical Chemistry C, 2012, 116, 16609-16618.	3.1	68

#	Article	IF	Citations
235	Hydrogenation of CuBTC Framework with the Introduction of a PtC Hydrogen Spillover Catalyst. Journal of Physical Chemistry C, 2012, 116, 3477-3485.	3.1	30
236	A Calcium Coordination Framework Having Permanent Porosity and High CO ₂ /N ₂ Selectivity. Crystal Growth and Design, 2012, 12, 2162-2165.	3.0	127
237	Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 15201-15204.	13.7	278
238	Methane on Zn(bdc)(ted)0.5 metal–organic framework: Evidence for adsorption on distinct sites. Microporous and Mesoporous Materials, 2012, 161, 134-138.	4.4	4
239	An investigation of structural and hydrogen adsorption properties of microporous metal organic framework (MMOF) materials. International Journal of Hydrogen Energy, 2012, 37, 10473-10478.	7.1	13
240	Ethanol amine-assisted solvothermal growth of wurtzite-structured ZnS thin nanorods. Journal of Alloys and Compounds, 2012, 536, 85-90.	5.5	24
241	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics Condensed Matter, 2012, 24, 424203.	1.8	32
242	Computational Study of Adsorption and Separation of CO ₂ , CH ₄ , and N ₂ by an ⟨i>rht⟨/i>-Type Metal–Organic Framework. Langmuir, 2012, 28, 12122-12133.	3.5	102
243	A Multifunctional Organic–Inorganic Hybrid Structure Based on Mn ^{III} –Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst. Journal of the American Chemical Society, 2012, 134, 87-90.	13.7	408
244	A new layered metal–organic framework as a promising heterogeneous catalyst for olefin epoxidation reactions. Chemical Communications, 2012, 48, 6541.	4.1	151
245	A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities. Chemical Science, 2012, 3, 3032.	7.4	75
246	Tuning and Enhancing White Light Emission of II–VI Based Inorganic–Organic Hybrid Semiconductors as Single-Phased Phosphors. Chemistry of Materials, 2012, 24, 1710-1717.	6.7	81
247	Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews, 2012, 112, 836-868.	47.7	985
248	Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chemistry of Materials, 2012, 24, 3153-3167.	6.7	368
249	Solutionâ€Processable Whiteâ€Lightâ€Emitting Hybrid Semiconductor Bulk Materials with High Photoluminescence Quantum Efficiency. Angewandte Chemie - International Edition, 2012, 51, 436-439.	13.8	140
250	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> a€Type Metalâ€"Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	13.8	430
251	Spectroscopic Evidence for the Influence of the Benzene Sites on Tightly Bound H ₂ in Metalâ 'Organic Frameworks with Unsaturated Metal Centers: MOF-74-Cobalt. Journal of the American Chemical Society, 2011, 133, 4782-4784.	13.7	38
252	Anionic Gallium-Based Metalâ^'Organic Framework and Its Sorption and Ion-Exchange Properties. Inorganic Chemistry, 2011, 50, 208-212.	4.0	53

#	Article	IF	Citations
253	Effect of Time, Temperature, and Kinetics on the Hysteretic Adsorption–Desorption of H ₂ , Ar, and N ₂ in the Metal–Organic Framework Zn ₂ (bpdc) ₂ (bpee). Langmuir, 2011, 27, 14169-14179.	3.5	23
254	New Microporous Metalâ^'Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. Journal of the American Chemical Society, 2011, 133, 4153-4155.	13.7	1,073
255	CO catalytic oxidation by a metal organic framework containing high density of reactive copper sites. Chemical Communications, 2011, 47, 6377.	4.1	31
256	From (Cd2Se2)(pa) (pa = propylamine) hybrid precursors to various CdSe nanostructures: structural evolution and optical properties. Dalton Transactions, 2011, 40, 3191.	3.3	14
257	Understanding the Preferential Adsorption of CO ₂ over N ₂ in a Flexible Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 12849-12857.	13.7	103
258	The Nature of Surface Barriers on Nanoporous Solids Explored by Microimaging of Transient Guest Distributions. Journal of the American Chemical Society, 2011, 133, 2804-2807.	13.7	166
259	Syntheses, structures, luminescent and magnetic properties of a novel class of metal complexes constructed from 2-(2-pyridyl)benzimidazole and 5-hydroxy-1,3-benzenedicarboxylic acid. Inorganica Chimica Acta, 2011, 371, 27-35.	2.4	22
260	A Systematic Approach to Building Highly Porous, Noninterpenetrating Metal–Organic Frameworks with a Large Capacity for Adsorbing H ₂ and CH ₄ . Advanced Functional Materials, 2011, 21, 993-998.	14.9	68
261	The Effect of Methyl Functionalization on Microporous Metalâ€Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption. Advanced Functional Materials, 2011, 21, 4754-4762.	14.9	106
262	Multilevel Data Storage Memory Devices Based on the Controlled Capacitive Coupling of Trapped Electrons. Advanced Materials, 2011, 23, 2064-2068.	21.0	73
263	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	3.3	176
264	Two-dimensional coordination polymers of Zn(II) and Cd(II) derived from 3,3′,5,5′-azobenzenetetracarboxylic acid exhibiting solvent facilitated structure reversibility. Inorganica Chimica Acta, 2011, 366, 68-75.	2.4	23
265	Raman Spectroscopy for Probing guest-host interactions in Metal Organic Frameworks. Materials Research Society Symposia Proceedings, 2011, 1334, 60601.	0.1	1
266	One-dimensional adsorption and diffusion in Zn(tbip). Molecular Simulation, 2011, 37, 640-646.	2.0	5
267	Metal organic frameworks showing hydrocarbon adsorption properties commensurate with their pore structure. Adsorption, 2010, 16, 559-565.	3.0	4
268	Highly Selective CO ₂ Capture by a Flexible Microporous Metal–Organic Framework (MMOF) Material. Chemistry - A European Journal, 2010, 16, 13951-13954.	3.3	167
269	Inside Cover: Highly Selective CO2 Capture by a Flexible Microporous Metal-Organic Framework (MMOF) Material (Chem. Eur. J. 47/2010). Chemistry - A European Journal, 2010, 16, 13882-13882.	3.3	1
270	Synthesis and hydrogen adsorption properties of a new phthalocyanine-based metal–organic framework. Renewable Energy, 2010, 35, 1592-1595.	8.9	13

#	Article	IF	Citations
271	Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Microporous and Mesoporous Materials, 2010, 129, 340-344.	4.4	43
272	Supercritical antisolvent processing of \hat{I}^3 -Indomethacin: Effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin. Powder Technology, 2010, 201, 64-69.	4.2	33
273	Analysis on the exchange interactions in three metal-organic coordination network systems possessing one-dimensional magnetism. Journal of Applied Physics, 2010, 107, .	2.5	3
274	Review. Solvothermal Synthesis of Multifunctional Coordination Polymers. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 976-998.	0.7	61
275	A Highly Hydrophobic Metalâ^'Organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2010, 114, 6602-6609.	3.1	94
276	Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature. Journal of the American Chemical Society, 2010, 132, 1654-1664.	13.7	88
277	Metal–organic frameworks of manganese(<scp>ii</scp>) 4,4′-biphenyldicarboxylates: crystal structures, hydrogen adsorption, and magnetism properties. CrystEngComm, 2010, 12, 677-681.	2.6	50
278	Synthesis and Structural Characterization of a 3-D Lithium Based Metalâ^'Organic Framework Showing Dynamic Structural Behavior. Crystal Growth and Design, 2010, 10, 2801-2805.	3.0	55
279	Molecular Hydrogen "Pairing―Interaction in a Metal Organic Framework System with Unsaturated Metal Centers (MOF-74). Journal of the American Chemical Society, 2010, 132, 14834-14848.	13.7	61
280	A flexible MMOF exhibiting high selectivity for CO2 over N2, CH4 and other small gases. Chemical Communications, 2010, 46, 9152.	4.1	111
281	In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium–organic framework capable of selective sensing of small molecules. CrystEngComm, 2010, 12, 4372.	2.6	121
282	Direct white light emission from inorganic–organic hybrid semiconductor bulk materials. Journal of Materials Chemistry, 2010, 20, 10676.	6.7	58
283	Solvothermal syntheses, structures, and physical properties of four new coordination compounds constructed from a bent dicarboxylate ligand. Dalton Transactions, 2010, 39, 8240.	3.3	23
284	Organicâ€"inorganic hybrid coordination polymers based on the 5-oxyacetate isophthalic acid (H3OABDC) ligand: syntheses, structures, magnetic and luminescent properties. CrystEngComm, 2010, 12, 4424.	2.6	19
285	A low band gap iron sulfide hybrid semiconductor with unique 2D [Fe16S20]8â^' layer and reduced thermal conductivity. Chemical Communications, 2010, 46, 1649.	4.1	29
286	Assessing Guest Diffusivities in Porous Hosts from Transient Concentration Profiles. Physical Review Letters, 2009, 102, 065901.	7.8	76
287	An unprecedented two-dimensional Eu(III) coordination polymer Eu(OOC–C5H4N–CH2–CH2–COO)(OOC–COO)·2H2O formed by in situ reaction of fumaric acid and isonicotinic acid: Crystal structure and luminescent properties. Solid State Sciences, 2009, 11, 1065-1070.	3.2	11
288	Bipyridinium Arrayâ€Type Porous Polymer Displaying Hydrogen Storage, Chargeâ€Transferâ€Type Guest Inclusion, and Tunable Magnetic Properties. Chemistry - A European Journal, 2009, 15, 11890-11897.	3.3	85

#	Article	lF	CITATIONS
289	Ensemble Measurement of Diffusion: Novel Beauty and Evidence. ChemPhysChem, 2009, 10, 2623-2627.	2.1	56
290	Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. Journal of Pharmaceutical Sciences, 2009, 98, 2422-2431.	3.3	95
291	Assessing Surface Permeabilities from Transient Guest Profiles in Nanoporous Host Materials. Angewandte Chemie - International Edition, 2009, 48, 3525-3528.	13.8	82
292	A Luminescent Microporous Metal–Organic Framework for the Fast and Reversible Detection of High Explosives. Angewandte Chemie - International Edition, 2009, 48, 2334-2338.	13.8	1,168
293	Flexible Hybrid Semiconductors with Low Thermal Conductivity: The Role of Organic Diamines. Angewandte Chemie - International Edition, 2009, 48, 7871-7874.	13.8	78
294	The synthesis, characterization and electroluminescent properties of zinc(II) complexes for single-layer organic light-emitting diodes. Dyes and Pigments, 2009, 83, 155-161.	3.7	44
295	Constructions of a set of hydrogen-bonded supramolecules from reactions of transition metals with 3,5-dimethylpyrazole and different dicarboxylate ligands. Inorganica Chimica Acta, 2009, 362, 2788-2795.	2.4	19
296	Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal of Hydrogen Energy, 2009, 34, 1377-1382.	7.1	219
297	Design and synthesis of 2-substituted-8-hydroxyquinline zinc complexes with hole-transporting ability for highly effective yellow-light emitters. Journal of Organometallic Chemistry, 2009, 694, 3511-3517.	1.8	16
298	A Multifunctional 3D Ferroelectric and NLO-Active Porous Metalâ^'Organic Framework. Journal of the American Chemical Society, 2009, 131, 6894-6895.	13.7	264
299	Thermally Resolved in Situ Dynamic Light Scattering Studies of Zirconium(IV) Complex Formation. Crystal Growth and Design, 2009, 9, 5213-5219.	3.0	25
300	Theoretical and experimental analysis ofH2binding in a prototypical metal-organic framework material. Physical Review B, 2009, 79, .	3.2	47
301	Luminance materials containing carbazole and triphenylamine exhibiting high hole-transporting properties. Synthetic Metals, 2009, 159, 2063-2069.	3.9	20
302	Shape-Selective Sorption and Fluorescence Sensing of Aromatics in a Flexible Network of Tetrakis[(4-methylthiophenyl)ethynyl]silane and AgBF ₄ . Chemistry of Materials, 2009, 21, 541-546.	6.7	47
303	In situ tetrazole ligand synthesis leading to a microporous cadmium–organic framework for selective ion sensing. Chemical Communications, 2009, , 5415.	4.1	139
304	â"PM3: A Multifunctional Microporous MOF with Recyclable Framework and High H2 Binding Energy. Inorganic Chemistry, 2009, 48, 7165-7173.	4.0	109
305	Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene. Journal of the American Chemical Society, 2009, 131, 10368-10369.	13.7	637
306	Structure and dimensionality of coordination complexes correlated to piperazine conformation: from discrete [Cull2] and [Cull4] complexes to a ν1,3-N3Ⱐbridged [Cull2]n chain. Dalton Transactions, 2009, , 1352.	3.3	36

#	Article	IF	CITATIONS
307	Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4′-bipyridine. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o41-o43.	0.4	4
308	Multifunctional Microporous MOFs Exhibiting Gas/Hydrocarbon Adsorption Selectivity, Separation Capability and Threeâ€Dimensional Magnetic Ordering. Advanced Functional Materials, 2008, 18, 2205-2214.	14.9	159
309	Kinetics and equilibrium of gas adsorption on RPM1â€Co and Cuâ€BTC metalâ€organic frameworks: Potential for gas separation applications. AICHE Journal, 2008, 54, 918-923.	3.6	37
310	Diamine incorporated compounds derived from polymeric nickel(II) fumarates and oxalates: Crystal structure, spectral and thermal properties of [Ni(en)3](O2CCHCHCO2)·3H2O and [Ni(en)3](O2CCO2). Journal of Molecular Structure, 2008, 885, 36-44.	3.6	14
311	Designing and tuning properties of a three-dimensional porous quaternary chalcogenide built on a bimetallic tetrahedral cluster [M4Sn3S13]5â^² (M=Zn/Sn). Journal of Solid State Chemistry, 2008, 181, 415-422.	2.9	32
312	Precipitation of a biodegradable polymer using compressed carbon dioxide as antisolvent. Journal of Supercritical Fluids, 2008, 46, 211-216.	3.2	24
313	Adsorption and Diffusion of Hydrogen in a New Metalâ^Organic Framework Material:  [Zn(bdc)(ted)0.5]. Journal of Physical Chemistry C, 2008, 112, 2911-2917.	3.1	89
314	Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Progress in Solid State Chemistry, 2008, 36, 1-133.	7.2	58
315	A Semiconductor Bulk Material That Emits Direct White Light. Journal of the American Chemical Society, 2008, 130, 8114-8115.	13.7	194
316	Synthesis, crystal structures and properties of three metal–organic supramolecular architectures based on mixed organic ligands. CrystEngComm, 2008, 10, 1480.	2.6	18
317	Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands. Chemical Communications, 2008, , 6123.	4.1	38
318	3D Metalâ^'Organic Frameworks Based on Elongated Tetracarboxylate Building Blocks for Hydrogen Storage. Inorganic Chemistry, 2008, 47, 3955-3957.	4.0	78
319	Synthesis and Structural Determination of a Hexanuclear Zirconium Glycine Compound Formed in Aqueous Solution. Inorganic Chemistry, 2008, 47, 5537-5539.	4.0	55
320	Magnetic properties of a metal-organic porous network [Ni2(BODC)2(TED)]. Journal of Applied Physics, 2008, 103, 07B725.	2.5	8
321	Highly conductive group VI transition metal dichalcogenide films by solution-processed deposition. Journal of Materials Research, 2007, 22, 1390-1395.	2.6	11
322	Zero Thermal Expansion in a Nanostructured Inorganic-Organic Hybrid Crystal. Physical Review Letters, 2007, 99, 215901.	7.8	37
323	Magnetic properties of an Fe(II) meso-tetra(4-pyridyl)porphyrin network. Journal of Applied Physics, 2007, 101, 09E103.	2.5	4
324	Synthesis, Structure Determination, and Hydrogen Sorption Studies of New Metalâ-'Organic Frameworks Using Triazole and Naphthalenedicarboxylic Acid. Chemistry of Materials, 2007, 19, 1302-1308.	6.7	107

#	Article	IF	CITATIONS
325	Argon Adsorption on Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3Metalâ°'Organic Framework. Langmuir, 2007, 23, 3106-3109.	3.5	74
326	Nanostructured Crystals:Â Unique Hybrid Semiconductors Exhibiting Nearly Zero and Tunable Uniaxial Thermal Expansion Behavior. Journal of the American Chemical Society, 2007, 129, 14140-14141.	13.7	81
327	A 3D Porous Cobaltâ^'Organic Framework Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition. Inorganic Chemistry, 2007, 46, 9609-9615.	4.0	91
328	From Single to Multiple Atomic Layers:Â A Unique Approach to the Systematic Tuning of Structures and Properties of Inorganicâ^'Organic Hybrid Nanostructured Semiconductors. Journal of the American Chemical Society, 2007, 129, 3157-3162.	13.7	196
329	Rational Design of MOFs Constructed from Modified Aromatic Amino Acids. Chemistry - A European Journal, 2007, 13, 9399-9405.	3.3	51
330	Microporous Metal-Organic Frameworks with High Gas Sorption and Separation Capacity. Advanced Functional Materials, 2007, 17, 1255-1262.	14.9	317
331	Homochiral metal–organic coordination networks from l-typtophan. Inorganica Chimica Acta, 2007, 360, 1669-1677.	2.4	14
332	One-dimensional zig-zag type coordination polymers of Ni(II) and Cu(II) containing 1,3-benzenedicarboxylate and 1,3-diaminopropane: Structural, spectral and thermal studies. Inorganica Chimica Acta, 2007, 360, 2583-2588.	2.4	14
333	Kinetics of desorption of hexane from the microporous metal organic framework RPM-1. Microporous and Mesoporous Materials, 2007, 106, 115-121.	4.4	2
334	Synthesis, crystal structures, spectroscopy and magnetic properties of two cobalt molecules constructed from histidine. Journal of Molecular Structure, 2007, 833, 88-97.	3.6	9
335	An unprecedented two-dimensional polymeric [Zn(OOC–C6H4–COO)2]n2â^'[+H3N–(CH2)3–NH3+]n system bearing one-dimensional chain of zinc(II) bis(phthalate) dianions held by propane-1,3-diammonium cations: Crystal structure, thermal and fluorescent properties. Solid State Sciences, 2007, 9, 491-495.	3.2	2
336	Zn(tbip) (H2tbip= 5-tert-Butyl Isophthalic Acid):Â A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability. Journal of the American Chemical Society, 2006, 128, 4180-4181.	13.7	425
337	Study of Phase Selectivity of Organicâ^'Inorganic Hybrid Semiconductors. Chemistry of Materials, 2006, 18, 2805-2809.	6.7	35
338	Poly[[aquacopper(II)]- \hat{l} /4-adamantane-1,3-diacetato]. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m150-m152.	0.4	5
339	Separation of Hydrocarbons with a Microporous Metal-Organic Framework. Angewandte Chemie - International Edition, 2006, 45, 616-619.	13.8	731
340	Novel Approach to Tuning the Physical Properties of Organic-Inorganic Hybrid Semiconductors. Physical Review Letters, 2006, 96, 026405.	7.8	52
341	Magnetic properties of a metal-organic antiferromagnet Mn(hfipbb)py(H2O)0.5. Journal of Applied Physics, 2006, 99, 08J501.	2.5	3
342	Thermal and magnetic properties of La-doped Ce1â^'yLayGe1.80 with 0 <y<1.0. 08f707.<="" 2006,="" 99,="" applied="" journal="" of="" physics,="" td=""><td>2.5</td><td>1</td></y<1.0.>	2.5	1

#	Article	IF	CITATIONS
343	Succinate bridged dimeric Cu(II) system containing sandwiched non-coordinating succinate dianion: Crystal structure, spectroscopic and thermal studies of [(phen)2Cu(ν-L)Cu(phen)2]L·12.5H2O (H2L=succinic acid; phen=1,10-phenanthroline). Inorganica Chimica Acta, 2005, 358, 3537-3544.	2.4	48
344	An open-framework bimetallic chalcogenide structure K3Rb3Zn4Sn3Se13 built on a unique [Zn4Sn3Se16]12 \hat{a} ° cluster: synthesis, crystal structure, ion exchange and optical properties. Materials Research Bulletin, 2005, 40, 21-27.	5.2	36
345	Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks. Advanced Materials, 2005, 17, 2703-2706.	21.0	125
346	Nanocrystals of an Inorganic-Organic Hybrid Semiconductor: Formation of Uniform Nanobelts of [ZnSe] (Diethylenetriamine) 0.5 in a Ternary Solution. Advanced Materials, 2005, 17, 2799-2802.	21.0	112
347	Gas sorption properties of microporous metal organic frameworks. Journal of Solid State Chemistry, 2005, 178, 2527-2532.	2.9	170
348	Synthesis and characterization of Cu(bpe)(ddc) [bpe = 1,2-bis(4-pyridyl)ethane, H2ddc = 1,10-decanedicarboxylic acid]. Comptes Rendus Chimie, 2005, 8, 1670-1675.	0.5	2
349	A new layered zinc phosphate templated by protonated isonicotinate, [Zn2(C6H5NO2)2(HPO4)2]. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m87-m89.	0.4	1
350	Flexible Wurtzite-Type ZnS Nanobelts with Quantum-Size Effects: a Diethylenetriamine-Assisted Solvothermal Approach. Small, 2005, 1, 320-325.	10.0	128
351	Electric, thermal, and magnetic properties of CeSix with $1.57 < x\hat{a} \odot \frac{1}{2} = 2.0$. Journal of Applied Physics, 2005, 97, 10A905.	2.5	3
352	Magnetic properties of a metal-organic chain system [Co(bpdc)(H2O)2]â^™H2O (bpdc=biphenyldicarboxylate). Journal of Applied Physics, 2005, 97, 10B315.	2.5	3
353	A Three-Dimensional Coordination Polymer Featuring Effective Ferrimagnetic Hydroxide-Bridged Manganese(II) Chains. Inorganic Chemistry, 2005, 44, 4448-4450.	4.0	26
354	A Semiconductive Coordination Network Based on 2,3,6,7,10,11-Hexakis(methylthio)triphenylene and BiCl3. Crystal Growth and Design, 2005, 5, 423-425.	3.0	17
355	Towards Dilute Magnetic Semiconductors: Fe and Co Substituted Inorganic–Organic Hybrid Materials Based on ZnSe. Journal of Nanoscience and Nanotechnology, 2005, 5, 1487-1491.	0.9	10
356	Electronic properties of hybrid organic–inorganic semiconductors. Physical Review B, 2004, 70, .	3.2	49
357	Adsorption of Polypropylene and Polyethylene on Liquid Chromatographic Column Packings. Chromatographia, 2004, 59, 461.	1.3	17
358	1-D Infinite Array of Metalloporphyrin Cages. Inorganic Chemistry, 2004, 43, 6878-6880.	4.0	36
359	Microporous Metal Organic Materials:Â Promising Candidates as Sorbents for Hydrogen Storage. Journal of the American Chemical Society, 2004, 126, 1308-1309.	13.7	615
360	Density-functional study of organic–inorganic hybrid single crystal ZnSe(C2H8N2)1/2. Journal of Chemical Physics, 2004, 120, 6721-6725.	3.0	37

#	Article	IF	CITATIONS
361	The Effect of Terminal Ligands on the Dimensionality and Topology of Metal Dicarboxylate Coordination Structures. Materials Research Society Symposia Proceedings, 2004, 848, 162.	0.1	0
362	Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS. Advanced Materials, 2003, 15, 228-231.	21.0	393
363	Title is missing!. Angewandte Chemie, 2003, 115, 560-564.	2.0	58
364	Crystal of Semiconducting Quantum Dots Built on Covalently Bonded T5 [In28Cd6S54]-12. The Largest Supertetrahedral Cluster in Solid State ChemInform, 2003, 34, no.	0.0	0
365	APdCu(Se2)(Se3) (A: K and Rb): New Quaternary Copper Palladium Polyselenides with Unusual Metalâ€"Selenium Coordination ChemInform, 2003, 34, no.	0.0	0
366	â"PM-1: A Recyclable Nanoporous Material Suitable for Ship-In-Bottle Synthesis and Large Hydrocarbon Sorption. Angewandte Chemie - International Edition, 2003, 42, 542-546.	13.8	453
367	$M\tilde{A}\P$ ssbauer studies of the interaction of oxygen with solid \hat{I}^2 -Fell-phthalocyanine. Journal of Solid State Chemistry, 2003, 170, 118-123.	2.9	12
368	Efficient UV-emitting X-ray phosphors: octahedral Zr(PO4)6 luminescence centers in potassium hafniumâ€"zirconium phosphates K2Hf1â^'xZrx(PO4)2 and KHf2(1â^'x)Zr2x(PO4)3. Journal of Solid State Chemistry, 2003, 170, 289-293.	2.9	25
369	From 1D Chain to 3D Network:Â Tuning Hybrid II-VI Nanostructures and Their Optical Properties. Journal of the American Chemical Society, 2003, 125, 7049-7055.	13.7	219
370	APdCu(Se2)(Se3) (A = K and Rb):  New Quaternary Copper Palladium Polyselenides with Unusual MetalⰒSelenium Coordination. Inorganic Chemistry, 2003, 42, 3723-3727.	4.0	18
371	îµPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations. Chemical Communications, 2003, , 854-855.	4.1	47
372	Study of magnetic ordering states of CeGex with $1.66 < x\hat{a} \otimes 1/22.0$. Journal of Applied Physics, 2003, 93, 8340-8342.	2.5	7
373	Magnetic properties of a metal-organic network Fe(N[sub 3])[sub 2](4,4[sup \hat{E}^1]-bpy). Journal of Applied Physics, 2002, 91, 7385.	2.5	3
374	Thermal and magnetic properties of CeGe[sub 2]. Journal of Applied Physics, 2002, 91, 8117.	2.5	13
375	Crystal of Semiconducting Quantum Dots Built on Covalently Bonded T5 [In28Cd6S54]-12:Â The Largest Supertetrahedral Cluster in Solid State. Journal of the American Chemical Society, 2002, 124, 12944-12945.	13.7	93
376	Unique 2D metalloporphyrin networks constructed from iron(ii) and meso-tetra(4-pyridyl)porphyrin. Chemical Communications, 2002, , 2334-2335.	4.1	59
377	A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions Electronic supplementary (ESI) available: the effective molar magnetic moment $\hat{A}\mu$ of 1 vs. T. See http://www.rsc.org/suppdata/cc/b2/b203301a/. Chemical Communications, 2002, , 1342-1343.	4.1	236
378	Strong Negative Thermal Expansion along the Oâ^'Cuâ^'O Linkage in CuScO2. Chemistry of Materials, 2002, 14, 2602-2606.	6.7	71

#	Article	IF	CITATIONS
379	[Cu(i)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent. Chemical Communications, 2002, , 2872-2873.	4.1	175
380	[ZnSe(dbn) _{1/2}] and [ZnSe(hda) _{1/2}]: Two New Members of Inorganic-Organic Hybrid Semiconductor Nanocomposites Exhibiting A Strong Quantum Confinement Effect. Materials Research Society Symposia Proceedings, 2002, 728, 171.	0.1	13
381	Controlled Synthesis and Magnetic Properties of 2D and 3D Iron Azide Networks \$m{^{2}_{infty }}\$[Fe(N3)2(4,4′-bpy)] and \$m{^{3}_{infty }}\$[Fe(N3)2(4,4′-bpy)]. Chemistry - A European Journal, 2002, 8 2239.	3,3.3	99
382	Crystal and magnetic structure of the two-dimensional coordination polymers CoCl 2 (bpy-d8) and NiCl 2 (bpy-d8). Applied Physics A: Materials Science and Processing, 2002, 74, s778-s780.	2.3	6
383	Structural and magnetic ordering in the two-dimensional coordination polymer Co(ox)(bpy-d8), (ox=C2O42â°, bpy-d8=4,4′-bipyridine-d8). Journal of Physics and Chemistry of Solids, 2002, 63, 71-77.	4.0	14
384	Mössbauer Study of Oxygenated Iron-Phthalocyanines, a Precursor of Magnetic Storage Material. Hyperfine Interactions, 2002, 139/140, 631-639.	0.5	12
385	A three-dimensional honeycomb-like network constructed with novel one-dimensional S-shaped chains via hydrogen bonding and Ï€â€"Ĩ€ interactionsElectronic supplementary information (ESI) available: experimental and simulated powder X-ray diffraction patterns (Fig. S1) and plots of χMâ€"1 vs. T and the effective magnetic moment µeff vs. T (Fig. S2) for 1. See	2.8	27
386	Synthesis, Characterization and Structural Transformation of A Condensed Rare Earth Metal Coordination Polymer. Inorganic Chemistry, 2001, 40, 828-830.	4.0	178
387	The Effect of pH on the Dimensionality of Coordination Polymers. Inorganic Chemistry, 2001, 40, 1271-1283.	4.0	233
388	Inorganicâ "Organic Hybrid Composites Containing MQ (Ilâ "VI) Slabs:Â A New Class of Nanostructures with Strong Quantum Confinement and Periodic Arrangement. Chemistry of Materials, 2001, 13, 3754-3759.	6.7	122
389	ZnCl2(4,4 \hat{a} \in 2-bpy): a one-dimensional coordination polymer with two isomorphic phases. Journal of Alloys and Compounds, 2001, 319, 89-93.	5.5	8
390	An unprecedented two-fold interpenetrated heterometallic 4664 network constructed by five-connected copper metal nodes. Chemical Communications, 2001, , 1064-1065.	4.1	48
391	Rb4Hg5(Te2)2(Te3)2Te3, [Zn(en)3]4In16(Te2)4(Te3)Te22, and K2Cu2(Te2)(Te3): Novel Metal Polytellurides with Unusual Metalâ°'Tellurium Coordination. Inorganic Chemistry, 2001, 40, 1341-1346.	4.0	43
392	The first pillared three-dimensional structure constructed by carboxylate ligands bridging heterometallic trilayers. Chemical Communications, 2001, , 105-106.	4.1	79
393	Mn-Substituted Inorganicâ^'Organic Hybrid Materials Based on ZnSe:  Nanostructures That May Lead to Magnetic Semiconductors with a Strong Quantum Confinement Effect. Nano Letters, 2001, 1, 521-525.	9.1	104
394	Potassium silver tin selenide, K2Ag2Sn2Se6. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1237-1238.	0.4	10
395	A Reversible Structural Interconversion Involving [M(H2pdc)2(H2O)2]â«2 H2O (M=Mn, Fe, Co, Ni, Zn,) Tj ETQq1 A European Journal, 2001, 7, 4431-4437.	1 0.7843 3.3	14 rgBT /O\ 93
396	A New Three-dimensional Lanthanide Framework Constructed by Oxalate and 3,5-pyridinedicarboxylate. Materials Research Society Symposia Proceedings, 2000, 658, 6121.	0.1	2

#	Article	IF	CITATIONS
397	Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. Angewandte Chemie - International Edition, 2000, 39, 527-530.	13.8	406
398	Hydrothermal Synthesis and Structural Characterization of a Novel Hydroxo Stannate: Sr2Sn(OH)8. Journal of Solid State Chemistry, 2000, 151, 56-60.	2.9	18
399	Assembly of New Coordination Frameworks in a pH-Controlled Medium: Syntheses, Structures, and Properties of 3â°ž[Cd(Hpdc)(H2O)] and 3â°ž[Cd3(pdc)2(H2O)2]. Journal of Solid State Chemistry, 2000, 152, 236-246.	2.9	49
400	Molecular building blocks for solid-state chalcogenides: solvothermal synthesis of [Mn(en)3]Te4and [Fe(en)3]2(Sb2Se5). Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1100-1103.	0.4	12
401	3,5-Pyrazoledicarboxylic acid monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1124-1125.	0.4	8
402	Potassium sodium tin selenide, K3NaSn3Se8. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1181-1182.	0.4	5
403	Rb4Zr3Te16, a one-dimensional zirconium telluride synthesized from molten salt. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 2-4.	0.4	7
404	Reactions and Reactivity of Coâ^'bpdc Coordination Polymers (bpdc = 4,4â€~-biphenyldicarboxylate). Inorganic Chemistry, 2000, 39, 5333-5340.	4.0	119
405	Magnetic ordering in M(ox)(bpy) system (M=Fe, Co, Ni; ox=C2O42â^; bpy=4,4′-bipyridine). Journal of Applied Physics, 2000, 87, 6001-6003.	2.5	36
406	[Mn(en)3]CdSnTe4and [Mn(en)3]Ag6Sn2Te8:Â New Intermetallic Tellurides Synthesized in Superheated Organic Medium. Chemistry of Materials, 2000, 12, 762-766.	6.7	54
407	The First Covalent Organicâ^'Inorganic Networks of Hybrid Chalcogenides:Â Structures That May Lead to a New Type of Quantum Wells. Journal of the American Chemical Society, 2000, 122, 8789-8790.	13.7	251
408	From 1D Chain to 3D Network:Â Syntheses, Structures, and Properties of K2MnSn2Se6, K2MnSnSe4, and K2Ag2SnSe4. Chemistry of Materials, 2000, 12, 2385-2391.	6.7	48
409	Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. Angewandte Chemie - International Edition, 2000, 39, 527-530.	13.8	3
410	(NH4)2[Mg4(H2O)18(H2W12O42)].10H2O, a new compound containing chains formed by magnesium and paradodecahedral tungstate ions. Acta Crystallographica Section C: Crystal Structure Communications, 1999, 55, 1388-1391.	0.4	6
411	Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coordination Chemistry Reviews, 1999, 190-192, 707-735.	18.8	213
412	RbCu1.2Ag3.8Se3 and Cs2Cu2Sb2Se5: Novel Quaternary Intermetallics Synthesized from Superheated Organic Media. Journal of Solid State Chemistry, 1999, 147, 132-139.	2.9	23
413	A New Type of Two-Dimensional Metal Coordination Systems:  Hydrothermal Synthesis and Properties of the First Oxalateâ^'bpy Mixed-Ligand Framework [M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox =) Tj ETQq1 1	0 <i>4</i> 7.8 4314	1 r gB 4 /Overl
414	Cu-X-bpy (X = Cl, Br; bpy = 4,4â€⁻-bipyridine) Coordination Polymers:  The Stoichiometric Control and Structural Relations of [Cu2X2(bpy)] and [CuBr(bpy)]. Inorganic Chemistry, 1999, 38, 4608-4611.	4.0	168

#	Article	IF	CITATIONS
415	Two-Dimensional Coordination Polymers with One-Dimensional Magnetic Chains: Hydrothermal Synthesis, Crystal Structure, and Magnetic and Thermal Properties of [MCl2(4,4â€~-bipyridine)] (M = Fe,) Tj ETQq1	4.0 .7843	l 147 gBT /○
416	Synthesis, structure characterization and magnetic properties of tellurostannates [M(en)32(Sn2Te6) (M = Mn, Zn). Inorganica Chimica Acta, 1998, 273, 310-315.	2.4	66
417	Solvothermal synthesis and crystal structure of [La(ethylenediamine)4Cl]In2Te4: A 1-D indium telluride. Inorganica Chimica Acta, 1998, 273, 255-258.	2.4	32
418	Novel Sandwiched Intermetallic Selenoantimonates: Soft Synthesis and Characterization of Cu2SbSe3·0.5en and Cu2SbSe3·enâ€. Chemistry of Materials, 1998, 10, 3184-3188.	6.7	45
419	Chemical Rearrangement under Hydrothermal Conditions: Formation of Polymeric Chains (CuX)2(dpiz) and (CuX)3(dpiz) (X = Cl, Br; dpiz = Dipyrido[1,2-a:2â€~,3â€~-d]imidazole) and Crystal Structures of [(CuCl)2(C10H7N3)] and [(CuBr)3(C10H7N3)]. Inorganic Chemistry, 1998, 37, 4480-4481.	4.0	116
420	New Quaternary Selenoantimonates AHgSbSe ₃ (A = Rb, Cs): Synthesis, Structures and Optical Properties. Materials Research Society Symposia Proceedings, 1998, 547, 419.	0.1	7
421	A QUATERNARY ThCr2Si2 TYPE STRUCTURE: CRYSTAL GROWTH OF KCuZnTe2 FROM MOLTEN SALT. Main Group Metal Chemistry, 1998, 21, .	1.6	9
422	PREPARATION AND CRYSTAL STRUCTURE OF A SELENOANTIMONATE [Fe(en)3][enH]SbSe4. Main Group Metal Chemistry, 1998, 21, .	1.6	17
423	A New Type of Coordination Polymer: Hydrothermal Synthesis, Crystal Structure, and Magnetic Properties of [(C10H8N2)2CuBr]Cu3Br4. Materials Research Society Symposia Proceedings, 1998, 547, 493.	0.1	3
424	Magnetic property of layered compound NbFeTe2. Journal of Applied Physics, 1997, 81, 5283-5285.	2.5	18
425	Rb2Hg3Te4:  A New Layered Compound Synthesized from Solvothermal Reactions. Inorganic Chemistry, 1997, 36, 684-687.	4.0	44
426	New Type of Polymeric Indium Tellurides: $\hat{a} \in \infty$ Low-Temperature Synthesis and Structure Characterization of [M(en)3]In2Te6 (M = Fe, Zn) and \hat{l}_{-} and \hat{l}_{-} [Mo3(en)3(\hat{l}_{4} 2-Te2)3(\hat{l}_{4} 3-Te)(\hat{l}_{4} 3-O)]In2Te6. Inorganic Chemistry 36, 1437-1442.	,4 10 97,	53
427	A novel two-dimensional mercury antimony telluride: low temperature synthesis and characterization of RbHgSbTe3. Journal of Alloys and Compounds, 1997, 262-263, 28-33.	5.5	76
428	Synthesis and Characterization of Ba2SnTe5: A New Zintl Phase Containing Unique One-Dimensional Chains of (SnTe3)2-and Dimeric Units of (Te2)2 Chemistry of Materials, 1996, 8, 598-600.	6.7	24
429	Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds. Journal of Solid State Chemistry, 1995, 117, 247-255.	2.9	62
430	Distorted Square Nets of Tellurium in the Novel Quaternary Polytelluride K0.33Ba0.67AgTe2. Journal of the American Chemical Society, 1995, 117, 10513-10520.	13.7	47
431	CsFexAg2-xTe2 (x = 0.72): The First Quaternary Iron Telluride Synthesized from Molten Salt. Chemistry of Materials, 1995, 7, 599-601.	6.7	18
432	Anion-Anion Interactions Involving the [Mo3Se13]2- Cluster. Syntheses and Characterization of (Me4N)2Mo3Se13, K2Mo3Se12.5O0.5, and K6Mo6Se27.cntdot.6H2O. Inorganic Chemistry, 1995, 34, 2658-2670.	4.0	28

#	Article	IF	Citations
433	CsAg5Te3: a new metal-rich telluride with a unique tunnel structure. Journal of Alloys and Compounds, 1995, 218, 1-4.	5.5	27
434	[Fe(en)3]2(Hg2Te9): A Novel Tellurometalate Containing One-Dimensional Chains of Weakly Bound Zintl Anions (Hg2Te9)4 Inorganic Chemistry, 1995, 34, 6417-6418.	4.0	30
435	Synthesis and crystal structure of a new alkaline-earth metal chalcogenide: Barium ditelluride. Materials Research Bulletin, 1994, 29, 1041-1048.	5.2	14
436	Synthesis, Structure, and Physical Properties of a Novel Quaternary Niobium Telluride, Nb2FeCu0.35Te4. Inorganic Chemistry, 1994, 33, 2109-2114.	4.0	4
437	X-ray powder diffraction as a tool for facing twins: the case of the monoclinic niobium cobalt ditelluride and tantalum cobalt ditelluride phases. Inorganic Chemistry, 1993, 32, 4829-4833.	4.0	15
438	NbFe1.28Te3, a quasi-layered ternary niobium telluride compound. Journal of Alloys and Compounds, 1993, 197, 21-24.	5.5	3
439	New layered ternary niobium tellurides: synthesis, structure, and properties of niobium metal telluride, NbMTe2 (M = iron, cobalt). Inorganic Chemistry, 1992, 31, 1050-1054.	4.0	29
440	Synthesis and structure of Nb3SiTe6, a new layered ternary niobium telluride compound. Journal of Alloys and Compounds, 1992, 184, 257-263.	5.5	27
441	Characterization of TaFe1.25Te3, a new layered telluride with an unusual metal network structure. Journal of Solid State Chemistry, 1992, 100, 313-324.	2.9	18
442	Niobium germanium telluride: A new member of the niobium(x)-M-tellurium(2x) family. Materials Research Bulletin, 1992, 27, 1073-1081.	5.2	28
443	Coadsorption of carbon monoxide and hydrogen on the nickel (100) surface: a theoretical investigation of site preferences and surface bonding. The Journal of Physical Chemistry, 1990, 94, 1554-1564.	2.9	25
444	Electronic and structural properties of the novel chain compound tantalum telluride silicide, Ta4Te4Si. Inorganic Chemistry, 1990, 29, 3943-3952.	4.0	36
445	Reactivity of alkynes toward M-eta.2-CS2 metal complexes. 2. A theoretical discussion on the coupling products obtainable with iron fragments and their relative stability. Organometallics, 1989, 8, 1921-1928.	2.3	6
446	Reactivity of alkynes toward Meta.2-CS2 metal complexes. 3. The coupling products obtainable with bis(cyclopentadienyl)molybdenum fragments and their relative stability. Organometallics, 1989, 8, 1929-1941.	2.3	10
447	How carbon-carbon bonds are formed and how they influence structural choices in some binary and ternary metal carbides. Chemistry of Materials, 1989, 1, 83-101.	6.7	42
448	Ca3Al2Sl2: An Inorganic Structure Analogous to but not Isoelectronic with Polyacene. The Journal of Physical Chemistry, 1988, 92, 887-893.	2.9	7
449	Energies of .sigma.* orbitals from extended Hueckel calculations in combination with HAM theory. The Journal of Physical Chemistry, 1988, 92, 1731-1738.	2.9	26
450	Yttrium cobalt carbide (YCoC): a simple organometallic polymer in the solid state with strong cobalt-carbon .pi. bonding. Journal of the American Chemical Society, 1987, 109, 6600-6602.	13.7	36

#	Article	IF	CITATIONS
451	Bonding in the BaPdSn3 Structure. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1986, 41, 1399-1415.	0.7	12
452	Alkaline Earth Metal-Based Metal-Organic Frameworks: Synthesis, Properties, and Applications. , 0, , 73-103.		6
453	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie, 0, , .	2.0	3