
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt-Induced Liquid–Liquid Phase Separation and Interfacial Crystal Formation in Poly(<i>N</i> -isopropylacrylamide)-Capped Gold Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 5349-5362.	3.1	6
2	Atom Probe Tomography Analysis of Mica. Microscopy and Microanalysis, 2021, , 1-14.	0.4	2
3	In-situ STEM Metallization of DNA Origami. Microscopy and Microanalysis, 2021, 27, 35-36.	0.4	0
4	Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metabolic Engineering Communications, 2020, 10, e00124.	3.6	53
5	Imaging of Unstained DNA Origami Triangles with Electron Microscopy. Small Methods, 2019, 3, 1900393.	8.6	7
6	Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase. Frontiers in Bioengineering and Biotechnology, 2019, 7, 19.	4.1	9
7	New approach to electron microscopy imaging of gel nanocomposites in situ. Micron, 2019, 120, 104-112.	2.2	2
8	Salt Mediated Self-Assembly of Poly(ethylene glycol)-Functionalized Gold Nanorods. Scientific Reports, 2019, 9, 20349.	3.3	19
9	Unstained DNA Origami Imaging: Imaging of Unstained DNA Origami Triangles with Electron Microscopy (Small Methods 12/2019). Small Methods, 2019, 3, 1970039.	8.6	1
10	In-Situ Nucleation, Growth and Evolution of Au Nanoparticles during Metallization of DNA Origami Visualized with HAADF-STEM. Microscopy and Microanalysis, 2018, 24, 282-283.	0.4	0
11	Correlative Microbially-Assisted Imaging of Cellulose Deconstruction with Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 382-383.	0.4	0
12	Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid. Journal of the Royal Society Interface, 2017, 14, 20170464.	3.4	22
13	Correlative in situ Analysis of Magnetosome Magnetite Biomineralization. Microscopy and Microanalysis, 2016, 22, 12-13.	0.4	0
14	Following iron speciation in the early stages of magnetite magnetosome biomineralization. Journal of Materials Research, 2016, 31, 547-555.	2.6	14
15	Direct Observation of the Growth of Au-Pd Core-Shell Nanoparticles Using Low-Dose STEM with the Liquid Cell in situ. Microscopy and Microanalysis, 2016, 22, 744-745.	0.4	0
16	Shape Transformation of Bimetallic Au–Pd Core–Shell Nanocubes to Multilayered Au–Pd–Au Core–Shell Hexagonal Platelets. Metallography, Microstructure, and Analysis, 2015, 4, 481-487.	1.0	2
17	Visualization of Gold Nanoparticle Self-assembly Kinetics. Microscopy and Microanalysis, 2015, 21, 945-946.	0.4	0
18	In situ STEM Investigation of Shape-Controlled Synthesis of Au-Pd Core-Shell Nanocubes. Microscopy and Microanalysis, 2015, 21, 951-952.	0.4	1

#	Article	IF	CITATIONS
19	New Approach to Analysis of Noisy EELS Data. Microscopy and Microanalysis, 2015, 21, 1593-1594.	0.4	0
20	Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Microscopy and Microanalysis, 2015, 21, 1499-1500.	0.4	1
21	Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ. Scientific Reports, 2015, 5, 9830.	3.3	22
22	Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1. Applied Microbiology and Biotechnology, 2015, 99, 5109-5121.	3.6	60
23	The Mechanisms for Nanoparticle Surface Diffusion and Chain Self-Assembly Determined from Real-Time Nanoscale Kinetics in Liquid. Journal of Physical Chemistry C, 2015, 119, 21261-21269.	3.1	86
24	Magnetic microbes: Bacterial magnetite biomineralization. Seminars in Cell and Developmental Biology, 2015, 46, 36-43.	5.0	22
25	Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	15
26	Manganese incorporation into the magnetosome magnetite: magnetic signature of doping. European Journal of Mineralogy, 2014, 26, 457-471.	1.3	29
27	Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein <i>in Situ</i> . ACS Nano, 2014, 8, 9097-9106.	14.6	90
28	Correlative Fluorescence and Liquid Cell STEM of Live Magnetotactic Bacteria. Microscopy and Microanalysis, 2014, 20, 1510-1511.	0.4	1
29	Protein-Mediated Nucleation of Nanoparticles In-Situ. Microscopy and Microanalysis, 2014, 20, 1604-1605.	0.4	0
30	Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Scientific Reports, 2014, 4, 6854.	3.3	65
31	Stomatobaculum longum gen. nov., sp. nov., an obligately anaerobic bacterium from the human oral cavity. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1450-1456.	1.7	34
32	Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review. Materials Science and Engineering Reports, 2013, 74, 133-172.	31.8	124
33	Chemical Purity ofShewanella oneidensis-Induced Magnetites. Geomicrobiology Journal, 2013, 30, 731-748.	2.0	10
34	Self-Assembly and Biphasic Iron-Binding Characteristics of Mms6, A Bacterial Protein That Promotes the Formation of Superparamagnetic Magnetite Nanoparticles of Uniform Size and Shape. Biomacromolecules, 2012, 13, 98-105.	5.4	90
35	Biomimetic Self-Assembling Copolymerâ^'Hydroxyapatite Nanocomposites with the Nanocrystal Size Controlled by Citrate. Chemistry of Materials, 2011, 23, 2481-2490.	6.7	98
36	Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environmental Microbiology, 2011, 13, 2342-2350.	3.8	72

#	Article	IF	CITATIONS
37	A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing Bacteria. Science, 2011, 334, 1720-1723.	12.6	184
38	Synthesis of a novel photopolymerized nanocomposite hydrogel for treatment of acute mechanical damage to cartilage. Acta Biomaterialia, 2011, 7, 3094-3100.	8.3	25
39	Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Physical Review B, 2007, 76, .	3.2	84
40	Cobalt Ferrite Nanocrystals: Out-Performing Magnetotactic Bacteria. ACS Nano, 2007, 1, 228-233.	14.6	86
41	Protein-Mediated Synthesis of Uniform Superparamagnetic Magnetite Nanocrystals. Advanced Functional Materials, 2007, 17, 951-957.	14.9	154
42	Sonochemical doping of Ti-catalyzed sodium aluminum hydride. Journal of Alloys and Compounds, 2006, 419, 162-171.	5.5	9
43	High- <tex>\$T_c\$</tex> Superconductors-Based Nanocomposites With Improved Intergrain Coupling and Enhanced Bulk Pinning. IEEE Transactions on Applied Superconductivity, 2005, 15, 3114-3117.	1.7	0
44	Superconducting Nanocomposites: Enhancement of Bulk Pinning and Improvement of Intergrain Coupling. IEEE Transactions on Applied Superconductivity, 2005, 15, 3277-3280.	1.7	3
45	Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride. Journal of Alloys and Compounds, 2005, 395, 252-262.	5.5	57
46	Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors. Physical Review B, 2005, 71, .	3.2	89
47	Effects of high-intensity ultrasound on Bi2Sr2CaCu2O8+x superconductor. Applied Physics Letters, 2004, 85, 3513-3515.	3.3	14
48	High Velocity Interparticle Collisions Driven by Ultrasound. Journal of the American Chemical Society, 2004, 126, 13890-13891.	13.7	186
49	Effective collective barrier for magnetic relaxation in frozen ferrofluids. Journal of Magnetism and Magnetic Materials, 2004, 281, 312-317.	2.3	14
50	Sonochemistry and Sonoluminescence of Room-Temperature Ionic Liquids. Journal of the American Chemical Society, 2003, 125, 11138-11139.	13.7	132
51	Sonochemical modification of the superconducting properties of MgB2. Applied Physics Letters, 2003, 83, 2019-2021.	3.3	30
52	Effect of surfactant concentration on the size of coated ferromagnetic nanoparticles. Thin Solid Films, 1999, 340, 189-193.	1.8	34
53	Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles. Langmuir, 1999, 15, 7111-7115.	3.5	251
54	The use of ultrasound radiation for the preparation of magnetic fluids. Thin Solid Films, 1998, 318, 38-41.	1.8	38

#	Article	IF	CITATIONS
55	The "Melting Point―of Alkanethiol-Coated Amorphous Fe2O3 Nanoparticles. Advanced Materials, 1998, 10, 532-535.	21.0	23
56	Does the Self-Assembled Coating of Magnetic Nanoparticles Cover Individual Particles or Agglomerates?. Advanced Materials, 1998, 10, 1529-1532.	21.0	21
57	Self-Assembled Monolayer Coatings on Amorphous Iron and Iron Oxide Nanoparticles:Â Thermal Stability and Chemical Reactivity Studies. Langmuir, 1997, 13, 6151-6158.	3.5	83
58	Future Prospects for Biomolecular, Biomimetic, and Biomaterials Research Enabled by New Liquid Cell Electron Microscopy Techniques. , 0, , 476-500.		0