Debbie C. Crans

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1337345/debbie-c-crans-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 11,638 313 92 h-index g-index citations papers 6.1 6.55 12,909 347 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
313	Polyoxidovanadates@nteractions with proteins: An overview. <i>Coordination Chemistry Reviews</i> , 2022 , 454, 214344	23.2	12
312	Solution- and gas-phase behavior of decavanadate: implications for mass spectrometric analysis of redox-active polyoxidometalates. <i>Inorganic Chemistry Frontiers</i> , 2022 , 9, 1556-1564	6.8	0
311	Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles <i>Frontiers in Oncology</i> , 2022 , 12, 788293	5.3	
310	Electron Transport Lipids Fold Within Membrane-Like Interfaces Frontiers in Chemistry, 2022, 10, 8275	53 9	0
309	Metallomics and other omics approaches in antiparasitic metal-based drug research <i>Current Opinion in Chemical Biology</i> , 2022 , 67, 102127	9.7	1
308	Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds. <i>Inorganics</i> , 2022 , 10, 50	2.9	1
307	Highlighting the roles of transition metals and speciation in chemical biology. <i>Current Opinion in Chemical Biology</i> , 2022 , 69, 102155	9.7	O
306	Cytotoxicity and genotoxicity of blue LED light and protective effects of AA2G in mammalian cells and associated DNA repair deficient cell lines. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2021 , 872, 503416	3	0
305	Pt- or Mo-substituted decavanadates inhibit the growth of Mycobacterium smegmatis. <i>Journal of Inorganic Biochemistry</i> , 2021 , 217, 111356	4.2	6
304	Acute Toxicity Evaluation of Non-Innocent Oxidovanadium(V) Schiff Base Complex. <i>Inorganics</i> , 2021 , 9, 42	2.9	10
303	Measurement of Interpeptidic Cu Exchange Rate Constants of Cu-Amyloid-Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. <i>Inorganic Chemistry</i> , 2021 , 60, 7650-7659	5.1	2
302	High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak. <i>Frontiers in Oncology</i> , 2021 , 11, 690042	5.3	4
301	Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. <i>Journal of Inorganic Biochemistry</i> , 2021 , 216, 111312	4.2	3
300	Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. <i>Cancer Drug Resistance (Alhambra, Calif)</i> , 2021 , 4, 244-263	4.5	4
299	Interactions of Truncated Menaquinones in Lipid Monolayers and Bilayers. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
298	Polyoxovanadates with emerging biomedical activities. <i>Coordination Chemistry Reviews</i> , 2021 , 447, 214	11 43 .2	30
297	Structural Analysis of SMYD3 Lysine Methyltransferase for the Development of Competitive and Specific Enzyme Inhibitors <i>Diseases (Basel, Switzerland)</i> , 2021 , 10,	4.4	3

(2020-2020)

296	Characterizing the Role of SMYD2 in Mammalian Embryogenesis-Future Directions. <i>Veterinary Sciences</i> , 2020 , 7,	2.4	3
295	Location of menaquinone and menaquinol headgroups in model membranes. <i>Canadian Journal of Chemistry</i> , 2020 , 98, 307-317	0.9	2
294	Initiation of a novel mode of membrane signaling: Vanadium facilitated signal transduction. <i>Coordination Chemistry Reviews</i> , 2020 , 416, 213286	23.2	16
293	A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15834-1583	88 ^{16.4}	24
292	Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. <i>Genes</i> , 2020 , 11,	4.2	2
291	ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. <i>Inorganic Chemistry</i> , 2020 , 59, 9739-9755	5.1	13
290	Ascorbic Acid 2-Glucoside Pretreatment Protects Cells from Ionizing Radiation, UVC, and Short Wavelength of UVB. <i>Genes</i> , 2020 , 11,	4.2	6
289	Electron Scattering in Conventional Cell Flask Experiments and Dose Distribution Dependency. <i>Scientific Reports</i> , 2020 , 10, 482	4.9	
288	Polyoxometalates function as indirect activators of a G protein-coupled receptor. <i>Metallomics</i> , 2020 , 12, 1044-1061	4.5	14
287	Effects of vanadium(IV) compounds on plasma membrane lipids lead to G protein-coupled receptor signal transduction. <i>Journal of Inorganic Biochemistry</i> , 2020 , 203, 110873	4.2	10
286	Coordination Chemistry of a Controlled Burst of Zn in Bulk Aqueous and Nanosized Water Droplets with a Zincon Chelator. <i>Inorganic Chemistry</i> , 2020 , 59, 184-188	5.1	0
285	Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. <i>Molecules</i> , 2020 , 25,	4.8	5
284	Evaluating the Genotoxic and Cytotoxic Effects of Thymidine Analogs, 5-Ethynyl-2©eoxyuridine and 5-Bromo-2©eoxyurdine to Mammalian Cells. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	5
283	The Acid-Base Equilibrium of Pyrazinoic Acid Drives the pH Dependence of Pyrazinamide-Induced Growth Inhibition. <i>ACS Infectious Diseases</i> , 2020 , 6, 3004-3014	5.5	2
282	Vanadium compounds promote biocatalysis in cells through actions on cell membranes. <i>Catalysis Today</i> , 2020 ,	5.3	1
281	A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. <i>Angewandte Chemie</i> , 2020 , 132, 15968-15972	3.6	4
280	Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, Not Its Enzymatic Activity. <i>ACS Infectious Diseases</i> , 2020 , 6, 2661-2671	5.5	3
279	Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. <i>Diseases (Basel, Switzerland)</i> , 2020 , 8,	4.4	6

278	In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	4
277	Application of HPLC to measure vanadium in environmental, biological and clinical matrices. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 1198-1228	5.9	9
276	The First-Row Transition Metals in the Periodic Table of Medicine. <i>Inorganics</i> , 2019 , 7, 111	2.9	16
275	DIFFERENCE IN DEGREE OF SUB-LETHAL DAMAGE RECOVERY BETWEEN CLINICAL PROTON BEAMS AND X-RAYS. <i>Radiation Protection Dosimetry</i> , 2019 , 183, 93-97	0.9	3
274	Enhancement of oncolytic virotherapy by vanadium(V) dipicolinates. <i>BioMetals</i> , 2019 , 32, 545-561	3.4	11
273	Speciation and toxicity of rhenium salts, organometallics and coordination complexes. <i>Coordination Chemistry Reviews</i> , 2019 , 394, 135-161	23.2	19
272	Organometallic and coordination rhenium compounds and their potential in cancer therapy. <i>Coordination Chemistry Reviews</i> , 2019 , 393, 79-117	23.2	84
271	Oxidative stress and endoreduplication induced by blue light exposure to CHO cells. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2019 , 841, 31-35	3	6
270	Monoenergetic 290 MeV/n carbon-ion beam biological lethal dose distribution surrounding the Bragg peak. <i>Scientific Reports</i> , 2019 , 9, 6157	4.9	7
269	Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. <i>Dalton Transactions</i> , 2019 , 48, 6383-6395	4.3	37
268	The Effect of Green and Black Tea Polyphenols on Deficient Chinese Hamster Cells by Synthetic Lethality through PARP Inhibition. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	2
267	A Transition-State Perspective on Y-Family DNA Polymerase [Fidelity in Comparison with X-Family DNA Polymerases [and [] <i>Biochemistry</i> , 2019 , 58, 1764-1773	3.2	7
266	Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	5
265	Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. <i>Biochemistry</i> , 2019 , 58, 1596-1615	3.2	6
264	Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit. <i>Frontiers in Chemistry</i> , 2019 , 7, 462	5	4
263	Reciprocal Translocation Analysis with Whole Chromosome Painting for FISH. <i>Methods in Molecular Biology</i> , 2019 , 1984, 117-122	1.4	O
262	Micronuclei Formation Analysis After Ionizing Radiation. <i>Methods in Molecular Biology</i> , 2019 , 1984, 23-	291.4	
261	Sister Chromatid Exchange as a Genotoxic Stress Marker. <i>Methods in Molecular Biology</i> , 2019 , 1984, 61	-68.4	2

(2018-2019)

2 1 0 2 14
0 2 14
2
14
11
11
4
10
16
238
9
21
27
6
12
22

242	Confinement Effects on Chemical Equilibria: Pentacyano(Pyrazine)Ferrate(II) Stability Changes within Nanosized Droplets of Water. <i>Molecules</i> , 2018 , 23,	4.8	2
241	Mycobacterial MenJ: An Oxidoreductase Involved in Menaquinone Biosynthesis. <i>ACS Chemical Biology</i> , 2018 , 13, 2498-2507	4.9	17
240	Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. <i>PLoS Genetics</i> , 2018 , 14, e1007277	6	19
239	Metallo-Drugs: Development and Action of Anticancer Agents 2018,		15
238	Multi-modal Potentiation of Oncolytic Virotherapy by Vanadium Compounds. <i>Molecular Therapy</i> , 2018 , 26, 56-69	11.7	55
237	A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and at a Model Membrane Interface. <i>Journal of Organic Chemistry</i> , 2018 , 83, 275-288	4.2	14
236	Effect of hydroxyl group position in flavonoids on inducing single-stranded DNA damage mediated by cupric ions. <i>International Journal of Molecular Medicine</i> , 2018 , 42, 658-664	4.4	3
235	Synthesis and Characterization of Partially and Fully Saturated Menaquinone Derivatives. <i>ACS Omega</i> , 2018 , 3, 14889-14901	3.9	9
234	Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates. <i>Frontiers in Chemistry</i> , 2018 , 6, 519	5	32
233	Palmitoyl ascorbic acid 2-glucoside has the potential to protect mammalian cells from high-LET carbon-ion radiation. <i>Scientific Reports</i> , 2018 , 8, 13822	4.9	5
232	Structure Dependence of Pyridine and Benzene Derivatives on Interactions with Model Membranes. <i>Langmuir</i> , 2018 , 34, 8939-8951	4	2
231	2018,		9
230	Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G/G Phase Cells. <i>Radiation Research</i> , 2017 , 187, 259-267	3.1	5
229	Selenium speciation in the Fountain Creek Watershed and its effects on fish diversity. <i>Journal of Biological Inorganic Chemistry</i> , 2017 , 22, 751-763	3.7	4
228	Does anion-cation organization in Na+-containing X-ray crystal structures relate to solution interactions in inhomogeneous nanoscale environments: Sodium-decavanadate in solid state materials, minerals, and microemulsions. <i>Coordination Chemistry Reviews</i> , 2017 , 344, 115-130	23.2	22
227	Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. <i>Coordination Chemistry Reviews</i> , 2017 , 352, 473-498	23.2	132
226	Hypersensitivity of BRCA2 deficient cells to rosemary extract explained by weak PARP inhibitory activity. <i>Scientific Reports</i> , 2017 , 7, 16704	4.9	3
225	Investigation of the relative biological effectiveness and uniform isobiological killing effects of irradiation with a clinical carbon SOBP beam on DNA repair deficient CHO cells. <i>Oncology Letters</i> , 2017 , 13, 4911-4916	2.6	5

224	Metal Nanoparticles and Their Toxicity 2017 , 237-293		1
223	Methods for Preparation of Metal Nanoparticles 2017 , 15-31		3
222	Metal Nanoparticles as Therapeutic Agents: A Paradigm Shift in Medicine 2017 , 33-48		2
221	Soft-Oxometalates: A New State of Oxometalates and Their Potential Applications as Nanomotors 2017 , 49-65		
220	Medicinal Applications of Metal Nanoparticles 2017 , 67-119		2
219	Metal Nanoparticles in Nanomedicine: Advantages and Scope 2017 , 121-168		3
218	Applications of Metal Nanoparticles in Medicine/Metal Nanoparticles as Anticancer Agents 2017 , 169-19	90	4
217	Noble Metal Nanoparticles and Their Antimicrobial Properties 2017 , 191-201		1
216	Metal Nanoparticles and Their Toxicity 2017 , 203-259		
215	PARP Inhibition by Flavonoids Induced Selective Cell Killing to BRCA2-Deficient Cells. <i>Pharmaceuticals</i> , 2017 , 10,	5.2	10
214	Selenium Speciation in the Fountain Creek Watershed (Colorado, USA) Correlates with Water Hardness, Ca and Mg Levels. <i>Molecules</i> , 2017 , 22,	4.8	7
213	Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles. <i>Oncology Letters</i> , 2016 , 12, 1597-1601	2.6	5
212	Differences in Interactions of Benzoic Acid and Benzoate with Interfaces. <i>Langmuir</i> , 2016 , 32, 9451-9	4	8
211	Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent. <i>Biochemical and Biophysical Research Communications</i> , 2016 , 476, 359-364	3.4	10
210	Synthesis, structural characterization, modal membrane interaction and anti-tumor cell line studies of nitrophenyl ferrocenes. <i>Journal of Molecular Structure</i> , 2016 , 1113, 162-170	3.4	21
209	Size and shape trump charge in interactions of oxovanadates with self-assembled interfaces: application of continuous shape measure analysis to the decavanadate anion. <i>New Journal of Chemistry</i> , 2016 , 40, 962-975	3.6	14
208	Multinuclear NMR studies of aqueous vanadium HEDTA complexes. <i>Polyhedron</i> , 2016 , 114, 325-332	2.7	8
207	Data for induction of cytotoxic response by natural and novel quercetin glycosides. <i>Data in Brief</i> , 2016 , 6, 262-6	1.2	6

206	Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines. <i>PLoS ONE</i> , 2016 , 11, e0156689	3.7	16
205	How Interfaces Affect the Acidity of the Anilinium Ion. <i>Chemistry - A European Journal</i> , 2016 , 22, 3873-8	0 4.8	5
204	Molecular dynamics simulation of telomeric single-stranded DNA and POT1. <i>Polymer Journal</i> , 2016 , 48, 189-195	2.7	5
203	Translational Science for Energy and Beyond. <i>Inorganic Chemistry</i> , 2016 , 55, 9131-43	5.1	9
202	In vitro screening of radioprotective properties in the novel glucosylated flavonoids. <i>International Journal of Molecular Medicine</i> , 2016 , 38, 1525-1530	4.4	9
201	Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. <i>Journal of Inorganic Biochemistry</i> , 2016 , 165, 56-70	4.2	60
200	Vanadiumphosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. <i>Coordination Chemistry Reviews</i> , 2015 , 301-302, 163-199	23.2	89
199	NMR crystallography for structural characterization of oxovanadium(V) complexes: deriving coordination geometry and detecting weakly coordinated ligands at atomic resolution in the solid state. <i>Inorganic Chemistry</i> , 2015 , 54, 1363-74	5.1	13
198	Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity. <i>Oncology Letters</i> , 2015 , 9, 1621-1627	2.6	8
197	Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2015 , 784-785, 15-22	3	38
196	Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. <i>Journal of Inorganic Biochemistry</i> , 2015 , 147, 153-64	4.2	26
195	Caspase-3 promotes genetic instability and carcinogenesis. <i>Molecular Cell</i> , 2015 , 58, 284-96	17.6	140
194	Role of various DNA repair pathways in chromosomal inversion formation in CHO mutants. <i>International Journal of Radiation Biology</i> , 2015 , 91, 925-33	2.9	5
193	Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11899-915	4.2	92
192	Partial Saturation of Menaquinone in : Function and Essentiality of a Novel Reductase, MenJ. <i>ACS Central Science</i> , 2015 , 1, 292-302	16.8	45
191	Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure. <i>Oncology Letters</i> , 2015 , 10, 2828-2834	2.6	9
190	Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. <i>Journal of Radiation Research</i> , 2015 , 56, 784-91	2.4	36
189	High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes. <i>Coordination Chemistry Reviews</i> , 2015 , 301-302, 123-133	23.2	42

(2013-2015)

188	Solution Radioactivated by Hadron Radiation Can Increase Sister Chromatid Exchanges. <i>PLoS ONE</i> , 2015 , 10, e0144619	3.7	2
187	Role of LET and chromatin structure on chromosomal inversion in CHO10B2 cells. <i>Genome Integrity</i> , 2014 , 5, 1	0.8	4
186	Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles. <i>Chemistry - A European Journal</i> , 2014 , 20, 5149-59	4.8	26
185	Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. <i>Inorganica Chimica Acta</i> , 2014 , 420, 112-119	2.7	17
184	Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. <i>Antimicrobial Agents and Chemotherapy</i> , 2014 , 58, 6413-23	5.9	137
183	Interaction of a biguanide compound with membrane model interface systems: probing the properties of antimalaria and antidiabetic compounds. <i>Langmuir</i> , 2014 , 30, 8697-706	4	20
182	Structural and redox requirements for the action of anti-diabetic vanadium compounds. <i>Dalton Transactions</i> , 2014 , 43, 6965-72	4.3	71
181	Trigonal Bipyramidal or Square Pyramidal Coordination Geometry? Investigating the Most Potent Geometry for Vanadium Phosphatase Inhibitors. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 4450-4468	2.3	76
180	Monoglucosyl-rutin as a potential radioprotector in mammalian cells. <i>Molecular Medicine Reports</i> , 2014 , 10, 10-4	2.9	23
179	Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles. <i>PLoS ONE</i> , 2014 , 9, e935	79 ^{3.7}	10
178	INTERACTION OF DECAVANADATE WITH INTERFACES AND BIOLOGICAL MODEL MEMBRANE SYSTEMS: CHARACTERIZATION OF SOFT OXOMETALATE SYSTEMS. <i>Journal of Molecular and Engineering Materials</i> , 2014 , 02, 1440007	1.3	15
177	Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells. <i>Oncology Reports</i> , 2014 , 31, 551-6	3.5	41
176	Modern Coordination Chemistry 100 Years after Werner. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 4413-4416	2.3	1
175	Electron-Transfer Rate Enhancements in Nanosized Waterpools. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 4537-4540	2.3	9
174	Guanylurea metformium double salt of decavanadate, (HGU+)4(HMet+)2(V10O286) IPH2O. <i>Inorganica Chimica Acta</i> , 2014 , 420, 85-91	2.7	15
173	Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. <i>Journal of Inorganic Biochemistry</i> , 2014 , 136, 47-56	4.2	45
172	Effect of Ancillary Ligand on Electronic Structure as Probed by V Solid-State NMR Spectroscopy for VanadiumDioxolene Complexes. <i>CrystEngComm</i> , 2013 , 15,	3.3	15
171	Preface for the forum on metals in medicine and health: new opportunities and approaches to improving health. <i>Inorganic Chemistry</i> , 2013 , 52, 12181-3	5.1	7

170	Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. <i>Metallomics</i> , 2013 , 5, 1491-502	4.5	45
169	Raft localization of type I FcTreceptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5. <i>Dalton Transactions</i> , 2013 , 42, 11912-20	4.3	19
168	Stabilization of a vanadium(V)Batechol complex by compartmentalization and reduced solvation inside reverse micelles. <i>New Journal of Chemistry</i> , 2013 , 37, 75-81	3.6	12
167	Cation exchange, solvent free synthesis and packing patterns of quinolinium nickel(II) dipicolinates. <i>Inorganica Chimica Acta</i> , 2013 , 408, 204-208	2.7	9
166	Metal speciation in health and medicine represented by iron and vanadium. <i>Inorganic Chemistry</i> , 2013 , 52, 12262-75	5.1	115
165	Direct DNA and PNA probe binding to telomeric regions without classical in situ hybridization. <i>Molecular Cytogenetics</i> , 2013 , 6, 42	2	15
164	Counterion Affects Interaction with Interfaces: The Antidiabetic Drugs Metformin and Decavanadate. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 1859-1868	2.3	34
163	The anti-diabetic bis(maltolato)oxovanadium(IV) decreases lipid order while increasing insulin receptor localization in membrane microdomains. <i>Dalton Transactions</i> , 2012 , 41, 6419-30	4.3	43
162	Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore. <i>Inorganic Chemistry</i> , 2012 , 51, 9144-6	5.1	10
161	Switching off electron transfer reactions in confined media: reduction of [Co(dipic)2]- and [Co(edta)]- by hexacyanoferrate(II). <i>Inorganic Chemistry</i> , 2012 , 51, 2757-65	5.1	13
160	Correlating proton transfer dynamics to probe location in confined environments. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11904-7	16.4	49
159	Redox Activity in a Vanadium(V)B-Dioxolene Complex Is Modulated by Protonation State As Indicated by 51V Solid-State NMR Spectroscopy and Density Functional Theory. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 4644-4651	2.3	7
158	The conundrum of pH in water nanodroplets: sensing pH in reverse micelle water pools. <i>Accounts of Chemical Research</i> , 2012 , 45, 1637-45	24.3	66
157	Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate. <i>Cell Biochemistry and Biophysics</i> , 2012 , 62, 441-50	3.2	11
156	Genomic instability and telomere fusion of canine osteosarcoma cells. PLoS ONE, 2012, 7, e43355	3.7	25
155	Characterization of noninnocent metal complexes using solid-state NMR spectroscopy: o-dioxolene vanadium complexes. <i>Inorganic Chemistry</i> , 2011 , 50, 9794-803	5.1	39
154	Quantification of foscarnet with chromogenic and fluorogenic chemosensors: indicator displacement assays based on metal ion coordination with a catechol ligand moiety. <i>New Journal of Chemistry</i> , 2011 , 35, 2877	3.6	10
153	Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis. <i>Journal of Biological Inorganic Chemistry</i> , 2011 , 16, 961-72	3.7	48

15	Gel formulation containing mixed surfactant and lipids associating with carboplatin. <i>Chemistry and Biodiversity</i> , 2011 , 8, 2195-210	2.5	1
15	Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies. <i>Chemistry - A European Journal</i> , 2011 , 17, 6837-46	4.8	37
15	Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell. Chemistry - A European Journal, 2011, 17, 6635-42	4.8	20
14	How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). <i>Coordination Chemistry Reviews</i> , 2011 , 255, 2178-2192	23.2	92
14	Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. <i>Coordination Chemistry Reviews</i> , 2011 , 255, 2258-2269	23.2	175
14	Coexisting aggregates in mixed aerosol OT and cholesterol microemulsions. <i>Langmuir</i> , 2011 , 27, 948-54	¹ 4	28
14	Acidification of reverse micellar nanodroplets by atmospheric pressure CO2. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7205-14	16.4	19
14	Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium. <i>Inhalation Toxicology</i> , 2010 , 22, 169-78	2.7	23
14	Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution. <i>Inorganic Chemistry</i> , 2010 , 49, 4245-56	5.1	88
14	Effect of micellar and reverse micellar interface on solute location: 2,6-pyridinedicarboxylate in CTAB micelles and CTAB and AOT reverse micelles. <i>Langmuir</i> , 2010 , 26, 13153-61	4	51
14	Electron transfer in non-oxovanadium(IV) and (V) complexes: Kinetic studies of an amavadin model. Pure and Applied Chemistry, 2009 , 81, 1241-1249	2.1	7
14	Signatures of DNA double strand breaks produced in irradiated G1 and G2 cells persist into mitosis. Journal of Cellular Physiology, 2009 , 219, 760-5	7	21
14	Anti-diabetic effects of vanadium(III, IV, V)-chlorodipicolinate complexes in streptozotocin-induced diabetic rats. <i>BioMetals</i> , 2009 , 22, 895-905	3.4	48
13	Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. Journal of Inorganic Biochemistry, 2009 , 103, 536-46	4.2	193
13	Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 585-9	4.2	37
13	Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 575-84	4.2	68
13	Complexation of bisphosphonates with ytterbium(III): application of phosphate and ATP detection assay based on Yb(3+)-pyrocatechol violet. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 1652-7	4.2	16
13	Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. <i>Journal of Inorganic Biochemistry</i> , 2009 , 103, 1687-92	4.2	71

134	Deprotonation of beta-cyclodextrin in alkaline solutions. Carbohydrate Research, 2009, 344, 250-4	2.9	48
133	What is inside a nonionic reverse micelle? Probing the interior of Igepal reverse micelles using decavanadate. <i>Langmuir</i> , 2009 , 25, 5496-503	4	35
132	(51)V solid-state NMR and density functional theory studies of eight-coordinate non-oxo vanadium complexes: oxidized amavadin. <i>Dalton Transactions</i> , 2009 , 3262-9	4.3	8
131	Impact of confinement and interfaces on coordination chemistry: Using oxovanadate reactions and proton transfer reactions as probes in reverse micelles. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 2178	3 ² 2 ² 1 ² 85	48
130	Variations in radiosensitivity among individuals: a potential impact on risk assessment?. <i>Health Physics</i> , 2009 , 97, 470-80	2.3	27
129	Comparison of the induction and disappearance of DNA double strand breaks and gamma-H2AX foci after irradiation of chromosomes in G1-phase or in condensed metaphase cells. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2008 , 639, 108-12	3.3	35
128	Penetration of negatively charged lipid interfaces by the doubly deprotonated dipicolinate. <i>Journal of Organic Chemistry</i> , 2008 , 73, 9633-40	4.2	31
127	1H NMR studies of aerosol-OT reverse micelles with alkali and magnesium counterions: preparation and analysis of MAOTs. <i>Langmuir</i> , 2008 , 24, 6027-35	4	43
126	Do probe molecules influence water in confinement?. Journal of Physical Chemistry B, 2008, 112, 10158-	64 4	34
125	Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. <i>Inorganic Chemistry</i> , 2008 , 47, 5677-84	5.1	48
124	51V solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes. <i>Journal of Chemical Physics</i> , 2008 , 128, 052317	3.9	29
123	Impairment of ascorbic acid@anti-oxidant properties in confined media: inter and intramolecular reactions with air and vanadate at acidic pH. <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 1334-47	4.2	20
122	Anti-diabetic effects of cesium aqua (N,N@thylene(salicylideneiminato)-5-sulfonato) oxovanadium (IV) dihydrate in streptozotocin-induced diabetic rats. <i>Biological Trace Element Research</i> , 2008 , 121, 226	- 3 2 ⁵	23
121	Metal complexation chemistry used for phosphate and nucleotide determination: an investigation of the Yb3+-pyrocatechol violet sensor. <i>Journal of Biological Inorganic Chemistry</i> , 2008 , 13, 1291-9	3.7	11
120	Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. <i>Chemistry and Biodiversity</i> , 2008 , 5, 1558-70	2.5	31
119	Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 1846-53	4.2	75
118	4-amino- and 4-nitrodipicolinatovanadium(V) complexes and their hydroxylamido derivatives: synthesis, aqueous, and solid-state properties. <i>Inorganic Chemistry</i> , 2007 , 46, 9827-40	5.1	29
117	Simple oxovanadates as multiparameter probes of reverse micelles. <i>Langmuir</i> , 2007 , 23, 6510-8	4	27

(2006-2007)

116	Investigating the vanadium environments in hydroxylamido V(V) dipicolinate complexes using 51V NMR spectroscopy and density functional theory. <i>Inorganic Chemistry</i> , 2007 , 46, 9285-93	5.1	52
115	Comparing Administration Route in Rats with Streptozocin-Induced Diabetes and Inhibition of Myoblast Growth of Vanadium [V(III), V(IV), and V(V)] Dipicolinic Acid Complexes. <i>ACS Symposium Series</i> , 2007 , 93-109	0.4	8
114	Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K. <i>ACS Symposium Series</i> , 2007 , 364-375	0.4	8
113	Chelation of vanadium(V) by difluoromethylene bisphosphonate, a structural analogue of pyrophosphate. <i>Inorganic Chemistry</i> , 2007 , 46, 6723-32	5.1	10
112	Pulmonary immunotoxic potentials of metals are governed by select physicochemical properties: vanadium agents. <i>Journal of Immunotoxicology</i> , 2007 , 4, 49-60	3.1	23
111	Do Vanadium Compounds Drive Reorganization of the Plasma Membrane and Activation of Insulin Receptors with Lipid Rafts?. <i>ACS Symposium Series</i> , 2007 , 121-134	0.4	7
110	A defect in DNA double strand break processing in cells from unaffected parents of retinoblastoma patients and other apparently normal humans. <i>DNA Repair</i> , 2007 , 6, 818-29	4.3	29
109	MetalCarbohydrate Complexes in Solution. <i>Progress in Inorganic Chemistry</i> , 2007 , 837-945		54
108	Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. <i>Radiation Research</i> , 2006 , 166, 443-53	3.1	63
107	gamma-H2AX foci after low-dose-rate irradiation reveal atm haploinsufficiency in mice. <i>Radiation Research</i> , 2006 , 166, 47-54	3.1	30
106	Pulmonary immunotoxic potentials of metals are governed by select physicochemical properties: chromium agents. <i>Journal of Immunotoxicology</i> , 2006 , 3, 69-81	3.1	11
105	Molecular probe location in reverse micelles determined by NMR dipolar interactions. <i>Journal of the American Chemical Society</i> , 2006 , 128, 4437-45	16.4	90
104	Self-exchange electron transfer in high oxidation state non-oxo metal complexes: amavadin. <i>Chemical Communications</i> , 2006 , 4641-3	5.8	13
103	When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12758-65	16.4	166
102	Reduction of vanadium(V) by L-ascorbic acid at low and neutral pH: kinetic, mechanistic, and spectroscopic characterization. <i>Inorganic Chemistry</i> , 2006 , 45, 1471-9	5.1	54
101	Transition state analogues for nucleotidyl transfer reactions: Structure and stability of pentavalent vanadate and phosphate ester dianions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14988-99	3.4	27
100	Oxovanadates: a novel probe for studying lipid-water interfaces. <i>Biomedicine and Pharmacotherapy</i> , 2006 , 60, 174-81	7.5	19
99	Spectrometric and electrochemical investigation of vanadium(V) and vanadium(IV) tartrate complexes in solution. <i>Journal of the Brazilian Chemical Society</i> , 2006 , 17, 895-904	1.5	3

98	Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate. <i>Physiological Genomics</i> , 2006 , 26, 192-201	3.6	37
97	The permeability and cytotoxicity of insulin-mimetic vanadium (III,IV,V)-dipicolinate complexes. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 80-7	4.2	63
96	Interaction of dipicolinatodioxovanadium(V) with polyatomic cations and surfaces in reverse micelles. <i>Langmuir</i> , 2005 , 21, 6250-8	4	29
95	Aqueous chemistry of the vanadium(III) (V(III)) and the V(III)-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats. <i>Inorganic Chemistry</i> , 2005 , 44, 5416-27	5.1	122
94	Evidence of two-step deprotonation of D-mannitol in aqueous solution. <i>Carbohydrate Research</i> , 2005 , 340, 1553-6	2.9	12
93	Interaction of pyridine-2,5-dicarboxylic acid with heavy metal ions in aqueous solutions. <i>Heteroatom Chemistry</i> , 2005 , 16, 285-291	1.2	11
92	Fifteen years of dancing with vanadium. Pure and Applied Chemistry, 2005, 77, 1497-1527	2.1	77
91	The permeability and cytotoxicity of insulin-mimetic vanadium compounds. <i>Pharmaceutical Research</i> , 2004 , 21, 1026-33	4.5	83
90	The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. <i>ChemInform</i> , 2004 , 35, no		2
89	Inhibition of yeast growth by molybdenum-hydroxylamido complexes correlates with their presence in media at differing pH values. <i>Journal of Inorganic Biochemistry</i> , 2004 , 98, 1837-50	4.2	13
89 88		2.9	28
	presence in media at differing pH values. <i>Journal of Inorganic Biochemistry</i> , 2004 , 98, 1837-50	2.9	
88	presence in media at differing pH values. <i>Journal of Inorganic Biochemistry</i> , 2004 , 98, 1837-50 Cu(II) complex formation with xylitol in alkaline solutions. <i>Carbohydrate Research</i> , 2004 , 339, 599-605 The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium	2.9	28
88 8 ₇	presence in media at differing pH values. <i>Journal of Inorganic Biochemistry</i> , 2004 , 98, 1837-50 Cu(II) complex formation with xylitol in alkaline solutions. <i>Carbohydrate Research</i> , 2004 , 339, 599-605 The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. <i>Chemical Reviews</i> , 2004 , 104, 849-902 Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in	2.9	1092
88 87 86	Cu(II) complex formation with xylitol in alkaline solutions. <i>Carbohydrate Research</i> , 2004 , 339, 599-605 The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. <i>Chemical Reviews</i> , 2004 , 104, 849-902 Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions. <i>Heteroatom Chemistry</i> , 2003 , 14, 625-632 Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane.	2.9	28 1092 50
88 87 86 85	Cu(II) complex formation with xylitol in alkaline solutions. <i>Carbohydrate Research</i> , 2004 , 339, 599-605 The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. <i>Chemical Reviews</i> , 2004 , 104, 849-902 Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions. <i>Heteroatom Chemistry</i> , 2003 , 14, 625-632 Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. <i>Coordination Chemistry Reviews</i> , 2003 , 237, 103-111 (4-Hydroxypyridine-2,6-dicarboxylato)oxovanadate(V) In new insulin-like compound: chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with STZ-induced	2.9 68.1 1.2	28 1092 50 90
88 87 86 85 84	Cu(II) complex formation with xylitol in alkaline solutions. <i>Carbohydrate Research</i> , 2004 , 339, 599-605 The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. <i>Chemical Reviews</i> , 2004 , 104, 849-902 Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions. <i>Heteroatom Chemistry</i> , 2003 , 14, 625-632 Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. <i>Coordination Chemistry Reviews</i> , 2003 , 237, 103-111 (4-Hydroxypyridine-2,6-dicarboxylato)oxovanadate(V)B new insulin-like compound: chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with STZ-induced diabetes. <i>Coordination Chemistry Reviews</i> , 2003 , 237, 13-22 Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray	2.9 68.1 1.2 23.2	28 1092 50 90

80	Rational synthesis and X-ray structure of [MnII4(H2O)2(AsVW9O34)2]10 I from [AsIII4W40O140]28[IMnO4 land Mn2+. <i>Polyhedron</i> , 2002 , 21, 959-962	2.7	13
79	Tetravanadate, Decavanadate, Keggin and Dawson Oxotungstates Inhibit Growth of S. cerevisiae. <i>Nanostructure Science and Technology</i> , 2002 , 181-195	0.9	2
78	4-Hydroxypyridine-2,6-dicarboxylatodioxovanadate(V) complexes: solid state and aqueous chemistry. <i>Inorganic Chemistry</i> , 2002 , 41, 6322-31	5.1	63
77	Inelastic neutron scattering on three mixed-valence dodecanuclear polyoxovanadate clusters. <i>Inorganic Chemistry</i> , 2002 , 41, 5675-85	5.1	43
76	Cobalt(II) and cobalt(III) dipicolinate complexes: solid state, solution, and in vivo insulin-like properties. <i>Inorganic Chemistry</i> , 2002 , 41, 4859-71	5.1	139
75	Methylation of neutral pseudotetrahedral zinc thiolate complexes: model reactions for alkyl group transfer to sulfur by zinc-containing enzymes. <i>Journal of Biological Inorganic Chemistry</i> , 2001 , 6, 82-90	3.7	44
74	Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). <i>Journal of Inorganic Biochemistry</i> , 2001 , 85, 33-42	4.2	184
73	Bis(acetylamido)oxovanadium(IV) complexes: solid state and solution studies. <i>Dalton Transactions RSC</i> , 2001 , 3337-3345		35
72	Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. <i>Journal of Inorganic Biochemistry</i> , 2000 , 80, 123-31	4.2	206
71	Aqueous Chemistry of Ammonium (Dipicolinato)oxovanadate(V): The First Organic Vanadium(V) Insulin-Mimetic Compound. <i>Inorganic Chemistry</i> , 2000 , 39, 4409-4416	5.1	138
7º	Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives. <i>Inorganic Chemistry</i> , 2000 , 39, 406-16	5.1	156
69	Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. <i>British Journal of Pharmacology</i> , 1999 , 126, 467-77	8.6	163
68	Solution Characterization of Vanadium(V) and -(IV) N-(Phosphonomethyl)iminodiacetate Complexes: Direct Observation of One Enantiomer Converting to the Other in an Equilibrium Mixture(1). <i>Inorganic Chemistry</i> , 1999 , 38, 3275-3282	5.1	9
67	Vanadium(V) Complexes of Polydentate Amino Alcohols: Fine-Tuning Complex Properties. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8069-8078	16.4	31
66	Speciation in Vanadium Bioinorganic Systems. 5. Interactions between Vanadate, Uridine, and ImidazoleAn Aqueous Potentiometric, 51V, 17O, and 13C NMR Study. <i>Inorganic Chemistry</i> , 1998 , 37, 61	53-616	0 ²¹
65	Dinuclear Oxovanadium(IV) N-(Phosphonomethyl)iminodiacetate Complexes: Na(4)[V(2)O(2){(O)(2)P(O)CH(2)N(CH(2)COO)(2)}(2)].10H(2)O and Na(8)[V(2)O(2){(O)(2)P(O)CH(2)N(CH(2)COO)(2)}(2)](2).16H(2)O(1). Inorganic Chemistry, 1998, 37, 6645	5.1 -6655	28
64	Stepwise Cluster Assembly Using VO(2)(acac) as a Precursor: cis-[VO(OCH(CH(3))(2))(acac)(2)], [V(2)O(2)(&mgr-OCH(3))(2)(acac)(2)(OCH(3))(2)], [V(3)O(3){&mgr-(OCH(2))(3)CCH(3)}(2)(acac)(2)(OC(2)H(5))], and	5.1	59
63	[V(4)O(4)(&mgr-O)(2)(&mgr-OCH(3))(2)(&mgr(3)-OCH(3))(2)(acac)(2)(OCH(3))(2)].2CH(3)CN(1). Inorganic Chemistry. 1998, 37, 5439-5451 The Chemistry of Vanadium in Aqueous and Nonaqueous Solution. ACS Symposium Series, 1998, 2-29	0.4	38

62	Peroxo, Hydroxylamido, and Acac Derived Vanadium Complexes: Chemistry, Biochemistry, and Insulin-Mimetic Action of Selected Vanadium Compounds. <i>ACS Symposium Series</i> , 1998 , 82-103	0.4	11
61	Insulin-like Effects of Vanadium; Reviewing In Vivo and In Vitro Studies and Mechanisms of Action. <i>ACS Symposium Series</i> , 1998 , 308-315	0.4	8
60	Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor. <i>Biochemical Journal</i> , 1997 , 321 (Pt 2), 333-9	3.8	18
59	Syntheses, X-ray Structures, and Solution Properties of [V(4)O(4){(OCH(2))(3)CCH(3)}(3)(OCH(3))(6)]: Examples of New Ligand Coordination Modes. <i>Inorganic Chemistry</i> , 1997 , 36, 1038-1047	5.1	28
58	Speciation in Vanadium Bioinorganic Systems. 4. Interactions between Vanadate, Adenosine, and ImidazoleAn Aqueous Potentiometric and 51V NMR Study. <i>Journal of the American Chemical Society</i> , 1997 , 119, 7005-7012	16.4	35
57	Six-co-ordinated vanadium-(IV) and -(V) complexesof benzimidazole and pyridyl containing ligands. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 2799-2812		65
56	Synthesis, Structure, and Biological Activity of a New Insulinomimetic Peroxovanadium Compound: Bisperoxovanadium Imidazole Monoanion. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5447-54	148 ^{.4}	99
55	Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. <i>Archives of Biochemistry and Biophysics</i> , 1997 , 338, 7-14	4.1	62
54	Vanadium(V) Hydroxylamido Complexes: Solid State and Solution Properties1. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8901-8915	16.4	92
53	Solution and Solid State Properties of [N-(2-Hydroxyethyl)iminodiacetato]vanadium(IV), -(V), and -(IV/V) Complexes(1). <i>Inorganic Chemistry</i> , 1997 , 36, 1657-1668	5.1	96
52	Application of NMR Spectroscopy to Studies of Aqueous Coordination Chemistry of Vanadium(V) Complexes. <i>Advances in Chemistry Series</i> , 1996 , 303-328		10
51	Factors Affecting Solution Properties of Vanadium(V) Compounds: X-ray Structure of Etis-NH4[VO2(EDDA)]1. <i>Inorganic Chemistry</i> , 1996 , 35, 3599-3606	5.1	33
50	Four- and Five-Coordinate Oxovanadium(V) Alkoxides: Do Steric Effects or Electronic Properties Dictate the Geometry?. <i>Inorganic Chemistry</i> , 1996 , 35, 6485-6494	5.1	13
49	Evidence for the distinct vanadyl(+4)-dependent activating system for manifesting insulin-like effects. <i>Biochemistry</i> , 1996 , 35, 8314-8	3.2	81
48	Organic Vanadium Compounds - Transition State Analogy with Organic Phosphorus Compounds. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1996 , 109, 245-248	1	2
47	Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. <i>Molecular and Cellular Biochemistry</i> , 1995 , 153, 17-24	4.2	74
46	Structure of the Dimeric Ethylene Glycol-Vanadate Complex and Other 1,2-Diol-Vanadate Complexes in Aqueous Solution: Vanadate-Derived Transition-State Analog Complexes of Phosphotransferases. <i>Journal of the American Chemical Society</i> , 1995 , 117, 6015-6026	16.4	34
45	A Slow Exchanging Vanadium(V) Peptide Complex: Vanadium(V)-Glycine-Tyrosine. <i>Inorganic Chemistry</i> , 1995 , 34, 2524-2534	5.1	54

44	Phytate Metabolism in Bean Seedlings duringPost-Germinative Growth. <i>Journal of Plant Physiology</i> , 1995 , 145, 101-107	3.6	6
43	The effect of vanadate on growth and phospholipid levels in the root and hypocotyl of bean seedlings (Phaseolus vulgaris L.) 1995 , 181-187		1
42	Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents 1995 , 17-24		3
41	Aqueous Chemistry of Labile Oxovanadates: Relevance to Biological Studies. <i>Comments on Inorganic Chemistry</i> , 1994 , 16, 1-33	3.9	98
40	Enzyme Interactions with Labile Oxovanadates and Other Polyoxometalates. <i>Comments on Inorganic Chemistry</i> , 1994 , 16, 35-76	3.9	71
39	Characterization of Vanadium(V) Complexes in Aqueous Solutions: Ethanolamine- and Glycine-Derived Complexes. <i>Journal of the American Chemical Society</i> , 1994 , 116, 1305-1315	16.4	97
38	X-ray Structure of (NH4)6(Gly-Gly)2V10O28.cntdot.4H2O: Model Studies for Polyoxometalate-Protein Interactions. <i>Inorganic Chemistry</i> , 1994 , 33, 5586-5590	5.1	118
37	Oxovanadium(V) Alkoxide Derivatives of 1,2-Diols: Synthesis and Solid-State 51V NMR Characterization. <i>Inorganic Chemistry</i> , 1994 , 33, 2427-2438	5.1	53
36	Interactions of Oxovanadates and Selected Oxomolybdates with Proteins. <i>Topics in Molecular Organization and Engineering</i> , 1994 , 401-408		
35	Vanadium(V)-protein model studies: solid-state and solution structure. <i>Journal of the American Chemical Society</i> , 1993 , 115, 6769-6776	16.4	108
35		16.4 4.2	108
	Chemical Society, 1993 , 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. <i>Journal of</i>		
34	Chemical Society, 1993, 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252 Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex.	4.2	22
34	Chemical Society, 1993, 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252 Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex. Inorganic Chemistry, 1993, 32, 247-248 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of	4.2 5.1	38
34 33 32	Chemical Society, 1993, 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252 Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex. Inorganic Chemistry, 1993, 32, 247-248 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. Analytical Biochemistry, 1993, 209, 85-94 Interactions of oxovanadates and selected oxomolybdates with proteins. Molecular Engineering,	4.2 5.1	22 38 20
34 33 32 31	Chemical Society, 1993, 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252 Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex. Inorganic Chemistry, 1993, 32, 247-248 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. Analytical Biochemistry, 1993, 209, 85-94 Interactions of oxovanadates and selected oxomolybdates with proteins. Molecular Engineering, 1993, 3, 277-284 Synthesis and reactivity of oxovanadium(V) trialkoxides of bulky and chiral alcohols. Journal of the	4.2 5.1 3.1	22 38 20 6
34 33 32 31 30	Chemical Society, 1993, 115, 6769-6776 NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252 Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex. Inorganic Chemistry, 1993, 32, 247-248 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. Analytical Biochemistry, 1993, 209, 85-94 Interactions of oxovanadates and selected oxomolybdates with proteins. Molecular Engineering, 1993, 3, 277-284 Synthesis and reactivity of oxovanadium(V) trialkoxides of bulky and chiral alcohols. Journal of the American Chemical Society, 1992, 114, 4543-4550 (-)-Cryptaustoline: its synthesis, revision of absolute stereochemistry, and mechanism of inversion	4.2 5.1 3.1 16.4	22 38 20 6

26	Interaction of porcine uterine fluid purple acid phosphatase with vanadate and vanadyl cation. <i>Biochemistry</i> , 1992 , 31, 11731-9	3.2	41
25	Oxovanadium(V) 1,3-propanediolate chloride complexes: tetrameric clusters. <i>Inorganic Chemistry</i> , 1992 , 31, 4939-4949	5.1	46
24	Nonreductive interaction of vanadate with an enzyme containing a thiol group in the active site: glycerol-3-phosphate dehydrogenase. <i>Biochemistry</i> , 1991 , 30, 6734-41	3.2	37
23	Vanadate interactions with bovine copper,zinc-superoxide dismutase as probed by vanadium-51 NMR spectroscopy. <i>Journal of the American Chemical Society</i> , 1991 , 113, 7872-7881	16.4	30
22	Cyclic vanadium(V) alkoxide. An analog of the ribonuclease inhibitors. <i>Journal of the American Chemical Society</i> , 1991 , 113, 265-269	16.4	77
21	Structural and kinetic characterization of simple complexes as models for vanadate-protein interactions. <i>Journal of the American Chemical Society</i> , 1991 , 113, 3728-3736	16.4	63
20	Substituent effects in organic vanadate esters in imidazole-buffered aqueous solutions. <i>Journal of Organic Chemistry</i> , 1991 , 56, 1266-1274	4.2	33
19	NMR, CD and MCD studies of vanadate-nucleoside complexes. <i>Acta Chemica Scandinavica</i> , 1991 , 45, 456	5-62	17
18	A kinetic method for determination of free vanadium(IV) and (V) at trace level concentrations. <i>Analytical Biochemistry</i> , 1990 , 188, 53-64	3.1	31
17	Vanadate dimer and tetramer both inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. <i>Biochemistry</i> , 1990 , 29, 6698-706	3.2	36
16	Vanadate tetramer as the inhibiting species in enzyme reactions in vitro and in vivo. <i>Journal of the American Chemical Society</i> , 1990 , 112, 427-432	16.4	70
15	Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. <i>Journal of the American Chemical Society</i> , 1990 , 112, 2901-2908	16.4	111
14	Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems. <i>Journal of the American Chemical Society</i> , 1989 , 111, 7597-7607	16.4	166
13	Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase. <i>Biochemical and Biophysical Research Communications</i> , 1989 , 165, 246-50	3.4	42
12	Reversible and in situ formation of organic arsenates and vanadates as organic phosphate mimics in enzymatic reactions: mechanistic investigation of aldol reactions and synthetic applications. <i>Journal of Organic Chemistry</i> , 1989 , 54, 70-77	4.2	8o
11	Synthesis of 3-Deoxy-D-manno-2-octulosonate-8-phosphate (KDO-8-P) fromD-Arabinose: Generation of D-Arabinose-5-Phosphate using Hexokinase. <i>Tetrahedron Letters</i> , 1988 , 29, 427-430	2	70
10	Spontaneous and reversible interaction of vanadium(V) oxyanions with amine derivatives. <i>Inorganic Chemistry</i> , 1988 , 27, 1797-1806	5.1	62
9	Determination of enantiomeric purity of polar substrates with chiral lanthanide NMR shift reagents in polar solvents. <i>Journal of Organic Chemistry</i> , 1987 , 52, 2273-2276	4.2	48

LIST OF PUBLICATIONS

8	Enzymatic regeneration of adenosine 5@triphosphate: acetyl phosphate, phosphoenolpyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-alpha-D-ribosyl pyrophosphate, uridine-5@diphosphoglucose. <i>Methods in Enzymology</i> , 1987 , 136, 263-80	1.7	40
7	Glycerol kinase: substrate specificity. <i>Journal of the American Chemical Society</i> , 1985 , 107, 7008-7018	16.4	50
6	Glycerol kinase: synthesis of dihydroxyacetone phosphate, sn-glycerol-3-phosphate, and chiral analogs. <i>Journal of the American Chemical Society</i> , 1985 , 107, 7019-7027	16.4	83
5	Practical enzymic synthesis of adenosine 5©-(3-thiotriphosphate) (ATPgammaS). <i>Journal of Organic Chemistry</i> , 1984 , 49, 1360-1364	4.2	13
4	A convenient synthesis of disodium acetyl phosphate for use in in situ ATP cofactor regeneration. Journal of Organic Chemistry, 1983 , 48, 3130-3132	4.2	61
3	cis- and trans-Azoalkanes: Force field determination of molecular structures, heats of formation, and strain energies. <i>Chemische Berichte</i> , 1980 , 113, 1201-1204		10
2	Tetracoordinate planar carbon: a singlet biradical. <i>Journal of the American Chemical Society</i> , 1980 , 102, 7152-7154	16.4	24
1	Convergent Protein Phosphatase Inhibitor Design for PTP1B and TCPTP: Exchangeable Vanadium Coordination Complexes on Graphene Quantum Dots. <i>Advanced Functional Materials</i> ,2108645	15.6	1