
Mario L Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 Serology Control Panel Using the Dried-Tube Specimen Method. American Journal of Tropical Medicine and Hygiene, 2022, 106, 562-565.	0.6	1
2	Specialized interferon action in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
3	Granzyme B ⁺ CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes, 2022, 14, 2045852.	4.3	3
4	SAMHD1 Promotes the Antiretroviral Adaptive Immune Response in Mice Exposed to Lipopolysaccharide. Journal of Immunology, 2022, 208, 444-453.	0.4	4
5	APOBEC3: Friend or Foe in Human Papillomavirus Infection and Oncogenesis?. Annual Review of Virology, 2022, 9, 375-395.	3.0	11
6	Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15–Dependent Manner. Journal of Immunology, 2021, 206, 3043-3052.	0.4	4
7	Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. MBio, 2021, 12, e0150321.	1.8	28
8	Histone H2A-Reactive B Cells Are Functionally Anergic in Healthy Mice With Potential to Provide Humoral Protection Against HIV-1. Frontiers in Immunology, 2020, 11, 1565.	2.2	4
9	HIV infection does not alter interferon \hat{I}_{\pm}/\hat{I}^2 receptor 2 expression on mucosal immune cells. PLoS ONE, 2020, 15, e0218905.	1.1	3
10	Systemic Expression of a Viral RdRP Protects against Retrovirus Infection and Disease. Journal of Virology, 2020, 94, .	1.5	4
11	Qualitative Differences Between the IFNα subtypes and IFNβ Influence Chronic Mucosal HIV-1 Pathogenesis. PLoS Pathogens, 2020, 16, e1008986.	2.1	22
12	Quantifying HIV-1-Mediated Gut CD4+ T Cell Death in the Lamina Propria Aggregate Culture (LPAC) Model. Bio-protocol, 2020, 10, e3486.	0.2	9
13	Title is missing!. , 2020, 16, e1008986.		0
14	Title is missing!. , 2020, 16, e1008986.		0
15	Title is missing!. , 2020, 16, e1008986.		0
16	Title is missing!. , 2020, 16, e1008986.		0
17	Title is missing!. , 2020, 16, e1008986.		0

#	Article	IF	CITATIONS
19	Diverse Immunomodulatory Effects of Individual IFNα Subtypes on Virus-Specific CD8+ T Cell Responses. Frontiers in Immunology, 2019, 10, 2255.	2.2	30
20	Different Biological Activities of Specific Interferon Alpha Subtypes. MSphere, 2019, 4, .	1.3	5
21	Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiology Reviews, 2019, 43, 435-456.	3.9	18
22	Commensal and Pathogenic Bacteria Indirectly Induce IL-22 but Not IFNÎ ³ Production From Human Colonic ILC3s via Multiple Mechanisms. Frontiers in Immunology, 2019, 10, 649.	2.2	42
23	A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host and Microbe, 2019, 25, 87-100.e10.	5.1	26
24	Human Papillomavirus 16 E7 Stabilizes APOBEC3A Protein by Inhibiting Cullin 2-Dependent Protein Degradation. Journal of Virology, 2018, 92, .	1.5	48
25	SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-ήB and interferon pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3798-E3807.	3.3	88
26	A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. Aids, 2018, 32, 1599-1611.	1.0	18
27	HIV-1 Pathogenesis in the Gut. , 2018, , 878-886.		0
28	Follicular Regulatory T Cells Are Highly Permissive to R5-Tropic HIV-1. Journal of Virology, 2017, 91, .	1.5	33
29	Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. Journal of Experimental Medicine, 2017, 214, 931-941.	4.2	21
30	Breaching peripheral tolerance promotes the production of HIV-1–neutralizing antibodies. Journal of Experimental Medicine, 2017, 214, 2283-2302.	4.2	50
31	Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. Aids, 2017, 31, 511-521.	1.0	123
32	Type I interferon signaling is required for the APOBEC3/Rfv3-dependent neutralizing antibody response but not innate retrovirus restriction. Retrovirology, 2017, 14, 25.	0.9	6
33	The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathogens, 2017, 13, e1006226.	2.1	28
34	Tetherin/BST-2: Restriction Factor or Immunomodulator?. Current HIV Research, 2016, 14, 235-246.	0.2	12
35	T Cell Production of IFNÎ ³ in Response to TLR7/IL-12 Stimulates Optimal B Cell Responses to Viruses. PLoS ONE, 2016, 11, e0166322.	1.1	64
36	Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection. Scientific Reports, 2016, 6, 20425.	1.6	24

#	Article	IF	CITATIONS
37	Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection <i>In Vivo</i> . Journal of Virology, 2016, 90, 6001-6013.	1.5	114
38	A chimeric human APOBEC3A protein with a three amino acid insertion confers differential HIV-1 and adeno-associated virus restriction. Virology, 2016, 498, 149-163.	1.1	2
39	Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology, 2016, 13, 5.	0.9	60
40	Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer. Journal of General Virology, 2016, 97, 1-17.	1.3	24
41	Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS Pathogens, 2015, 11, e1005254.	2.1	84
42	Requirement for Fc Effector Mechanisms in the APOBEC3/Rfv3-Dependent Neutralizing Antibody Response. Journal of Virology, 2015, 89, 4011-4014.	1.5	9
43	Immunoglobulin VH gene diversity and somatic hypermutation during SIV infection of rhesus macaques. Immunogenetics, 2015, 67, 355-370.	1.2	9
44	APOBEC3A Functions as a Restriction Factor of Human Papillomavirus. Journal of Virology, 2015, 89, 688-702.	1.5	160
45	Friend retrovirus drives cytotoxic effectors through Toll-like receptor 3. Retrovirology, 2014, 11, 126.	0.9	17
46	Enhanced Fusion and Virion Incorporation for HIV-1 Subtype C Envelope Glycoproteins with Compact V1/V2 Domains. Journal of Virology, 2014, 88, 2083-2094.	1.5	17
47	Compartmentalization of Simian Immunodeficiency Virus Replication within Secondary Lymphoid Tissues of Rhesus Macaques Is Linked to Disease Stage and Inversely Related to Localization of Virus-Specific CTL. Journal of Immunology, 2014, 193, 5613-5625.	0.4	127
48	Microbial exposure alters HIV-1-induced mucosal CD4+ T cell death pathways Ex vivo. Retrovirology, 2014, 11, 14.	0.9	52
49	Tetherin Promotes the Innate and Adaptive Cell–Mediated Immune Response against Retrovirus Infection In Vivo. Journal of Immunology, 2014, 193, 306-316.	0.4	45
50	Cellular HIV-1 inhibition by truncated old world primate APOBEC3A proteins lacking a complete deaminase domain. Virology, 2014, 468-470, 532-544.	1.1	6
51	Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo. Virology, 2014, 468-470, 601-608.	1.1	16
52	Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection. Proceedings of the United States of America, 2014, 111, 7759-7764.	3.3	39
53	IFN-α Treatment Inhibits Acute Friend Retrovirus Replication Primarily through the Antiviral Effector Molecule Apobec3. Journal of Immunology, 2013, 190, 1583-1590.	0.4	21
54	Lentivirus restriction by diverse primate APOBEC3A proteins. Virology, 2013, 442, 82-96.	1.1	12

#	Article	IF	CITATIONS
55	Ribonuclease L is not critical for innate restriction and adaptive immunity against Friend retrovirus infection. Virology, 2013, 443, 134-142.	1.1	12
56	Humoral immunity in the Friend retrovirus infection model. Immunologic Research, 2013, 55, 249-260.	1.3	17
57	Fv1 Restriction and Retrovirus Vaccine Immunity in Apobec3-Deficient 129P2 Mice. PLoS ONE, 2013, 8, e60500.	1.1	9
58	A Single Nucleotide Polymorphism in Tetherin Promotes Retrovirus Restriction In Vivo. PLoS Pathogens, 2012, 8, e1002596.	2.1	42
59	Distinct Evolutionary Pressures Underlie Diversity in Simian Immunodeficiency Virus and Human Immunodeficiency Virus Lineages. Journal of Virology, 2012, 86, 13217-13231.	1.5	30
60	Differential virus restriction patterns of rhesus macaque and human APOBEC3A: Implications for lentivirus evolution. Virology, 2011, 419, 24-42.	1.1	31
61	Persistent Friend Virus Replication and Disease in <i>Apobec3</i> -Deficient Mice Expressing Functional B-Cell-Activating Factor Receptor. Journal of Virology, 2011, 85, 189-199.	1.5	21
62	Noninfectious Retrovirus Particles Drive the Apobec3/Rfv3 Dependent Neutralizing Antibody Response. PLoS Pathogens, 2011, 7, e1002284.	2.1	33
63	Identification of Two APOBEC3F Splice Variants Displaying HIV-1 Antiviral Activity and Contrasting Sensitivity to Vif*. Journal of Biological Chemistry, 2010, 285, 29326-29335.	1.6	16
64	The Glycosylated Gag Protein of a Murine Leukemia Virus Inhibits the Antiretroviral Function of APOBEC3. Journal of Virology, 2010, 84, 10933-10936.	1.5	51
65	Innate Retroviral Restriction by Apobec3 Promotes Antibody Affinity Maturation In Vivo. Journal of Immunology, 2010, 185, 1114-1123.	0.4	28
66	Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid Tissue. Cell, 2010, 143, 789-801.	13.5	384
67	Effective activation alleviates the replication block of CCR5-tropic HIV-1 in chimpanzee CD4+ lymphocytes. Virology, 2009, 394, 109-118.	1.1	9
68	Molecular Ecology and Natural History of Simian Foamy Virus Infection in Wild-Living Chimpanzees. PLoS Pathogens, 2008, 4, e1000097.	2.1	122
69	<i>Apobec3</i> Encodes <i>Rfv3</i> , a Gene Influencing Neutralizing Antibody Control of Retrovirus Infection. Science, 2008, 321, 1343-1346.	6.0	127
70	The Role of the APOBEC3 Family of Cytidine Deaminases in Innate Immunity, G-to-A Hypermutation, and Evolution of Retroviruses. , 2008, , 183-205.		5
71	Generation of Infectious Molecular Clones of Simian Immunodeficiency Virus from Fecal Consensus Sequences of Wild Chimpanzees. Journal of Virology, 2007, 81, 7463-7475.	1.5	62
72	Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV-1. Science, 2006, 313, 523-526.	6.0	723

#	Article	IF	CITATIONS
73	Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell, 2006, 125, 1055-1067.	13.5	359
74	High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15588-15593.	3.3	229
75	Vpu-mediated CD4 down-regulation and degradation is conserved among highly divergent SIVcpz strains. Virology, 2005, 335, 46-60.	1.1	23
76	Simian Immunodeficiency Virus Infection in Wild-Caught Chimpanzees from Cameroon. Journal of Virology, 2005, 79, 1312-1319.	1.5	45
77	Simian Immunodeficiency Virus Infection in Free-Ranging Sooty Mangabeys (Cercocebus atys atys) from the Tail^ Forest, Col,te d'Ivoire: Implications for the Origin of Epidemic Human Immunodeficiency Virus Type 2. Journal of Virology, 2005, 79, 12515-12527.	1.5	274
78	Nef Proteins from Simian Immunodeficiency Virus-Infected Chimpanzees Interact with p21-Activated Kinase 2 and Modulate Cell Surface Expression of Various Human Receptors. Journal of Virology, 2004, 78, 6864-6874.	1.5	46
79	Contaminated polio vaccine theory refuted. Nature, 2004, 428, 820-820.	13.7	74
80	Foci of Endemic Simian Immunodeficiency Virus Infection in Wild-Living Eastern Chimpanzees (Pan) Tj ETQq0 (0 0 rgBT /Ov	verlock 10 Tf
81	Noninvasive Detection of New Simian Immunodeficiency Virus Lineages in Captive Sooty Mangabeys: Ability To Amplify Virion RNA from Fecal Samples Correlates with Viral Load in Plasma. Journal of Virology, 2003, 77, 2214-2226.	1.5	45
82	Amplification of a Complete Simian Immunodeficiency Virus Genome from Fecal RNA of a Wild Chimpanzee. Journal of Virology, 2003, 77, 2233-2242.	1.5	80
83	Noninvasive Detection of Simian Immunodeficiency Virus Infection in a Wild-Living L'Hoest's Monkey (Cercopithecus Ihoesti). AIDS Research and Human Retroviruses, 2003, 19, 1163-1166.	0.5	40
84	The Evolution of Primate Lentiviruses and the Origins of AIDS. , 2002, , 65-96.		10
85	SIVcpz in Wild Chimpanzees. Science, 2002, 295, 465-465.	6.0	207
86	Detection of bancroftian filariasis in human blood samples from Sorsogon province, the Philippines by polymerase chain reaction. Parasitology Research, 2001, 87, 677-679.	0.6	1
87	Functional Analysis of the Simian Immunodeficiency Virus Vpx Protein: Identification of Packaging Determinants and a Novel Nuclear Targeting Domain. Journal of Virology, 2001, 75, 362-374.	1.5	49
88	Paramyosin is a major target of the human IgA response against Schistosoma japonicum. Parasite Immunology, 1999, 21, 641-647.	0.7	19
89	Molecular identification of a 21.7 kDa Schistosoma japonicum antigen as a target of the human IgE response. Molecular and Biochemical Parasitology, 1999, 98, 157-161.	0.5	18
90	ldentification of the Schistosoma japonicum 22.6–kDa Antigen as a Major Target of the Human IgE Response: Similarity of IgE–Binding Epitopes to Allergen Peptides. International Archives of Allergy and Immunology, 1998, 117, 94-104.	0.9	70

#	Article	IF	CITATIONS
91	Minimal variation in the Pfs28 ookinete antigen from Philippine field isolates of Plasmodium falciparum1Note: The nucleotide sequence data in this paper has been submitted to GenBankâ"¢ data base with the accession No. L25843.1. Molecular and Biochemical Parasitology, 1997, 87, 97-99.	0.5	17