Niels H Gehring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling of Gab1 to C-Met, Grb2, and Shp2 Mediates Biological Responses. Journal of Cell Biology, 2000, 149, 1419-1432.	2.3	329
2	Exon-Junction Complex Components Specify Distinct Routes of Nonsense-Mediated mRNA Decay with Differential Cofactor Requirements. Molecular Cell, 2005, 20, 65-75.	4.5	277
3	Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO Journal, 2008, 27, 736-747.	3.5	269
4	Y14 and hUpf3b Form an NMD-Activating Complex. Molecular Cell, 2003, 11, 939-949.	4.5	258
5	Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nature Genetics, 2001, 28, 389-392.	9.4	247
6	Disassembly of Exon Junction Complexes by PYM. Cell, 2009, 137, 536-548.	13.5	162
7	Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO Journal, 2009, 28, 2293-2306.	3.5	126
8	Mechanism of escape from nonsense-mediated mRNA decay of human β-globin transcripts with nonsense mutations in the first exon. Rna, 2011, 17, 843-854.	1.6	120
9	Deciphering the mRNP Code: RNA-Bound Determinants of Post-Transcriptional Gene Regulation. Trends in Biochemical Sciences, 2017, 42, 369-382.	3.7	115
10	The Hierarchy of Exon-Junction Complex Assembly by the Spliceosome Explains Key Features of Mammalian Nonsense-Mediated mRNA Decay. PLoS Biology, 2009, 7, e1000120.	2.6	114
11	Exon Junction Complexes: Supervising the Gene Expression Assembly Line. Trends in Genetics, 2016, 32, 724-735.	2.9	114
12	Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. Rna, 2006, 12, 1015-1022.	1.6	112
13	The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Research, 2007, 35, 4542-4551.	6.5	107
14	CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports, 2012, 2, 454-461.	2.9	99
15	The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene, 2001, 20, 1052-1062.	2.6	96
16	IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Human Molecular Genetics, 2009, 18, 1288-1300.	1.4	88
17	Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. Rna, 2008, 14, 914-927.	1.6	83
18	Assembly, disassembly and recycling. RNA Biology, 2011, 8, 24-29.	1.5	78

NIELS H GEHRING

#	Article	IF	CITATIONS
19	3′ UTR Length and Messenger Ribonucleoprotein Composition Determine Endocleavage Efficiencies at Termination Codons. Cell Reports, 2014, 9, 555-568.	2.9	78
20	Splicing factors stimulate polyadenylation via USEs at non-canonical 3′ end formation signals. EMBO Journal, 2007, 26, 2658-2669.	3.5	75
21	Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cellular and Molecular Life Sciences, 2015, 72, 4523-4544.	2.4	72
22	The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. Rna, 2014, 20, 1579-1592.	1.6	71
23	A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Research, 2016, 44, 2348-2361.	6.5	69
24	The human intronless melanocortin 4-receptor gene is NMD insensitive. Human Molecular Genetics, 2002, 11, 331-335.	1.4	67
25	Inactivation of Both RNA Binding and Aconitase Activities of Iron Regulatory Protein-1 by Quinone-induced Oxidative Stress. Journal of Biological Chemistry, 1999, 274, 6219-6225.	1.6	65
26	Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends in Genetics, 2021, 37, 355-372.	2.9	64
27	Exon Junction Complexes Suppress Spurious Splice Sites to Safeguard Transcriptome Integrity. Molecular Cell, 2018, 72, 482-495.e7.	4.5	61
28	Inhibition of Nonsense-mediated mRNA Decay by the Natural Product Pateamine A through Eukaryotic Initiation Factor 4AIII. Journal of Biological Chemistry, 2009, 284, 23613-23621.	1.6	58
29	A Day in the Life of the Exon Junction Complex. Biomolecules, 2020, 10, 866.	1.8	57
30	Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nature Communications, 2019, 10, 3678.	5.8	56
31	A chemiluminescence-based reporter system to monitor nonsense-mediated mRNA decay. Biochemical and Biophysical Research Communications, 2006, 349, 186-191.	1.0	55
32	SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nature Communications, 2021, 12, 3965.	5.8	54
33	HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA. Biomolecules, 2015, 5, 2808-2839.	1.8	52
34	Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay. RNA Biology, 2013, 10, 1291-1298.	1.5	45
35	Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2. Nucleic Acids Research, 2014, 42, 2673-2686.	6.5	43
36	Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflugers Archiv European Journal of Physiology, 2016, 468, 1013-1028.	1.3	43

NIELS H GEHRING

#	Article	IF	CITATIONS
37	The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD). Nucleic Acids Research, 2006, 34, 2355-2363.	6.5	41
38	NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Research, 2014, 42, 3177-3193.	6.5	39
39	CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Research, 2020, 48, 8626-8644.	6.5	35
40	3′ End Processing of the Prothrombin mRNA in Thrombophilia. Acta Haematologica, 2006, 115, 192-197.	0.7	31
41	Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences. Nature Communications, 2016, 7, 13691.	5.8	29
42	Nonsense-Mediated mRNA Decay and Loss-of-Function of the Protein Underlie the X-Linked Epilepsy Associated with the W356× Mutation in Synapsin I. PLoS ONE, 2013, 8, e67724.	1.1	29
43	CWC22-dependent pre-mRNA splicing and eIF4A3 binding enables global deposition of exon junction complexes. Nucleic Acids Research, 2015, 43, 4687-4700.	6.5	28
44	The Mammalian RNA-Binding Protein Staufen2 Links Nuclear and Cytoplasmic RNA Processing Pathways in Neurons. NeuroMolecular Medicine, 2005, 6, 127-144.	1.8	27
45	Transcript-specific characteristics determine the contribution of endo- and exonucleolytic decay pathways during the degradation of nonsense-mediated decay substrates. Rna, 2017, 23, 1224-1236.	1.6	26
46	Human UPF3A and UPF3B enable faultâ€ŧolerant activation of nonsenseâ€mediated mRNA decay. EMBO Journal, 2022, 41, e109191.	3.5	21
47	Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts. Nature Protocols, 2019, 14, 1603-1633.	5.5	20
48	Internal ribosome entry sequenceâ€mediated translation initiation triggers nonsenseâ€mediated decay. EMBO Reports, 2006, 7, 722-726.	2.0	19
49	mRNA metabolism and neuronal disease. FEBS Letters, 2015, 589, 1598-1606.	1.3	19
50	Plasmid transfection influences the readout of nonsense-mediated mRNA decay reporter assays in human cells. Scientific Reports, 2017, 7, 10616.	1.6	19
51	The E3 ubiquitin ligase <scp>UBR</scp> 5 interacts with the H/ <scp>ACA</scp> ribonucleoprotein complex and regulates ribosomal <scp>RNA</scp> biogenesis in embryonic stem cells. FEBS Letters, 2020, 594, 175-188.	1.3	19
52	The thrombopoietin receptor P106L mutation functionally separates receptor signaling activity from thrombopoietin homeostasis. Blood, 2015, 125, 1159-1169.	0.6	18
53	The exon junction complex: structural insights into a faithful companion of mammalian mRNPs. Biochemical Society Transactions, 2018, 46, 153-161.	1.6	16
54	Chapter 23 Tethering Assays to Investigate Nonsenseâ€Mediated mRNA Decay Activating Proteins. Methods in Enzymology, 2008, 448, 467-482.	0.4	15

NIELS H GEHRING

#	Article	IF	CITATIONS
55	Single-cell transcriptome sequencing on the Nanopore platform with ScNapBar. Rna, 2021, 27, 763-770.	1.6	12
56	Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Research, 2021, 49, 1688-1707.	6.5	10
57	Exon junction complex-associated multi-adapter RNPS1 nucleates splicing regulatory complexes to maintain transcriptome surveillance. Nucleic Acids Research, 2022, 50, 5899-5918.	6.5	9
58	Studying the composition of mRNPs in vitro using splicing-competent cell extracts. Methods, 2014, 65, 342-349.	1.9	7
59	Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Scientific Reports, 2016, 6, 37311.	1.6	6
60	The Physiology of Prothrombin Gene Expression Integrates RNA Polyadenylation and Splicing in a Novel Regulatable 3′ RNP-Complex Blood, 2006, 108, 1601-1601.	0.6	0
61	Autosomal Recessive Hereditary Thrombocytosis: Functional Analysis of a Novel C-Mpl Mutation Resulting in An Unsual Mode of Constitutive Receptor Activation. Blood, 2008, 112, 890-890.	0.6	0