Jae-Sung You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337092/publications.pdf

Version: 2024-02-01

430442 676716 1,333 24 18 22 h-index citations g-index papers 26 26 26 1823 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of skeletal muscle mTOR in the regulation of mechanical loadâ€induced growth. Journal of Physiology, 2011, 589, 5485-5501.	1.3	238
2	The Role of Diacylglycerol Kinase \hat{I}^{\P} and Phosphatidic Acid in the Mechanical Activation of Mammalian Target of Rapamycin (mTOR) Signaling and Skeletal Muscle Hypertrophy. Journal of Biological Chemistry, 2014, 289, 1551-1563.	1.6	129
3	The role of raptor in the mechanical loadâ€induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB Journal, 2019, 33, 4021-4034.	0.2	110
4	The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. DMM Disease Models and Mechanisms, 2015, 8, 1059-1069.	1,2	108
5	G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15756-15761.	3.3	95
6	Yesâ€Associated Protein is upâ€regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Letters, 2015, 589, 1491-1497.	1.3	82
7	Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Applied Physiology, Nutrition and Metabolism, 2010, 35, 310-318.	0.9	76
8	Eccentric contractions increase the phosphorylation of tuberous sclerosis complex $\hat{a}\in 2$ (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. Journal of Physiology, 2013, 591, 4611-4620.	1.3	76
9	Mechanical Stimulation Induces mTOR Signaling via an ERK-Independent Mechanism: Implications for a Direct Activation of mTOR by Phosphatidic Acid. PLoS ONE, 2012, 7, e47258.	1.1	72
10	A map of the phosphoproteomic alterations that occur after a bout of maximalâ€intensity contractions. Journal of Physiology, 2017, 595, 5209-5226.	1.3	70
11	Lipid domain–dependent regulation of single-cell wound repair. Molecular Biology of the Cell, 2014, 25, 1867-1876.	0.9	59
12	Macrophage-Specific Expression of Urokinase-Type Plasminogen Activator Promotes Skeletal Muscle Regeneration. Journal of Immunology, 2011, 187, 1448-1457.	0.4	37
13	A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Science Signaling, 2018, 11 , .	1.6	34
14	Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. Journal of Biological Chemistry, 2017, 292, 6987-6997.	1.6	25
15	ARHGEF3 Regulates Skeletal Muscle Regeneration and Strength through Autophagy. Cell Reports, 2021, 34, 108594.	2.9	24
16	Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration. Journal of Clinical Investigation, 2019, 129, 2088-2093.	3.9	22
17	Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget, 2017, 8, 18754-18772.	0.8	21
18	mTORC1 mediates fiber type-specific regulation of protein synthesis and muscle size during denervation. Cell Death Discovery, 2021, 7, 74.	2.0	20

#	Article	IF	CITATION
19	Dietary fish oil inhibits the early stage of recovery of atrophied soleus muscle in rats via Akt–p70s6k signaling and PGF2α. Journal of Nutritional Biochemistry, 2010, 21, 929-934.	1.9	19
20	Autophagy-dependent regulation of skeletal muscle regeneration and strength by a RHOGEF. Autophagy, 2021, 17, 1044-1045.	4.3	8
21	A nonâ€translational role of threonylâ€tRNA synthetase in regulating JNK signaling during myogenic differentiation. FASEB Journal, 2021, 35, e21948.	0.2	5
22	Aging Does Not Exacerbate Muscle Loss During Denervation and Lends Unique Muscle-Specific Atrophy Resistance With Akt Activation. Frontiers in Physiology, 2021, 12, 779547.	1.3	3
23	The Role of mTOR in Mechanical Load Induced Skeletal Muscle Hypertrophy and Hyperplasia. FASEB Journal, 2011, 25, 1105.1.	0.2	0
24	A Novel DGKK-FoxO-Ubiquitin Proteolytic Axis Controls Fiber Size During Skeletal Muscle Remodeling. SSRN Electronic Journal, 0, , .	0.4	0