Ian D Reid

List of Publications by Citations

Source: https://exaly.com/author-pdf/1336513/ian-d-reid-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 11,576 159 45 h-index g-index citations papers 6.84 15,561 5.2 175 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
159	MonoSLAM: real-time single camera SLAM. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2007 , 29, 1052-67	13.3	2013
158	. IEEE Transactions on Robotics, 2016 , 32, 1309-1332	6.5	1222
157	RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation 2017,		959
156	Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression 2019,		647
155	Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2016 , 38, 2024-39	13.3	604
154	Single View Metrology. International Journal of Computer Vision, 2000, 40, 123-148	10.6	357
153	Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue. <i>Lecture Notes in Computer Science</i> , 2016 , 740-756	0.9	335
152	Stable multi-target tracking in real-time surveillance video 2011,		302
151	Articulated Body Motion Capture by Stochastic Search. <i>International Journal of Computer Vision</i> , 2005 , 61, 185-205	10.6	274
150	A comparison of loop closing techniques in monocular SLAM. <i>Robotics and Autonomous Systems</i> , 2009 , 57, 1188-1197	3.5	165
149	Drones count wildlife more accurately and precisely than humans. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 1160-1167	7.7	156
148	Deep learning features at scale for visual place recognition 2017,		136
147	Global stereo reconstruction under second-order smoothness priors. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2009 , 31, 2115-28	13.3	134
146	From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur 2017 ,		129
145	Joint Probabilistic Data Association Revisited 2015 ,		126
144	A plane measuring device. <i>Image and Vision Computing</i> , 1999 , 17, 625-634	3.7	122
143	RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo. <i>International Journal of Computer Vision</i> , 2011 , 94, 198-214	10.6	121

(2017-2010)

142	Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment. <i>International Journal of Robotics Research</i> , 2010 , 29, 958-980	5.7	115
141	PWP3D: Real-Time Segmentation and Tracking of 3D Objects. <i>International Journal of Computer Vision</i> , 2012 , 98, 335-354	10.6	114
140	Structured learning of human interactions in TV shows. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2012 , 34, 2441-53	13.3	112
139	Real-Time SLAM Relocalisation 2007,		112
138	A general method for human activity recognition in video. <i>Computer Vision and Image Understanding</i> , 2006 , 104, 232-248	4.3	105
137	Smart Mining for Deep Metric Learning 2017 ,		102
136	Deep Regression Tracking with Shrinkage Loss. Lecture Notes in Computer Science, 2018, 369-386	0.9	102
135	Joint tracking and segmentation of multiple targets 2015,		101
134	Self-Calibration of Rotating and Zooming Cameras. <i>International Journal of Computer Vision</i> , 2001 , 45, 107-127	10.6	98
133	Navigating, Recognizing and Describing Urban Spaces With Vision and Lasers. <i>International Journal of Robotics Research</i> , 2009 , 28, 1406-1433	5.7	88
132	Multi-modal Cycle-Consistent Generalized Zero-Shot Learning. <i>Lecture Notes in Computer Science</i> , 2018 , 21-37	0.9	84
131	Meaningful maps with object-oriented semantic mapping 2017 ,		79
130	Dense Reconstruction Using 3D Object Shape Priors 2013 ,		75
129	Modelling pedestrian trajectory patterns with Gaussian processes 2009,		74
128	Manhattan scene understanding using monocular, stereo, and 3D features 2011 ,		73
127	Robust Real-Time Visual Tracking Using Pixel-Wise Posteriors. <i>Lecture Notes in Computer Science</i> , 2008 , 831-844	0.9	65
126	Automatic Relocalization and Loop Closing for Real-Time Monocular SLAM. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2011 , 33, 1699-712	13.3	63
125	2017,		60

124	Active tracking of foveated feature clusters using affine structure. <i>International Journal of Computer Vision</i> , 1996 , 18, 41-60	10.6	60
123	Driving saccade to pursuit using image motion. International Journal of Computer Vision, 1995, 16, 205-2	2 28 .6	57
122	A Constant-Time Efficient Stereo SLAM System 2009 ,		55
121	The active recovery of 3D motion trajectories and their use in prediction. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 1997 , 19, 219-234	13.3	54
120	A modular head/eye platform for real-time reactive vision. <i>Mechatronics</i> , 1993 , 3, 517-535	3	54
119	Guiding Visual Surveillance by Tracking Human Attention 2009,		54
118	On the comparison of uncertainty criteria for active SLAM 2012 ,		50
117	Projective calibration of a laser-stripe range finder. <i>Image and Vision Computing</i> , 1996 , 14, 659-666	3.7	47
116	Exploring Context with Deep Structured Models for Semantic Segmentation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1352-1366	13.3	45
115	Nonlinear shape manifolds as shape priors in level set segmentation and tracking 2011 ,		45
114	Real-time tracking of multiple occluding objects using level sets 2010 ,		43
113	Dense 3D Face Correspondence. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1584-1598	13.3	38
112	High Five: Recognising human interactions in TV shows 2010 ,		38
111	GMS: Grid-Based Motion Statistics for Fast, Ultra-robust Feature Correspondence. <i>International Journal of Computer Vision</i> , 2020 , 128, 1580-1593	10.6	38
110	Deep Reinforcement Learning for Active Breast Lesion Detection from DCE-MRI. <i>Lecture Notes in Computer Science</i> , 2017 , 665-673	0.9	37
109	2010,		36
108	Unsupervised learning of a scene-specific coarse gaze estimator 2011 ,		36
107	Attend in Groups: A Weakly-Supervised Deep Learning Framework for Learning from Web Data 2017 ,		35

106	Growing semantically meaningful models for visual SLAM 2010 ,		34
105	Multi-modal Auto-Encoders as Joint Estimators for Robotics Scene Understanding		34
104	3D hand tracking for human computer interaction. <i>Image and Vision Computing</i> , 2012 , 30, 236-250	3.7	33
103	Bootstrapping the Performance of Webly Supervised Semantic Segmentation 2018,		32
102	2008,		30
101	Integrating Object Detection with 3D Tracking Towards a Better Driver Assistance System 2010 ,		29
100	Saccade and pursuit on an active head/eye platform. <i>Image and Vision Computing</i> , 1994 , 12, 155-163	3.7	29
99	MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. <i>International Journal of Computer Vision</i> , 2021 , 129, 845-881	10.6	29
98	2015,		27
97	Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations 2019 ,		26
96	Latent Data Association: Bayesian Model Selection for Multi-target Tracking 2013,		25
95	An image-to-map loop closing method for monocular SLAM 2008 ,		25
94	STAR3D: Simultaneous Tracking and Reconstruction of 3D Objects Using RGB-D Data 2013,		24
93	. Proceedings - IEEE International Conference on Robotics and Automation, 2007,		24
92	Estimating Gaze Direction from Low-Resolution Faces in Video. <i>Lecture Notes in Computer Science</i> , 2006 , 402-415	0.9	24
91	2010,		23
90	Geometrically consistent plane extraction for dense indoor 3D maps segmentation 2016,		23
89	Goal-directed video metrology. <i>Lecture Notes in Computer Science</i> , 1996 , 647-658	0.9	23

88	Real-Time 3D Tracking and Reconstruction on Mobile Phones. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2015 , 21, 557-70	22
87	Deep learning for 2D scan matching and loop closure 2017 ,	21
86	Probabilistic surveillance with multiple active cameras 2010 ,	21
85	Direct semi-dense SLAM for rolling shutter cameras 2016 ,	21
84	A distributed camera system for multi-resolution surveillance 2009 ,	20
83	Simultaneous Monocular 2D Segmentation, 3D Pose Recovery and 3D Reconstruction. <i>Lecture Notes in Computer Science</i> , 2013 , 593-606	20
82	Efficient Point Process Inference for Large-Scale Object Detection 2016,	20
81	Cognitive visual tracking and camera control. <i>Computer Vision and Image Understanding</i> , 2012 , 116, 457-4 <u>7</u> .3	19
80	Modeling and generating complex motion blur for real-time tracking 2008,	19
79	Real-Time Monocular Object-Model Aware Sparse SLAM 2019 ,	18
78	Simultaneous 3D tracking and reconstruction on a mobile phone 2013 ,	18
77	Efficient 3D Scene Labeling Using Fields of Trees 2013 ,	18
76	Video synchronization from human motion using rank constraints. <i>Computer Vision and Image Understanding</i> , 2009 , 113, 891-906	18
75	Scaling CNNs for High Resolution Volumetric Reconstruction from a Single Image 2017,	17
74	A Dynamic Programming Approach to Reconstructing Building Interiors. <i>Lecture Notes in Computer Science</i> , 2010 , 394-407	17
73	Training Medical Image Analysis Systems like Radiologists. <i>Lecture Notes in Computer Science</i> , 2018 , 546- 5 54	17
72	Shared shape spaces 2011 ,	16
71	SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes 2018,	16

7º	3D Tracking of Multiple Objects with Identical Appearance Using RGB-D Input 2014 ,		15
69	Automatic Reasoning about Causal Events in Surveillance Video. <i>Eurasip Journal on Image and Video Processing</i> , 2011 , 2011, 1-19	2.5	15
68	Scalable Place Recognition Under Appearance Change for Autonomous Driving 2019,		15
67	Real-Time Tracking of Single and Multiple Objects from Depth-Colour Imagery Using 3D Signed Distance Functions. <i>International Journal of Computer Vision</i> , 2017 , 124, 80-95	10.6	14
66	Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks 2018,		14
65	Unconstrained Multiple-People Tracking. Lecture Notes in Computer Science, 2006, 505-514	0.9	14
64	Planes, trains and automobiles lautonomy for the modern robot 2010,		13
63	Unsupervised Scale-Consistent Depth Learning from Video. <i>International Journal of Computer Vision</i> , 2021 , 129, 2548-2564	10.6	13
62	A fast, modular scene understanding system using context-aware object detection 2015,		12
61	Dense monocular reconstruction using surface normals 2017 ,		12
60	Dense monocular reconstruction using surface normals 2017 , PWP3D: Real-time segmentation and tracking of 3D objects 2009 ,		12
		0.9	
60	PWP3D: Real-time segmentation and tracking of 3D objects 2009 , Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. <i>Lecture Notes</i>	0.9	12
60 59	PWP3D: Real-time segmentation and tracking of 3D objects 2009 , Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. <i>Lecture Notes in Computer Science</i> , 2018 , 508-524 Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. <i>Medical Image</i>		12
605958	PWP3D: Real-time segmentation and tracking of 3D objects 2009 , Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. <i>Lecture Notes in Computer Science</i> , 2018 , 508-524 Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. <i>Medical Image Analysis</i> , 2019 , 58, 101562	15.4	12 12 11
60595857	PWP3D: Real-time segmentation and tracking of 3D objects 2009, Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. Lecture Notes in Computer Science, 2018, 508-524 Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. Medical Image Analysis, 2019, 58, 101562 Online unsupervised feature learning for visual tracking. Image and Vision Computing, 2016, 51, 84-94	15.4	12 12 11
6059585756	PWP3D: Real-time segmentation and tracking of 3D objects 2009, Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. Lecture Notes in Computer Science, 2018, 508-524 Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. Medical Image Analysis, 2019, 58, 101562 Online unsupervised feature learning for visual tracking. Image and Vision Computing, 2016, 51, 84-94 DeepSetNet: Predicting Sets with Deep Neural Networks 2017, Hierarchical Higher-Order Regression Forest Fields: An Application to 3D Indoor Scene Labelling	15.4	12 12 11 11 11

52	FroDO: From Detections to 3D Objects 2020 ,		11
51	Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions 2016 ,		11
50	Self-supervised Learning for Single View Depth and Surface Normal Estimation 2019,		10
49	Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 2020, 39, 1-24	7.6	10
48	Visual SLAM: Why Bundle Adjust? 2019 ,		9
47	Maximizing RigiditylRevisited: A Convex Programming Approach for Generic 3D Shape Reconstruction from Multiple Perspective Views 2017 ,		9
46	Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. <i>Lecture Notes in Computer Science</i> , 2020 , 177-195	0.9	9
45	Depth Based Semantic Scene Completion With Position Importance Aware Loss. <i>IEEE Robotics and Automation Letters</i> , 2020 , 5, 219-226	4.2	9
44	Joint Probabilistic Matching Using m-Best Solutions 2016 ,		9
43	Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2019 , 41, 915-927	13.3	9
42	Steering without representation with the use of active fixation. <i>Perception</i> , 1997 , 26, 1519-28	1.2	8
41	Automated Alignment of Robotic Pan-Tilt Camera Units Using Vision. <i>International Journal of Computer Vision</i> , 2006 , 68, 219-237	10.6	8
40	Structure Aware SLAM Using Quadrics and Planes. Lecture Notes in Computer Science, 2019, 410-426	0.9	8
39	NeuRoRA: Neural Robust Rotation Averaging. Lecture Notes in Computer Science, 2020, 137-154	0.9	8
38	2017,		7
37	Camera calibration from human motion. <i>Image and Vision Computing</i> , 2008 , 26, 851-862	3.7	7
36	Self-alignment of a binocular robot. <i>Image and Vision Computing</i> , 1996 , 14, 635-640	3.7	7
35	Model-based recognition and range imaging for a guided vehicle. <i>Image and Vision Computing</i> , 1992 , 10, 197-207	3.7	7

(2017-2018)

34	Bayesian Semantic Instance Segmentation in Open Set World. <i>Lecture Notes in Computer Science</i> , 2018 , 3-18	0.9	7	
33	A Unified Energy Minimization Framework for Model Fitting in Depth. <i>Lecture Notes in Computer Science</i> , 2012 , 72-82	0.9	7	
32	RGBD Based Dimensional Decomposition Residual Network for 3D Semantic Scene Completion 2019 ,		7	
31	The k-support norm and convex envelopes of cardinality and rank 2015,		6	
30	Measuring the performance of single image depth estimation methods 2016,		6	
29	Approximate Fisher Information Matrix to Characterize the Training of Deep Neural Networks. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , 42, 15-26	13.3	6	
28	Hybrid Inference Optimization for robust pose graph estimation 2014,		5	
27	Robust 3D hand tracking for human computer interaction 2011 ,		5	
26	Multiview segmentation and tracking of dynamic occluding layers. <i>Image and Vision Computing</i> , 2010 , 28, 1022-1030	3.7	5	
25	Recognition of parameterized objects from 3D data: a parallel implementation. <i>Image and Vision Computing</i> , 1994 , 12, 573-582	3.7	5	
24	Regressing Local to Global Shape Properties for Online Segmentation and Tracking. <i>International Journal of Computer Vision</i> , 2014 , 106, 269-281	10.6	4	
23	Transfer of Fixation Using Affine Structure: Extending the Analysis to Stereo. <i>International Journal of Computer Vision</i> , 1998 , 29, 47-58	10.6	4	
22	Automatic Human Behaviour Recognition and Explanation for CCTV Video Surveillance. <i>Security Journal</i> , 2008 , 21, 173-188	1	4	
21	RRD-SLAM: Radial-distorted rolling-shutter direct SLAM 2017 ,		3	
20	A branch-and-bound algorithm for checkerboard extraction in camera-laser calibration 2017,		3	
19	Improving Global Multi-target Tracking with Local Updates. <i>Lecture Notes in Computer Science</i> , 2015 , 174-190	0.9	3	
18	Understanding Interactions and Guiding Visual Surveillance by Tracking Attention. <i>Lecture Notes in Computer Science</i> , 2011 , 380-389	0.9	3	
17	Learning Multi-level Region Consistency with Dense Multi-label Networks for Semantic Segmentation 2017 ,		3	

16	Learning Deeply Supervised Good Features to Match for Dense Monocular Reconstruction. <i>Lecture Notes in Computer Science</i> , 2019 , 609-624	0.9	2
15	Multi-Object Model-Free Tracking with Joint Appearance and Motion Inference 2017,		2
14	Gaze directed camera control for face image acquisition 2011,		2
13	Image interpolation for virtual sports scenarios. <i>Machine Vision and Applications</i> , 2005 , 16, 236-245	2.8	2
12	MOLTR: Multiple Object Localization, Tracking and Reconstruction From Monocular RGB Videos. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 3341-3348	4.2	2
11	Cognitive active vision for human identification 2012,		1
10	Learning texton models for real-time scene context		1
9	Meta Learning with Differentiable Closed-form Solver for Fast Video Object Segmentation 2020,		1
8	Dual-Attention-Guided Network for Ghost-Free High Dynamic Range Imaging. <i>International Journal of Computer Vision</i> ,1	10.6	1
7	SPRINT: Subgraph Place Recognition for INtelligent Transportation 2020 ,		1
6	HM\$^4\$: Hidden Markov Model With Memory Management for Visual Place Recognition. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 167-174	4.2	1
5	SG-VAE: Scene Grammar Variational Autoencoder to Generate New Indoor Scenes. <i>Lecture Notes in Computer Science</i> , 2020 , 155-171	0.9	O
4	Visual localization under appearance change: filtering approaches. <i>Neural Computing and Applications</i> , 2021 , 33, 7325-7338	4.8	0
3	Temporally-coherent Novel Video Synthesis Using Texture-based Priors. <i>IPSJ Transactions on Computer Vision and Applications</i> , 2009 , 1, 72-81	3.3	
2	The Pipe-group Architecture for Real-Time Active Vision. <i>Real Time Imaging</i> , 1997 , 3, 319-330		
1	Augmentation Network for Generalised Zero-Shot Learning. <i>Lecture Notes in Computer Science</i> , 2021 , 442-458	0.9	