
## Lifen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1336313/publications.pdf Version: 2024-02-01



LICEN ZUANC

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An Alternating Conduction-Insulation Molecular "Fence―Model from Fluorinated Metallopolymers.<br>Chemical Communications, 2022, , .                                                                                                                               | 4.1  | 1         |
| 2  | Synthesis and Phase Behavior of (Semifluorinated Alkane)â€Based Side hain Liquid Crystalline<br>Copolymers. Macromolecular Rapid Communications, 2022, 43, .                                                                                                      | 3.9  | 8         |
| 3  | Multimesophase transitions of main-chain liquid crystalline copolymers with strictly alternating fluorocarbon chains. Polymer Chemistry, 2021, 12, 736-743.                                                                                                       | 3.9  | 11        |
| 4  | Facile synthesis of micron-size Janus particles by one-pot suspension polymerization and their functional modification. Polymer Chemistry, 2021, 12, 2722-2730.                                                                                                   | 3.9  | 0         |
| 5  | Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization:<br>facile synthesis of star copolymers and unimolecular micelles. Polymer Chemistry, 2021, 12, 2335-2345.                                                           | 3.9  | 14        |
| 6  | Reduction-Induced Crystallization-Driven Self-Assembly of Main-Chain-Type Alternating Copolymers:<br>Transformation from 1D Lines to 2D Platelets. ACS Macro Letters, 2021, 10, 564-569.                                                                          | 4.8  | 11        |
| 7  | Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Lightâ€Controlled<br>Bromine–lodine Transformation Reversibleâ€Deactivation Radical Polymerization. Macromolecular<br>Rapid Communications, 2021, 42, e2100211.                 | 3.9  | 14        |
| 8  | A novel reversible-deactivation radical polymerization strategy via near-infrared light-controlled<br>photothermal conversion dividing wall-type heat exchanger. Science China Chemistry, 2021, 64,<br>1242-1250.                                                 | 8.2  | 11        |
| 9  | Facile photochemical synthesis of main-chain-type semifluorinated alternating copolymers catalyzed by conventional amines or halide salts. Chemical Communications, 2021, 57, 11354-11357.                                                                        | 4.1  | 7         |
| 10 | Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution<br>Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie, 2020, 132,<br>3938-3944.                                                      | 2.0  | 11        |
| 11 | Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution<br>Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie - International<br>Edition, 2020, 59, 3910-3916.                               | 13.8 | 64        |
| 12 | Photocontrolled iodine-mediated reversible-deactivation radical polymerization with a semifluorinated alternating copolymer as the macroinitiator. Polymer Chemistry, 2020, 11, 7497-7505.                                                                        | 3.9  | 16        |
| 13 | Construction of NIR Light Controlled Micelles with Photothermal Conversion Property:<br>Poly(poly(ethylene glycol)methyl ether methacrylate) (PPEGMA) as Hydrophilic Block and Ketocyanine<br>Dye as NIR Photothermal Conversion Agent. Polymers, 2020, 12, 1181. | 4.5  | 5         |
| 14 | Construction of a near-infrared light-controlled reciprocating piston "pump―based on soft<br>actuators with fluorine-containing alternating polymer. Journal of Materials Chemistry C, 2020, 8,<br>10238-10247.                                                   | 5.5  | 9         |
| 15 | One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ<br>Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Polymers, 2020, 12, 150.                                                             | 4.5  | 8         |
| 16 | Facile synthesis of poly( <i>N</i> -vinyl pyrrolidone) block copolymers with "more-activated―<br>monomers by using photoinduced successive RAFT polymerization. Polymer Chemistry, 2020, 11,<br>2080-2088.                                                        | 3.9  | 9         |
| 17 | Photoâ€Controlled Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): A Novel Strategy Using In Situ<br>Bromineâ€Iodine Transformation Living Radical Polymerization. Macromolecular Rapid Communications,<br>2019, 40, e1800327.                               | 3.9  | 34        |
| 18 | Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of<br>Methacrylates: Effect of Water in the Polymerization System. ACS Macro Letters, 2019, 8, 1419-1425.                                                                    | 4.8  | 36        |

| #  | Article                                                                                                                                                                                                 | IF        | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 19 | lodine-mediated reversible-deactivation radical polymerization: a powerful strategy for polymer synthesis. Polymer Chemistry, 2019, 10, 2504-2515.                                                      | 3.9       | 63           |
| 20 | Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance.<br>Polymer Chemistry, 2019, 10, 2064-2072.                                                                  | 3.9       | 27           |
| 21 | Surface modification of carbon nanotubes by using iron-mediated activators generated by electron transfer for atom transfer radical polymerization. RSC Advances, 2018, 8, 11150-11156.                 | 3.6       | 8            |
| 22 | Poly(Ionic Liquid): A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling<br>System of Transition Metal-Mediated ATRP. Polymers, 2018, 10, 347.                             | 4.5       | 7            |
| 23 | Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization. Nanoscale, 2018, 10, 10277-10287. | 5.6       | 21           |
| 24 | Organocatalytic Approach to Functional Semifluorinated Polymers Driven by Visible Light.<br>Macromolecular Rapid Communications, 2018, 39, e1800151.                                                    | 3.9       | 18           |
| 25 | Synthesis of soap-free emulsion with high solid content by differential dripping RAFT polymerization-induced self-assembly. RSC Advances, 2017, 7, 6559-6564.                                           | 3.6       | 16           |
| 26 | Photocatalyzed iron-based ATRP of methyl methacrylate using 1,3-dimethyl-2-imidazolidinone as both solvent and ligand. RSC Advances, 2017, 7, 3888-3893.                                                | 3.6       | 12           |
| 27 | The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor. Polymer Chemistry, 2017, 8, 1495-1506.                                            | 3.9       | 43           |
| 28 | Photoinduced Ironâ€Based Waterâ€Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene) Tj ET(                                                                                             | QqQ 0 0 r | gBT /Overloo |
| 29 | Visible light-induced PET-RAFT polymerization of methacrylates with novel organic photocatalysts.<br>RSC Advances, 2017, 7, 24040-24045.                                                                | 3.6       | 19           |
| 30 | Insight into the polymerization mechanism of photoinduced step transfer-addition &<br>radical-termination (START) polymerizations. Polymer Chemistry, 2017, 8, 3910-3920.                               | 3.9       | 21           |
| 31 | Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polymer Chemistry, 2017, 8, 2538-2551.                                            | 3.9       | 46           |
| 32 | Facile synthesis of poly(vinyl acetate)-b-polystyrene copolymers mediated by an iniferter agent using a single methodology. Polymer Chemistry, 2017, 8, 5918-5923.                                      | 3.9       | 13           |
| 33 | The positive effect of water on photo-induced step transfer-addition & radical-termination<br>(START) polymerization. RSC Advances, 2017, 7, 17988-17996.                                               | 3.6       | 12           |
| 34 | Metalâ€Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic<br>Photocatalyst. Macromolecular Rapid Communications, 2017, 38, 1600461.                             | 3.9       | 78           |
| 35 | Step Transferâ€Addition and Radicalâ€Termination (START) Polymerization of α,ï‰â€Unconjugated Dienes unde<br>Irradiation of Blue LED Light. Macromolecular Rapid Communications, 2017, 38, 1600587.     | r<br>3.9  | 26           |
| 36 | Reversible Addition-Fragmentation Chain Transfer Polymerization of Acrylonitrile under Irradiation<br>of Blue LED Light. Polymers, 2017, 9, 4.                                                          | 4.5       | 19           |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co $\hat{1}^3$ -ray Irradiation-Initiated RAFT Polymerization at Room Temperature. Polymers, 2017, 9, 26.                                                                                    | 4.5 | 8         |
| 38 | Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic<br>Catalyst Iron(III) Acetylacetonate. Polymers, 2016, 8, 29.                                                                                                                | 4.5 | 24        |
| 39 | ICAR ATRP of Acrylonitrile under Ambient and High Pressure. Polymers, 2016, 8, 59.                                                                                                                                                                                     | 4.5 | 23        |
| 40 | Highly Efficient and Facile Photocatalytic Recycling System Suitable for ICAR ATRP of Hydrophilic Monomers. Macromolecular Rapid Communications, 2016, 37, 1337-1343.                                                                                                  | 3.9 | 23        |
| 41 | Real-time monitoring of a controlled drug delivery system in vivo: construction of a near infrared<br>fluorescence monomer conjugated with pH-responsive polymeric micelles. Journal of Materials<br>Chemistry B, 2016, 4, 3377-3386.                                  | 5.8 | 17        |
| 42 | Catalyst-free iodine-mediated living radical polymerization under irradiation over a wide visible-light spectral scope. Polymer Chemistry, 2016, 7, 3576-3588.                                                                                                         | 3.9 | 44        |
| 43 | Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale, 2016, 8, 15323-15339.                                                                                                       | 5.6 | 70        |
| 44 | Straightforward catalyst/solvent-free iodine-mediated living radical polymerization of functional monomers driven by visible light irradiation. Chemical Communications, 2016, 52, 10850-10853.                                                                        | 4.1 | 33        |
| 45 | Synthesis of amphiphilic nanoparticles and multi-block hydrophilic copolymers by a facile and effective "living―radical polymerization in water. Polymer Chemistry, 2016, 7, 2486-2491.                                                                                | 3.9 | 7         |
| 46 | Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a<br>visible light organic photocatalyst. Polymer Chemistry, 2016, 7, 689-700.                                                                                           | 3.9 | 217       |
| 47 | Facilely Recyclable Cu(II) Macrocomplex with Thermoregulated Poly(ionic liquid) Macroligand:<br>Serving as a Highly Efficient Atom Transfer Radical Polymerization Catalyst. ACS Sustainable<br>Chemistry and Engineering, 2016, 4, 7066-7073.                         | 6.7 | 18        |
| 48 | AGET ATRP of Methyl Methacrylate Based on Thermoregulated Phase Transfer Catalysis in<br>Organic/Aqueous Biphasic System: Facile and Highly Efficient In Situ Catalyst/Ligand Separation and<br>Recycling. Macromolecular Chemistry and Physics, 2015, 216, 1171-1179. | 2.2 | 16        |
| 49 | Reversible additionâ€fragmentation chain transfer polymerization of vinyl acetate under high pressure.<br>Journal of Polymer Science Part A, 2015, 53, 1430-1436.                                                                                                      | 2.3 | 11        |
| 50 | Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP. Macromolecular Rapid Communications, 2015, 36, 1702-1721.                                                                                                                               | 3.9 | 81        |
| 51 | Recent advances in "livingâ€ <del>/</del> controlled radical polymerization of phosphorus-containing monomers<br>and their potential applications. Science China Chemistry, 2015, 58, 1633-1640.                                                                       | 8.2 | 13        |
| 52 | A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor. Polymer Chemistry, 2015, 6, 1937-1943.                                                                                                                          | 3.9 | 32        |
| 53 | Diffusion-Regulated Phase-Transfer Catalysis for Atom Transfer Radical Polymerization of Methyl<br>Methacrylate in an Aqueous/Organic Biphasic System. Macromolecular Rapid Communications, 2015, 36,<br>538-546.                                                      | 3.9 | 20        |
| 54 | A novel methacrylate with a bisphosphonate group: RAFT polymerization and flame retardant property of the resultant polymers. Polymer Chemistry, 2015, 6, 2283-2289.                                                                                                   | 3.9 | 17        |

| #  | Article                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP<br>for tumor acidic microenvironment imaging. Journal of Materials Chemistry B, 2015, 3, 2786-2800.                                                                                                                    | 5.8 | 33        |
| 56 | Facile iron( <scp>iii</scp> )-mediated ATRP of MMA with phosphorus-containing ligands in the absence of any additional initiators. RSC Advances, 2015, 5, 62577-62584.                                                                                                                                                    | 3.6 | 11        |
| 57 | Thermoregulated phase transfer catalysis in aqueous/organic biphasic system: facile and highly<br>efficient ATRP catalyst separation and recycling in situ using typical alkyl halide as initiator. Polymer<br>Chemistry, 2015, 6, 6394-6401.                                                                             | 3.9 | 14        |
| 58 | Fe( <scp>iii</scp> )-mediated ICAR ATRP in a p-xylene/PEG-200 biphasic system: facile and highly efficient separation and recycling of an iron catalyst. Polymer Chemistry, 2015, 6, 6616-6622.                                                                                                                           | 3.9 | 26        |
| 59 | Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale, 2015, 7, 16399-16416.                                                                                                                                          | 5.6 | 54        |
| 60 | An atom transfer radical polymerization system: catalyzed by an iron catalyst in PEG-400. Green Chemistry, 2015, 17, 271-278.                                                                                                                                                                                             | 9.0 | 43        |
| 61 | Bulk ACET ATRP of methyl methacrylate using iron( <scp>iii</scp> ) acetylacetonate as a catalyst.<br>Polymer Chemistry, 2014, 5, 6804-6810.                                                                                                                                                                               | 3.9 | 17        |
| 62 | A versatile Fe <sub>3</sub> O <sub>4</sub> based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. Polymer Chemistry, 2014, 5, 638-645.                                                                                                                                               | 3.9 | 28        |
| 63 | Cu(II)â€Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate via a Strategy of<br>Thermoâ€Regulated Phaseâ€Separable Catalysis in a Liquid/Liquid Biphasic System: Homogeneous Catalysis,<br>Facile Heterogeneous Separation, and Recycling. Macromolecular Rapid Communications, 2014, 35,<br>1615-1621. | 3.9 | 22        |
| 64 | Thermo-regulated phase separable catalysis (TPSC)-based atom transfer radical polymerization in a thermo-regulated ionic liquid. Chemical Communications, 2014, 50, 9266-9269.                                                                                                                                            | 4.1 | 39        |
| 65 | Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and â€ <sup>-</sup> click' reaction. Nanotechnology, 2014, 25, 045602.                                                                                                                                 | 2.6 | 21        |
| 66 | Highly Active ppm Level Organic Copper Catalyzed Photoâ€Induced ICAR ATRP of Methyl Methacrylate.<br>Macromolecular Rapid Communications, 2014, 35, 1879-1885.                                                                                                                                                            | 3.9 | 23        |
| 67 | Fabrication of magnetic nanofibers via surface-initiated RAFT polymerization and coaxial electrospinning. Reactive and Functional Polymers, 2013, 73, 1447-1454.                                                                                                                                                          | 4.1 | 12        |
| 68 | Facile Fabrication of Biocompatible and Tunable Multifunctional Nanomaterials via Iron-Mediated<br>Atom Transfer Radical Polymerization with Activators Generated by Electron Transfer. ACS Applied<br>Materials & Interfaces, 2013, 5, 9663-9669.                                                                        | 8.0 | 22        |
| 69 | Atom transfer radical polymerization of methyl methacrylate with a thermo-responsive ligand:<br>construction of thermoregulated phase-transfer catalysis in an aqueous–organic biphasic system.<br>Polymer Chemistry, 2013, 4, 2876.                                                                                      | 3.9 | 26        |
| 70 | A highly active homogeneous ICAR ATRP of methyl methacrylate using ppm levels of organocopper catalyst. Polymer Chemistry, 2013, 4, 3725.                                                                                                                                                                                 | 3.9 | 24        |
| 71 | Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via<br>RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 1197-1204.                                                                                                                                       | 2.3 | 24        |
| 72 | Triphenylphosphine as phosphorus catalyst for reversible chain-transfer catalyzed polymerization<br>(RTCP). Polymer Chemistry, 2013, 4, 3069.                                                                                                                                                                             | 3.9 | 19        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Atom transfer radical polymerization of hydrophilic monomers and its applications. Polymer Chemistry, 2013, 4, 2919.                                                                                                                               | 3.9 | 66        |
| 74 | Developing a Synthetic Approach with Thermoregulated Phase-Transfer Catalysis: Facile Access to<br>Metal-Mediated Living Radical Polymerization of Methyl Methacrylate in Aqueous/Organic Biphasic<br>System. Macromolecules, 2013, 46, 2060-2066. | 4.8 | 55        |
| 75 | Facile Ironâ€Mediated Dispersantâ€Free Suspension Polymerization of Methyl Methacrylate via Reverse<br>ATRP in Water. Macromolecular Rapid Communications, 2013, 34, 1747-1754.                                                                    | 3.9 | 35        |
| 76 | Facile Soapâ€Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer<br>Radical Polymerization. Macromolecular Rapid Communications, 2012, 33, 2121-2126.                                                                | 3.9 | 17        |
| 77 | AGET ATRP of methyl methacrylatevia a bimetallic catalyst. RSC Advances, 2012, 2, 840-847.                                                                                                                                                         | 3.6 | 17        |
| 78 | AGET ATRP of waterâ€soluble PEGMA: Fast living radical polymerization mediated by iron catalyst.<br>Journal of Polymer Science Part A, 2012, 50, 2194-2200.                                                                                        | 2.3 | 24        |
| 79 | Ironâ€mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of<br>Polymer Science Part A, 2012, 50, 2244-2253.                                                                                                     | 2.3 | 28        |
| 80 | Facile Ironâ€Mediated AGET ATRP for Waterâ€Soluble Poly(ethylene glycol) Monomethyl Ether<br>Methacrylate in Water. Macromolecular Rapid Communications, 2012, 33, 1067-1073.                                                                      | 3.9 | 46        |
| 81 | Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 2012, 3, 2685.                                                                           | 3.9 | 108       |
| 82 | Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter, 2011, 7, 6958.                                                             | 2.7 | 50        |
| 83 | Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP<br>Mediated by an Iron Catalyst. Langmuir, 2011, 27, 12684-12692.                                                                                       | 3.5 | 77        |
| 84 | Iron-Mediated ICAR ATRP of Methyl Methacrylate. Macromolecules, 2011, 44, 3233-3239.                                                                                                                                                               | 4.8 | 124       |
| 85 | A novel approach to modify poly(vinylidene fluoride) via ironâ€mediated atom transfer radical<br>polymerization using activators generated by electron transfer. Journal of Polymer Science Part A,<br>2011, 49, 2315-2324.                        | 2.3 | 31        |
| 86 | Alumina additives for fast ironâ€mediated AGET ATRP of MMA using onium salt as ligand. Journal of<br>Polymer Science Part A, 2011, 49, 3970-3979.                                                                                                  | 2.3 | 39        |
| 87 | Ironâ€Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical<br>Initiator. Macromolecular Rapid Communications, 2010, 31, 275-280.                                                                                | 3.9 | 64        |
| 88 | Airâ€ŧolerantly surfaceâ€initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. Journal<br>of Polymer Science Part A, 2010, 48, 2006-2015.                                                                                       | 2.3 | 71        |
| 89 | Iron-Mediated AGET ATRP of Styrene in the Presence of Catalytic Amounts of Base. Macromolecules, 2010, 43, 9283-9290.                                                                                                                              | 4.8 | 73        |
| 90 | A Novel and Universal Route to SiO <sub>2</sub> -Supported Organic/Inorganic Hybrid Noble Metal<br>Nanomaterials via Surface RAFT Polymerization. Langmuir, 2010, 26, 14806-14813.                                                                 | 3.5 | 55        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A Highly Active Ironâ€Based Catalyst System for the AGET ATRP of Styrene. Macromolecular Rapid<br>Communications, 2009, 30, 543-547.                                                                                           | 3.9 | 65        |
| 92  | Iron(III)â€mediated AGET ATRP of styrene using tris(3,6â€dioxaheptyl)amine as a ligand. Journal of Polymer<br>Science Part A, 2009, 47, 2002-2008.                                                                             | 2.3 | 61        |
| 93  | Surface Functionalization of Chitosan Nanospheres via Surface-Initiated AGET ATRP Mediated by Iron<br>Catalyst in the Presence of Limited Amounts of Air. Industrial & Engineering Chemistry Research,<br>2009, 48, 6216-6223. | 3.7 | 58        |
| 94  | Cellulose Filter Paper with Antibacterial Activity from Surface-Initiated ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 989-996.                                                             | 2.2 | 53        |
| 95  | Iron(III)â€Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer.<br>Macromolecular Chemistry and Physics, 2008, 209, 1705-1713.                                                                | 2.2 | 77        |
| 96  | AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer, 2008, 49, 3054-3059.                                                                                                   | 3.8 | 111       |
| 97  | Controllable synthesis of poly(N-vinylpyrrolidone) and its block copolymers by atom transfer radical polymerization. Polymer, 2007, 48, 2835-2842.                                                                             | 3.8 | 85        |
| 98  | RATRP of MMA in AIBN/FeC1 3 /PPh 3 initiation system under microwave irradiation. Polymer Bulletin, 2003, 49, 363-369.                                                                                                         | 3.3 | 25        |
| 99  | Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation. Polymer, 2003, 44, 2243-2247.                                                             | 3.8 | 64        |
| 100 | Homogeneous Solution Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate.<br>Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 371-385.                                                | 2.2 | 10        |