Manish Narwaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1335976/publications.pdf

Version: 2024-02-01

38	1,771	16	23
papers	citations	h-index	g-index
39	39	39	1346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Image Quality Assessment Based on Gradient Similarity. IEEE Transactions on Image Processing, 2012, 21, 1500-1512.	9.8	537
2	HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images. Journal of Electronic Imaging, 2015, 24, 010501.	0.9	174
3	Saliency Detection for Stereoscopic Images. IEEE Transactions on Image Processing, 2014, 23, 2625-2636.	9.8	149
4	Objective Image Quality Assessment Based on Support Vector Regression. IEEE Transactions on Neural Networks, 2010, 21, 515-519.	4.2	123
5	SVD-Based Quality Metric for Image and Video Using Machine Learning. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 347-364.	5.0	119
6	HDR-VQM: An objective quality measure for high dynamic range video. Signal Processing: Image Communication, 2015, 35, 46-60.	3.2	118
7	Fourier Transform-Based Scalable Image Quality Measure. IEEE Transactions on Image Processing, 2012, 21, 3364-3377.	9.8	87
8	Low-Complexity Video Quality Assessment Using Temporal Quality Variations. IEEE Transactions on Multimedia, 2012, 14, 525-535.	7.2	60
9	Lorentzian Based Adaptive Filters for Impulsive Noise Environments. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1529-1539.	5.4	48
10	Tone mapping-based high-dynamic-range image compression: study of optimization criterion and perceptual quality. Optical Engineering, 2013, 52, 102008.	1.0	39
11	Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. Pattern Recognition, 2012, 45, 299-313.	8.1	37
12	Nonintrusive Quality Assessment of Noise Suppressed Speech With Mel-Filtered Energies and Support Vector Regression. IEEE Transactions on Audio Speech and Language Processing, 2012, 20, 1217-1232.	3.2	32
13	Tone mapping based HDR compression: Does it affect visual experience?. Signal Processing: Image Communication, 2014, 29, 257-273.	3.2	25
14	Preference of Experience in Image Tone-Mapping: Dataset and Framework for Objective Measures Comparison. IEEE Journal on Selected Topics in Signal Processing, 2017, 11, 64-74.	10.8	25
15	No-reference video quality measurement: added value of machine learning. Journal of Electronic lmaging, 2015, 24, 061208.	0.9	21
16	Data Analysis in Multimedia Quality Assessment: Revisiting the Statistical Tests. IEEE Transactions on Multimedia, 2018, 20, 2063-2072.	7.2	18
17	Non-intrusive Speech Quality Assessment with Support Vector Regression. Lecture Notes in Computer Science, 2010, , 325-335.	1.3	17
18	Scalable image quality assessment based on structural vectors. , 2009, , .		16

#	Article	IF	Citations
19	Effect of tone mapping operators on visual attention deployment. Proceedings of SPIE, 2012, , .	0.8	16
20	Stereoscopic image retargeting based on 3D saliency detection. , 2014, , .		12
21	Influence of HDR reference on observers preference in tone-mapped images evaluation. , 2015, , .		12
22	Priority based functional group identification of organic molecules using machine learning., 2018,,.		11
23	Saliency detection for stereoscopic images. , 2013, , .		9
24	An objective method for High Dynamic Range source content selection. , 2014, , .		9
25	Does explainable machine learning uncover the black box in vision applications?. Image and Vision Computing, 2022, 118, 104353.	4.5	9
26	Toward Better Statistical Validation of Machine Learning-Based Multimedia Quality Estimators. IEEE Transactions on Broadcasting, 2018, 64, 446-460.	3.2	7
27	High Dynamic Range Visual Quality of Experience Measurement: Challenges and Perspectives. , 2015, , 129-155.		7
28	Perceptual image quality assessment: recent progress and trends. , 2010, , .		6
29	Study of high dynamic range video quality assessment. Proceedings of SPIE, 2015, , .	0.8	6
30	The Transition From White Box to Black Box: Challenges and Opportunities in Signal Processing Education. IEEE Signal Processing Magazine, 2021, 38, 163-173.	5 . 6	6
31	Video quality assessment using temporal quality variations and machine learning. , 2011, , .		4
32	Machine learning based modeling of spatial and temporal factors for video quality assessment. , 2011, ,		4
33	Adaptive contrast adjustment for postprocessing of tone mapped high dynamic range images. , 2013, , .		2
34	An automated approach for tone mapping operator parameter adjustment in security applications. Proceedings of SPIE, 2014 , , .	0.8	2
35	On improving the pooling in HDR-VDP-2 towards better HDR perceptual quality assessment. , 2014, , .		2
36	Rendering of HDR content on LDR displays: an objective approach. , 2015, , .		2

#	Article	IF	CITATIONS
37	Interval-Based Least Squares for Uncertainty-Aware Learning in Human-Centric Multimedia Systems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32, 1-6.	11.3	O
38	Assessment of Machine Learning-Based Audiovisual Quality Predictors. ACM Transactions on Multimedia Computing, Communications and Applications, 2021, 17, 1-22.	4.3	0