Atif Shamim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1335355/publications.pdf

Version: 2024-02-01

245 papers 5,085 citations

76196 40 h-index 62 g-index

248 all docs 248 docs citations

times ranked

248

5008 citing authors

#	Article	IF	CITATIONS
1	Optimization of <scp>ANN</scp> â€based models and its <scp>EM</scp> coâ€simulation for printed <scp>RF</scp> devices. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, e23012.	0.8	3
2	Ultra-Thin Artificial Magnetic Conductor for Gain Enhancement of Antenna-on-Chip. IEEE Transactions on Antennas and Propagation, 2022, 70, 4319-4330.	3.1	11
3	Optically Transparent and Flexible Radio Frequency Electronics through Printing Technologies. Advanced Materials Technologies, 2022, 7, .	3.0	7
4	A Low-Profile and High-Aperture-Efficiency Hexagonal Circularly Polarized Microstrip Antenna Array. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 615-619.	2.4	2
5	3D Printed RFID Tag Antenna Miniaturized Through Volumetric Folding and Slow-Wave Structures. IEEE Journal of Radio Frequency Identification, 2022, 6, 164-175.	1.5	5
6	Dual-Function Triple-Band Heatsink Antenna for Ambient RF and Thermal Energy Harvesting. IEEE Open Journal of Antennas and Propagation, 2022, 3, 263-273.	2.5	10
7	Digital Twin of Expensive Multiphase Flow Loop Test to Develop Next Generation of Production Technologies. , 2022, , .		O
8	A Fully-Printed 3D Antenna With 92% Quasi-Isotropic and 85% CP Coverage. IEEE Transactions on Antennas and Propagation, 2022, 70, 7914-7922.	3.1	9
9	Co-Design of Dual-Purpose Heatsink Antenna for Multi-Source Ambient Energy Harvesting. , 2022, , .		2
10	A fully-screen printed, multi-layer process for bendable mm-wave antennas. , 2022, , .		0
11	Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nature Communications, 2022, 13, .	5.8	11
12	Orientation Aware Intelligent 3-D Cubic Antenna System With Automated Radiation Pattern Reconfigurability. IEEE Open Journal of Antennas and Propagation, 2022, 3, 812-823.	2.5	4
13	Frequency agile multipleâ€inputâ€multipleâ€output antenna design for <scp>5G</scp> dynamic spectrum sharing in cognitive radio networks. Microwave and Optical Technology Letters, 2021, 63, 889-894.	0.9	10
14	A Dual Mode, Thin and Wideband MIMO Antenna System for Seamless Integration on UAV. IEEE Open Journal of Antennas and Propagation, 2021, 2, 991-1000.	2.5	10
15	Compact microwave based water-cut sensor suitable for downhole installation. , 2021, , .		O
16	A Large Frequency Ratio Dual-band Microstrip Antenna with Consistent Radiation Pattern for Internet of Sea Applications. , 2021, , .		3
17	Dual-mode Circular Microstrip Patch Antenna for Airborne Applications. , 2021, , .		2
18	Polarization Insensitive and Transparent Frequency Selective Surface for Dual Band GSM Shielding. IEEE Transactions on Antennas and Propagation, 2021, 69, 2779-2789.	3.1	30

#	Article	IF	Citations
19	Antenna-on-Package Design: Achieving Near-Isotropic Radiation Pattern and Wide CP Coverage Simultaneously. IEEE Transactions on Antennas and Propagation, 2021, 69, 3740-3749.	3.1	17
20	All Screenâ€Printed, Polymerâ€Nanowire Based Foldable Electronics for mmâ€Wave Applications. Advanced Materials Technologies, 2021, 6, 2100525.	3.0	16
21	CVD-Grown Monolayer Graphene-Based Geometric Diode for THz Rectennas. Nanomaterials, 2021, 11, 1986.	1.9	13
22	Extended Throat Venturi Based Flow Meter for Optimization of Oil Production Process. IEEE Sensors Journal, 2021, 21, 17808-17816.	2.4	8
23	Hertzian Magnetic Dipoles Model of a Quasi-isotropic radiation microstrip patch based Antenna-in-Package. , 2021, , .		1
24	Screen-Printed Depolarizing Chipless RFID Tag Based on Asymmetric Configurations. , 2021, , .		0
25	A Machine Learning-Based Microwave Device Model for Fully Printed VO ₂ RF Switches., 2021,,.		4
26	All Screenâ€Printed, Polymerâ€Nanowire Based Foldable Electronics for mmâ€Wave Applications (Adv.) Tj ETQq	0 0 _{3.0} rgB7	Γ/Oyerlock 10
27	Role of Machine Learning in Rapid Modeling of RF Devices: VO2 RF Switch Modeling as a Case Study. , 2021, , .		2
28	Tackling Non-linearity in Cavity Perturbation using Machine Learning Approach., 2021,,.		1
29	Ultra-miniature bluetooth tag with antenna on package for red palm weevil tracking. , 2021, , .		O
30	Wideband and Wide Beam-Scanning Phased Array Antenna Design for 5G Applications. , 2021, , .		1
31	Size Optimized Antenna-in-Package with Quasi-Isotropic Radiation Pattern. , 2021, , .		2
32	A Highly Miniaturized 3D Antenna in Package for UHF RFID Application. , 2021, , .		0
33	Screen-Printed, Flexible, Parasitic Beam-Switching Millimeter-Wave Antenna Array for Wearable Applications. IEEE Open Journal of Antennas and Propagation, 2020, 1, 2-10.	2.5	53
34	Multiâ€source ambient energy harvester based on RF and thermal energy: Design, testing, and IoT application. Energy Science and Engineering, 2020, 8, 3883-3897.	1.9	12
35	Flexible and reconfigurable radio frequency electronics realized by high-throughput screen printing of vanadium dioxide switches. Microsystems and Nanoengineering, 2020, 6, 77.	3.4	23
36	Flexible-Screen-Printed Antenna With Enhanced Bandwidth by Employing Defected Ground Structure. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1803-1807.	2.4	25

#	Article	IF	CITATIONS
37	Synthesis of Reflectors Characterized by the Spatial Dispersion of the Reflection Coefficient. IEEE Open Journal of Antennas and Propagation, 2020, 1, 419-425.	2.5	2
38	Slot antenna array synthesis using the infinitesimal dipole model technique: Theory and experiment. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22402.	0.8	1
39	Additively Manufactured Dual-Mode Reconfigurable Filter Employing VOâ,,-Based Switches. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1738-1744.	1.4	17
40	On-Chip Micromachined Dielectric Resonator Antennas Loaded with Parasitic Circular/Crescent Patch for mm-Wave Applications. , 2020, , .		2
41	Fully Printed VO2 Switch Based Flexible and Reconfigurable Filter. , 2020, , .		1
42	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	7.3	100
43	Highly transparent and conductive electrodes enabled by scalable printing-and-sintering of silver nanowires. Nanotechnology, 2020, 31, 395201.	1.3	32
44	Gain Enhancement of Millimeter-Wave On-Chip Antenna Through an Additively Manufactured Functional Package. IEEE Transactions on Antennas and Propagation, 2020, 68, 4344-4353.	3.1	18
45	Surface susceptibility and conductivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<th>1.1</th><th>28</th></mml:mn></mml:msub></mml:mn></mml:msub></mml:math>	1.1	28
46	On-chip antenna: challenges and design considerations., 2020, 123-155.		4
47	Polarization Insensitive and Transparent FSS for Flexible Electronics Applications. , 2020, , .		1
48	3D Antenna in Package Design: Maximizing Radiation Pattern Isotropicity and CP Coverage., 2020,,.		1
49	An Electrically Small Antenna in Package Design with Embedded Electronics for RPW Detection. , 2020,		2
50	3D Printed Bifunctional Triple-Band Heatsink Antenna for RF and Thermal Energy Harvesting., 2020,,.		5
51	NRSC 2020 Tutorial. , 2020, , .		0
52	Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. Npj Flexible Electronics, 2019, 3, .	5.1	67
53	Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flexible and Printed Electronics, 2019, 4, 035006.	1.5	7
54	Machine Learning in Electromagnetics: A Review and Some Perspectives for Future Research. , 2019, , .		26

#	Article	IF	Citations
55	Dispersion and Field Control in a Metasurface-Implanted Waveguide. , 2019, , .		O
56	An Additively Manufactured 3-D Antenna-in-Package With Quasi-Isotropic Radiation for Marine Animals Monitoring System. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2384-2388.	2.4	22
57	Smart Clamp-Type Microwave Sensor for Accidental Leak Detection from Pipe Joints., 2019,,.		1
58	Fully Inkjet-Printed Photodetector Using a Graphene/Perovskite/Graphene Heterostructure. IEEE Transactions on Electron Devices, 2019, 66, 2657-2661.	1.6	116
59	Design of a corrugated antipodal Vivaldi antenna with stable pattern. , 2019, , .		6
60	Multi-Channel, Microwave-Based, Compact Printed Sensor for Simultaneous and Independent Level Measurement of Eight Liquids. IEEE Sensors Journal, 2019, 19, 5611-5620.	2.4	6
61	Development of a 2.45 GHz Antenna for Flexible Compact Radiation Dosimeter Tags. IEEE Transactions on Antennas and Propagation, 2019, 67, 5063-5072.	3.1	19
62	Theory and Design of Tunable Full-Mode and Half-Mode Ferrite Waveguide Isolators. IEEE Transactions on Magnetics, 2019, 55, 1-8.	1.2	19
63	Development of VO ₂ â€Nanoparticleâ€Based Metal–Insulator Transition Electronic Ink. Advanced Electronic Materials, 2019, 5, 1800949.	2.6	18
64	A W-Band EBG-Backed Double-Rhomboid Bowtie-Slot On-Chip Antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1046-1050.	2.4	19
65	A Dual-Polarization-Switched Beam Patch Antenna Array for Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, 2019, 67, 3510-3515.	3.1	38
66	On Synthesis of Orientation Insensitive Antennas. , 2019, , .		2
67	Screen-printed Flexible and Transparent Antenna. , 2019, , .		O
68	Highly Miniaturized Mircrostrip Antenna with Slots and a Superstrate for RFID Applications. , 2019, , .		2
69	Guest Editorial Antenna-in-Package, Antenna-on-Chip, Antenna-IC Interface: Joint Design and Cointegration. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2345-2350.	2.4	2
70	77 GHz Screen Printed, Flexible, Beam-Switching Antenna Array for Wearable Radar Applications. , 2019, , .		1
71	On Scattering of a Vector Cylindrical Wave by an Axisymmetric Semitransparent Reflector. , 2019, , .		0
72	Silver Nanowire based Flexible, Transparent, Wideband Antenna for 5G Band Application. , 2019, , .		11

#	Article	IF	Citations
73	Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 2019, 3, .	5.1	38
74	Radioâ€Frequency Switches: Fully Inkjetâ€Printed VO ₂ â€Based Radioâ€Frequency Switches for Flexible Reconfigurable Components (Adv. Mater. Technol. 1/2019). Advanced Materials Technologies, 2019, 4, 1970006.	3.0	1
75	A low complexity RF based sensor array for lung disease detection using inkjet printing. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21586.	0.8	3
76	Persistent energy harvesting in the harsh desert environment using a thermal resonance device: Design, testing, and analysis. Applied Energy, 2019, 235, 1514-1523.	5.1	18
77	Fully Inkjetâ€Printed VO ₂ â€Based Radioâ€Frequency Switches for Flexible Reconfigurable Components. Advanced Materials Technologies, 2019, 4, 1800276.	3.0	45
78	A switchedâ€beam millimeterâ€wave array with MIMO configuration for 5G applications. Microwave and Optical Technology Letters, 2018, 60, 915-920.	0.9	17
79	Iron Oxide Nanoparticleâ€Based Magnetic Ink Development for Fully Printed Tunable Radioâ€Frequency Devices. Advanced Materials Technologies, 2018, 3, 1700242.	3.0	32
80	An Integrated Four-Element Slot-Based MIMO and a UWB Sensing Antenna System for CR Platforms. IEEE Transactions on Antennas and Propagation, 2018, 66, 978-983.	3.1	88
81	A multiband dualâ€standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones. Microwave and Optical Technology Letters, 2018, 60, 1468-1476.	0.9	25
82	Design and Dynamic Characterization of an Orientation Insensitive Microwave Water-Cut Sensor. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 530-539.	2.9	14
83	Optical rectification through an Al2O3 based MIM passive rectenna at 28.3ÂTHz. Materials Today Energy, 2018, 7, 1-9.	2.5	54
84	Gain and Efficiency Enhancement of a 77 GHz On-Chip Antenna through AMC and Superstrate Package. , 2018, , .		4
85	Inkjet Printed RF Sensor Array For Lung Disease Detection. , 2018, , .		0
86	Fully Printed VO <inf>2</inf> Switch Based Reconfigurable PIFA Antenna. , 2018, , .		2
87	Ultra High Figure-of-Merit Mushroom Nanoantenna Array for Refractive Index Sensing. , 2018, , .		0
88	Flexible, Stretchable and Washable Filter Printed Directly on Textile. , 2018, , .		5
89	3D Printed Antenna-on-Package with Near-isotropic Radiation Pattern for IoT (WiFi Based) Applications. , 2018, , .		8
90	Sensor for Real-Time Animal Condition and Movement Monitoring. , 2018, , .		O

#	Article	IF	CITATIONS
91	Fully Printed Flexible and Reconfigurable Antenna With Novel Phase Change VO <inf>2</inf> Ink Based Switch. , 2018, , .		4
92	Additively Manufactured Flexible and Stretchable Antenna Systems for Wearable Applications. , 2018, , .		2
93	Flexible Quasi-Isotropic Antenna for Marine Animals Tagging application. , 2018, , .		3
94	3D Printed Near-isotropic Asymmetric Dipole Antenna-on-Package for IoT Applications. , 2018, , .		6
95	Theroratical Study of Fully Printed Magnetically Tunable Reconfigurable Patch Antenna. , 2018, , .		1
96	Flexibility Assesment of Fully Inkjet-Printed Reconfigurable Antenna With VO < sub>2 < /sub> Switch. , 2018, , .		O
97	SIW Cavity Filters with Embedded Planar Resonators in LTCC Package for 5G Applications. , 2018, , .		3
98	Fully Printed VO <inf>2</inf> Switch Based Reconfigurable PIFA / T-shaped Monopole Antenna. , 2018, , .		3
99	Gain Enhancement Techniques for mm-Wave On-Chip Antennas on Lossy CMOS Platforms. , 2018, , .		2
100	Low Temperature (80 \hat{A}° C) Sinterable Particle Free Silver Ink for Flexible Electronics. , 2018, , .		3
101	24GHz paper based inkjet printed quasi Yagi-Uda antenna with new bowtie director., 2018,,.		1
102	A Wideband Fully Planar Vivaldi Antenna for WPAN Applications. , 2018, , .		1
103	A Fully Printed Switch Based on VO <inf>2</inf> Ink for Reconfigurable RF Components. , 2018, , .		1
104	Fully Inkjet Printed 85GHz Band Pass Filter on Flexible Substrate. , 2018, , .		5
105	Compact circular connected monopole antenna arrays for wideband MIMO applications. IET Microwaves, Antennas and Propagation, 2018, 12, 2122-2127.	0.7	10
106	Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting. Nano Energy, 2018, 53, 587-595.	8.2	42
107	A Zero-Bias, Completely Passive 28 THz Rectenna for Energy Harvesting from Infrared (Waste Heat). , 2018, , .		7
108	Fully printed microwave sensor for simultaneous and independent level measurements of 8 liquids. , 2018, , .		1

#	Article	IF	Citations
109	A Dual Band Additively Manufactured 3-D Antenna on Package With Near-Isotropic Radiation Pattern. IEEE Transactions on Antennas and Propagation, 2018, 66, 3295-3305.	3.1	50
110	4-Element Concentric Pentagonal Slot-Line-Based Ultra-Wide Tuning Frequency Reconfigurable MIMO Antenna System. IEEE Transactions on Antennas and Propagation, 2018, 66, 4282-4287.	3.1	64
111	Tunable, Flexible Composite Magnets for Marine Monitoring Applications. Advanced Engineering Materials, 2018, 20, 1800229.	1.6	17
112	A Reconfigurable Inkjet-Printed Antenna on Paper Substrate for Wireless Applications. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1648-1651.	2.4	63
113	Measurement of the surface susceptibility and the surface conductivity of atomically thin MoS ₂ by spectroscopic ellipsometry. Optics Letters, 2018, 43, 703.	1.7	35
114	Massive MIMO antenna system for 5G base stations with directive ports and switched beamsteering capabilities. IET Microwaves, Antennas and Propagation, 2018, 12, 1709-1718.	0.7	45
115	Highly miniaturised semiâ€loop meandered dualâ€band MIMO antenna system. IET Microwaves, Antennas and Propagation, 2018, 12, 864-871.	0.7	16
116	Design and Fabrication of a Frequency and Polarization Reconfigurable Microwave Antenna on a Printed Partially Magnetized Ferrite Substrate. IEEE Transactions on Antennas and Propagation, 2018, 66, 4866-4871.	3.1	15
117	Fully inkjet-printed microwave passive electronics. Microsystems and Nanoengineering, 2017, 3, 16075.	3.4	34
118	A Two Concentric Slot Loop Based Connected Array MIMO Antenna System for 4G/5G Terminals. IEEE Transactions on Antennas and Propagation, 2017, 65, 6679-6686.	3.1	116
119	Dynamic characterization of a low cost microwave water-cut sensor in a flow loop. Sensors and Actuators A: Physical, 2017, 260, 146-152.	2.0	12
120	3Dâ€Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring. Advanced Materials Technologies, 2017, 2, 1700051.	3.0	56
121	Novel micromachined on-chip 10-elements wire-grid array operating at 60 GHz. , 2017, , .		2
122	A wearable tracking device inkjet-printed on textile. Microelectronics Journal, 2017, 65, 40-48.	1.1	50
123	Design methodology of single-feed compact near-isotropic antenna design. , 2017, , .		3
124	5G antenna array with wide-angle beam steering and dual linear polarizations. , 2017, , .		13
125	Gain-Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2844-2847.	2.4	44
126	A novel very wideband integrated antenna system for 4G and 5G mmâ€wave applications. Microwave and Optical Technology Letters, 2017, 59, 3082-3088.	0.9	16

#	Article	IF	CITATIONS
127	Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectronic Engineering, 2017, 181, 34-42.	1.1	22
128	A millimeter-wave connected antenna array for 5G applications. , 2017, , .		3
129	Physically Connected Stacked Patch Antenna Design With 100% Bandwidth. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 3208-3211.	2.4	20
130	Back Radiation Suppression Through a Semitransparent Ground Plane for a Millimeter-Wave Patch Antenna. IEEE Transactions on Antennas and Propagation, 2017, 65, 3935-3941.	3.1	7
131	A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array. IEEE Transactions on Antennas and Propagation, 2017, 65, 196-205.	3.1	32
132	3-D Inkjet-Printed Helical Antenna with Integrated Lens. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 800-803.	2.4	43
133	Study of field enhancement in overlapped bowtie antenna for Infrared harvesting application. , 2017, , .		1
134	Live demonstration: Screen printed, microwave based level sensor for automated drug delivery. , 2017, , .		2
135	3D printed System-on-Package (SoP) for environmental sensing and localization applications. , 2017, , .		2
136	A wearable RF sensor on fabric substrate for pulmonary edema monitoring. , 2017, , .		5
137	3D inkjet printed disposable environmental monitoring wireless sensor node. , 2017, , .		7
138	A low-cost, orientation-insensitive microwave water-cut sensor printed on a pipe surface., 2017,,.		2
139	3D inkjet printed flexible and wearable antenna systems. , 2017, , .		7
140	A half mode inkjet printed tunable ferrite isolator. , 2017, , .		2
141	A 3D printed dual GSM band near isotropic on-package antenna. , 2017, , .		3
142	A wearable 3D motion sensing system integrated with a Bluetooth smart phone application: A system level overview. , 2017 , , .		1
143	Back radiation suppression through a semi-transparent round ground plane for a mm-Wave monopole antenna. , 2017, , .		1
144	A low cost, printed microwave based level sensor with integrated oscillator readout circuitry. , 2017, , .		4

#	Article	IF	CITATIONS
145	Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink. Ceramics International, 2017, 43, 9846-9853.	2.3	12
146	Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application. , 2017, , .		7
147	Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications. Sensors, 2016, 16, 2073.	2.1	53
148	Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production. Lab on A Chip, 2016, 16, 3210-3219.	3.1	9
149	A fully printed ferrite nano-particle ink based tunable antenna. , 2016, , .		5
150	A magnetic nano-particle ink for tunable microwave applications. , 2016, , .		1
151	3D inkjet printed radio frequency inductors and capacitors. , 2016, , .		3
152	A flexible inkjet printed inverted-F antenna on textile., 2016,,.		2
153	Inkjet printed wireless smart bandage. , 2016, , .		1
154	3D printed helical antenna with lens. , 2016, , .		0
155	On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems. , 2016, , .		0
156	3D inkjet printed radio frequency inductors and capacitors. , 2016, , .		0
157	Low Cost and Pipe Conformable Microwave-Based Water-Cut Sensor. IEEE Sensors Journal, 2016, 16, 7636-7645.	2.4	37
158	A low cost and pipe conformable microwave-based water-cut sensor. , 2016, , .		2
159	Paper Skin Multisensory Platform for Simultaneous Environmental Monitoring. Advanced Materials Technologies, 2016, 1, 1600004.	3.0	93
160	A ferrite nano-particles based fully printed process for tunable microwave components. , 2016, , .		3
161	Low cost inkjet printed smart bandage for wireless monitoring of chronic wounds. , 2016, , .		14
162	A WiFi tracking device printed directly on textile for wearable electronics applications. , 2016, , .		8

#	Article	IF	Citations
163	An inkjet printed meandered dipole antenna for RF passive sensing applications. , 2016, , .		1
164	Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds. Scientific Reports, 2016, 6, 28949.	1.6	117
165	A flexible inkjet printed antenna for wearable electronics applications. , 2016, , .		5
166	A 24 GHz CMOS oscillator transmitter with an inkjet printed on-chip antenna., 2016,,.		3
167	Ferrite LTCC based phased array antennas. , 2016, , .		2
168	Artificial Skin: Paper Skin Multisensory Platform for Simultaneous Environmental Monitoring (Adv.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
169	A new method for the design of slot antenna arrays: Theory and experiment. , 2016, , .		6
170	A Fully Inkjet-Printed 3-D Honeycomb-Inspired Patch Antenna. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 544-547.	2.4	46
171	Fabrication of Fully Inkjet-Printed Vias and SIW Structures on Thick Polymer Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 486-496.	1.4	46
172	3.56-bits/cm Compact Inkjet Printed and Application Specific Chipless RFID Tag. IEEE Antennas and Wireless Propagation Letters, 2016 , 15 , 1109 - 1112 .	2.4	92
173	Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics. ACS Applied Materials & Electronics. Electronics & E	4.0	92
174	Metal/Polymer Based Stretchable Antenna for Constant Frequency Farâ€Field Communication in Wearable Electronics. Advanced Functional Materials, 2015, 25, 6565-6575.	7.8	134
175	Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz. IEEE Transactions on Antennas and Propagation, 2015, 63, 3410-3416.	3.1	40
176	Fully Inkjet Printed RF Inductors and Capacitors Using Polymer Dielectric and Silver Conductive Ink With Through Vias. IEEE Transactions on Electron Devices, 2015, 62, 1002-1009.	1.6	72
177	A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications. IEEE Transactions on Magnetics, 2015, 51, 1-8.	1.2	32
178	A Compact Kapton-Based Inkjet-Printed Multiband Antenna for Flexible Wireless Devices. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1802-1805.	2.4	128
179	A planar and tunable bandpass filter on a ferrite substrate with integrated windings. , 2015, , .		2
180	A 94 GHz CMOS based oscillator transmitter with an on-chip meandered dipole antenna. , 2015, , .		0

#	Article	IF	CITATIONS
181	A self-biased 3D tunable helical antenna in ferrite LTCC substrate., 2015,,.		O
182	A 3D printed helical antenna with integrated lens. , 2015, , .		6
183	Theory and design of a half-mode SIW Ferrite LTCC phase shifter. , 2015, , .		2
184	A low-power 802.11 ad compatible 60-GHz phase-locked loop in 65-nm CMOS. Microwave and Optical Technology Letters, 2015, 57, 660-667.	0.9	0
185	The Effect of Self-Heating on the Performance of a Tunable Filter With Embedded Windings in a Ferrite LTCC Package. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 365-371.	1.4	7
186	Inkjet-Printed Wideband Antenna on Resin-Coated Paper Substrate for Curved Wireless Devices. IEEE Antennas and Wireless Propagation Letters, 2015, , 1-1.	2.4	18
187	An Integrable SIW Phase Shifter in a Partially Magnetized Ferrite LTCC Package. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2264-2274.	2.9	38
188	A Ferrite LTCC Based Dual Purpose Helical Antenna Providing Bias for Tunability. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 831-834.	2.4	19
189	An Electronically Controlled 8-Element <newline></newline> Switched Beam Planar Array. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1350-1353.	2.4	8
190	High efficiency on-chip Dielectric Resonator Antennna using micromachining technology., 2015,,.		0
191	Threeâ€dimensional RF SoP technologies: LTCC versus LCP. Microwave and Optical Technology Letters, 2015, 57, 434-441.	0.9	6
192	Tunable Bandpass Filter Based on Partially Magnetized Ferrite LTCC With Embedded Windings for SoP Applications. IEEE Microwave and Wireless Components Letters, 2015, 25, 16-18.	2.0	28
193	Inkjet printed circularly polarized antennas for GPS applications. , 2014, , .		2
194	28.3THz bowtie antenna integrated rectifier for infrared energy harvesting. , 2014, , .		7
195	Crude oil water-cut sensing with disposable laser ablated and inkjet printed RF microfluidics. , 2014, , .		8
196	Inkjet printed ferrite-filled rectangular waveguide X-band isolator. , 2014, , .		13
197	Wide frequency independently controlled dualâ€band inkjetâ€printed antenna. IET Microwaves, Antennas and Propagation, 2014, 8, 52-56.	0.7	14
198	An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications. , $2014, \ldots$		2

#	Article	IF	Citations
199	Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate., 2014,,.		2
200	Design strategy for a tunable antenna on a partially magnetized ferrite LTCC substrate. , 2014, , .		1
201	Theory and Design of a Tunable Antenna on a Partially Magnetized Ferrite LTCC Substrate. IEEE Transactions on Antennas and Propagation, 2014, 62, 1238-1245.	3.1	40
202	An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring. IEEE Transactions on Antennas and Propagation, 2014, 62, 3354-3359.	3.1	47
203	60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna. , 2014, , .		5
204	A 3-D Miniaturized High Selectivity Bandpass Filter in LTCC Technology. IEEE Microwave and Wireless Components Letters, 2014, 24, 8-10.	2.0	34
205	Design, Optimization and Fabrication of a 28.3â€THz Nano-Rectenna for Infrared Detection and Rectification. Scientific Reports, 2014, 4, 4270.	1.6	149
206	Implantable Intraocular Pressure Monitoring systems: Design considerations. , 2013, , .		4
207	A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring. , 2013, , .		18
208	Design of siliconâ€based fractal antennas. Microwave and Optical Technology Letters, 2013, 55, 180-186.	0.9	5
209	The last barrier: on-chip antennas. IEEE Microwave Magazine, 2013, 14, 79-91.	0.7	219
210	Utilizing Wideband AMC Structures for High-Gain Inkjet-Printed Antennas on Lossy Paper Substrate. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 76-79.	2.4	112
211	New Movable Plate for Efficient Millimeter Wave Vertical on-Chip Antenna. IEEE Transactions on Antennas and Propagation, 2013, 61, 1608-1615.	3.1	40
212	5.2-GHz RF Power Harvester in 0.18-/spl mu/m CMOS for Implantable Intraocular Pressure Monitoring. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2177-2184.	2.9	77
213	All inkjet printed 3D microwave capacitors and inductors with vias. , 2013, , .		19
214	A paper based inkjet printed real time location tracking TAG. , 2013, , .		1
215	SIW based multilayer transition and power divider in LTCC technology. , 2013, , .		9
216	Potential of carbon nanotube field effect transistors for analogue circuits. Journal of Engineering, 2013, 2013, 70-76.	0.6	7

#	Article	IF	Citations
217	Wearable and RFID Antennas. International Journal of Antennas and Propagation, 2013, 2013, 1-2.	0.7	1
218	3D LUMPED COMPONENTS AND MINIATURIZED BANDPASS FILTER IN AN ULTRA-THIN M-LCP FOR SOP APPLICATIONS. Progress in Electromagnetics Research C, 2013, 44, 197-210.	0.6	2
219	Passive low-cost inkjet-printed smart skin sensor for structural health monitoring. IET Microwaves, Antennas and Propagation, 2012, 6, 1536-1541.	0.7	57
220	Study of LCP based flexible patch antenna array. , 2012, , .		1
221	A miniature LCP-based quadrature hybrid coupler for GPS system on package (SoP)., 2012,,.		1
222	Ultra Low Power CMOS-Based Sensor for On-Body Radiation Dose Measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 34-41.	2.7	19
223	Paper-based inkjet-printed ultra-wideband fractal antennas. IET Microwaves, Antennas and Propagation, 2012, 6, 1366.	0.7	47
224	Liquid Crystal Polymer (LCP) based antenna for flexible system on package (SoP) applications. , 2012, , .		18
225	An inkjet-printed UWB antenna on paper substrate utilizing a novel fractal matching network. , 2012, , .		2
226	On-Chip Implantable Antennas for Wireless Power and Data Transfer in a Glaucoma-Monitoring SoC. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1671-1674.	2.4	51
227	Inkjet Printing of Novel Wideband and High Gain Antennas on Low-Cost Paper Substrate. IEEE Transactions on Antennas and Propagation, 2012, 60, 4148-4156.	3.1	170
228	Impedance matching through a single passive fractional element. , 2012, , .		2
229	Paper-Based Inkjet-Printed Tri-Band U-Slot Monopole Antenna for Wireless Applications. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1234-1237.	2.4	87
230	5GHZ LTCC-BASED APERTURE COUPLED WIRELESS TRANSMITTER FOR SYSTEM-ON-PACKAGE APPLICATIONS. Progress in Electromagnetics Research C, 2012, 25, 159-178.	0.6	6
231	Fractional Smith Chart Theory. IEEE Microwave and Wireless Components Letters, 2011, 21, 117-119.	2.0	68
232	Theory of Fractional Order Elements Based Impedance Matching Networks. IEEE Microwave and Wireless Components Letters, 2011, 21, 120-122.	2.0	85
233	Effects of wafer-level packaging on millimetre-wave antennas. , 2011, , .		0
234	Ferrite LTCC-Based Antennas for Tunable SoP Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 999-1006.	1.4	35

#	Article	IF	Citations
235	24-GHz LTCC Fractal Antenna Array SoP With Integrated Fresnel Lens. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 705-708.	2.4	25
236	On-chip antenna: Practical design and characterization considerations. , 2010, , .		16
237	Gain-enhanced LTCC system-on-package for automotive UMRR applications. , 2010, , .		2
238	Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver. , 2010, , .		4
239	A Fully Differential Monolithic LNA With On-Chip Antenna for a Short Range Wireless Receiver. IEEE Microwave and Wireless Components Letters, 2009, 19, 674-676.	2.0	18
240	24 GHz On-Chip Antennas and Balun on Bulk Si for Air Transmission. IEEE Transactions on Antennas and Propagation, 2008, 56, 303-311.	3.1	55
241	A 5.2-GHz BFSK Transceiver Using Injection-Locking and an On-Chip Antenna. IEEE Journal of Solid-State Circuits, 2008, 43, 981-990.	3.5	38
242	Wireless Dosimeter: System-on-Chip Versus System-in-Package for Biomedical and Space Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 643-647.	2.2	40
243	A 6.3 GHz BFSK Transmitter with On-Chip Antenna for Self-Powered Medical Sensor Applications., 2007,		24
244	Si monolithic antenna calibration and de-embedding considerations., 2004,,.		1
245	Compact flexible and reconfigurable antenna using screenâ€printed vanadium dioxide switch for wireless local area network and 5G electronic devices. International Journal of RF and Microwave Computer-Aided Engineering, 0, , .	0.8	1