Olivier Vitrac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1335056/publications.pdf

Version: 2024-02-01

361045 433756 1,135 60 20 31 citations h-index g-index papers 67 67 67 722 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Deep-fat frying of food: heat and mass transfer, transformations and reactions inside the frying material. European Journal of Lipid Science and Technology, 2000, 102, 529-538.	1.0	94
2	Characterization of heat and mass transfer during deep-fat frying and its effect on cassava chip quality. Journal of Food Engineering, 2002, 53, 161-176.	2.7	77
3	Predicting diffusion coefficients of chemicals in and through packaging materials. Critical Reviews in Food Science and Nutrition, 2017, 57, 275-312.	5 . 4	58
4	Functional barriers: Properties and evaluation. Food Additives and Contaminants, 2005, 22, 956-967.	2.0	53
5	Risk assessment of migration from packaging materials into foodstuffs. AICHE Journal, 2005, 51, 1080-1095.	1.8	42
6	Interfacial mass transport properties which control the migration of packaging constituents into foodstuffs. Journal of Food Engineering, 2007, 79, 1048-1064.	2.7	39
7	Prediction of Partition Coefficients of Plastic Additives between Packaging Materials and Food Simulants. Industrial & Engineering Chemistry Research, 2010, 49, 7263-7280.	1.8	38
8	Direct observation of the surface structure of French fries by UV–VIS confocal laser scanning microscopy. Food Research International, 2010, 43, 307-314.	2.9	34
9	Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix. Journal of Chemical Physics, 2010, 132, 194902.	1.2	33
10	Diffusion of Aromatic Solutes in Aliphatic Polymers above Glass Transition Temperature. Macromolecules, 2013, 46, 874-888.	2.2	32
11	Decision trees as applied to the robust estimation of diffusion coefficients in polyolefins. Journal of Applied Polymer Science, 2006, 101, 2167-2186.	1.3	31
12	Prediction of Solute Partition Coefficients between Polyolefins and Alcohols Using a Generalized Floryâ^'Huggins Approach. Industrial & Engineering Chemistry Research, 2009, 48, 5285-5301.	1.8	30
13	Microscopic oil uptake mechanisms in fried products*. European Journal of Lipid Science and Technology, 2014, 116, 741-755.	1.0	30
14	Identification of Diffusion Transport Properties from Desorption/Sorption Kinetics:  An Analysis Based on a New Approximation of Fick Equation during Solidâ^Liquid Contact. Industrial & Samp; Engineering Chemistry Research, 2006, 45, 7941-7956.	1.8	28
15	Consumer exposure to substances in plastic packaging. I. Assessment of the contribution of styrene from yogurt pots. Food Additives and Contaminants, 2007, 24, 194-215.	2.0	26
16	Contamination of packaged food by substances migrating from a direct-contact plastic layer: Assessment using a generic quantitative household scale methodology. Food Additives and Contaminants, 2007, 24, 75-94.	2.0	26
17	Kinetics of moisture loss and fat absorption during frying for different varieties of plantain. Journal of the Science of Food and Agriculture, 1999, 79, 291-299.	1.7	22
18	Continuous measurement of convective heat flux during deep-frying: validation and application to inverse modeling. Journal of Food Engineering, 2003, 60, 111-124.	2.7	22

#	Article	lF	CITATIONS
19	Deep-fat frying of cassava: influence of raw material properties on chip quality. Journal of the Science of Food and Agriculture, 2001, 81, 227-236. A method for time and spatially resolved measurement of convective heat transfer coefficient	1.7	21
20			

#	Article	IF	CITATIONS
37	Characterization of a new bioâ€based and biodegradable blends of poly(3â€hydroxybutyrateâ€coâ€adipate). Journal Applied Polymer Science, 2022, 139, .	ofi.3	10
38	Project SafeFoodPack Design: case study on indirect migration from paper and boards. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1703-1720.	1.1	9
39	Design of modified plastic surfaces for antimicrobial applications: Impact of ionizing radiation on the physical and mechanical properties of polypropylene. Radiation Physics and Chemistry, 2013, 91, 170-179.	1.4	8
40	Sorption of <i>n</i> -hexane in amorphous polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1252-1258.	2.4	8
41	Molecular thermodynamics for food science and engineering. Food Research International, 2016, 88, 91-104.	2.9	8
42	Rational Design of Packaging: Toward Safer and Ecodesigned Food Packaging Systems. Frontiers in Chemistry, 2019, 7, 349.	1.8	8
43	Coupling between oxidation kinetics and anisothermal oil flow during deep-fat frying. Physics of Fluids, 2021, 33, .	1.6	8
44	Assessment of continuous distribution of wood properties from a low number of samples: Application to the variability of modulus of elasticity between trees and within a tree. Holzforschung, 2005, 59, 524-530.	0.9	7
45	Risk Assessment of Migration From Packaging Materials Into Food., 2019,,.		7
46	Local demixion in plasticized polylactide probed by electron spin resonance. Journal of Magnetic Resonance, 2013, 233, 37-48.	1.2	6
47	The Ubiquitous Issue of Cross-Mass Transfer: Applications to Single-Use Systems. Molecules, 2019, 24, 3467.	1.7	5
48	Pervaporative Dehydration of Bioethanol using Silica and PVA Membranes: Analysis of Permeation Performances and Effect of Volatile Organic Impurities. Procedia Engineering, 2012, 44, 1173-1176.	1.2	4
49	A Two-Scale Pursuit Method for the Tailored Identification and Quantification of Unknown Polymer Additives and Contaminants by ¹ H NMR. Industrial & Engineering Chemistry Research, 2015, 54, 2667-2681.	1.8	4
50	In Silico Prediction of Food Properties: A Multiscale Perspective. Frontiers in Chemical Engineering, 2022, 3, .	1.3	4
51	Food Process Modeling. , 2019, , 434-454.		3
52	Modeling in food across the scales: towards a universal mass transfer simulator of small molecules in food. SN Applied Sciences, 2020, 2, 1.	1.5	3
53	Mechanisms of Oil Uptake in French Fries. , 2016, , 503-526.		2
54	Mathematical modelingâ€"Computer-aided food engineering. , 2022, , 277-290.		2

#	Article	IF	CITATIONS
55	Prediction of partition coefficients between food simulants and packaging materials using molecular simulation and a generalized Flory-Huggins approach. Computer Aided Chemical Engineering, 2008, 25, 811-816.	0.3	1
56	Controlling the Molecular Interactions to Improve the Diffusion Barrier of Biosourced Polymers to Organic Solutes. Defect and Diffusion Forum, 0, 323-325, 269-274.	0.4	1
57	Effective transport properties of food products calculated from principles of statistical physics. , 2006, , .		1
58	Bringing New Function to Packaging Materials by Agricultural By-Products., 2020,, 227-257.		1
59	Influence of Liquid Water Transport on Heat and Mass Transfer during Deep- Fat Frying. Food Preservation Technology, 2002, , .	0.0	O
60	Molecular Modeling of Thermodynamical Properties of the Poly (Vinyl alcohol) Active Layer used in Ethanol Pervaporation Dehydration Processes. Procedia Engineering, 2012, 44, 1920-1922.	1.2	0