Weida Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133503/publications.pdf

Version: 2024-02-01

317	21,693	78 h-index	133
papers	citations		g-index
323	323	323	15650 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 2019, 29, 1803807.	14.9	884
2	Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics. Advanced Materials, 2015, 27, 6575-6581.	21.0	722
3	Photogating in Low Dimensional Photodetectors. Advanced Science, 2017, 4, 1700323.	11.2	622
4	Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe ₂ /MoS ₂ van der Waals Heterostructures. ACS Nano, 2016, 10, 3852-3858.	14.6	453
5	Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 2017, 3, e1700589.	10.3	419
6	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	16.6	372
7	Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nature Communications, 2017, 8, 1906.	12.8	369
8	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	10.0	359
9	Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. Nano Letters, 2016, 16, 2254-2259.	9.1	322
10	Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.	26.0	292
11	Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano, 2017, 11, 9854-9862.	14.6	285
12	ReS ₂ â€Based Fieldâ€Effect Transistors and Photodetectors. Advanced Functional Materials, 2015, 25, 4076-4082.	14.9	282
13	Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe ₂ Nanosheets. ACS Nano, 2016, 10, 8067-8077.	14.6	276
14	High Responsivity Phototransistors Based on Few‣ayer ReS ₂ for Weak Signal Detection. Advanced Functional Materials, 2016, 26, 1938-1944.	14.9	270
15	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	4.9	269
16	Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nature Communications, 2020, 11, 2308.	12.8	259
17	Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale, 2016, 8, 13589-13596.	5. 6	252
18	Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe 2 photogate vertical heterostructure. Nano Energy, 2017, 37, 53-60.	16.0	252

#	Article	IF	CITATIONS
19	Solution-Processed Graphene Quantum Dot Deep-UV Photodetectors. ACS Nano, 2015, 9, 1561-1570.	14.6	249
20	Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors. ACS Nano, 2014, 8, 3628-3635.	14.6	238
21	Recent Progress on Localized Field Enhanced Twoâ€dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small, 2017, 13, 1700894.	10.0	234
22	Tailored Engineering of an Unusual (C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃) ₂ Englished Engl	sub>Pb <si 13.8</si 	ub>3Br
23	Arrayed Van Der Waals Broadband Detectors for Dualâ€Band Detection. Advanced Materials, 2017, 29, 1604439.	21.0	218
24	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	12.8	213
25	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. Npj 2D Materials and Applications, 2017, 1, .	7.9	211
26	Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure. Small, 2018, 14, 1703293.	10.0	205
27	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano, 2019, 13, 2511-2519.	14.6	198
28	Highly sensitive visible to infrared MoTe ₂ photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27, 445201.	2.6	188
29	All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nature Nanotechnology, 2022, 17, 27-32.	31.5	187
30	2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021, 373, 1353-1358.	12.6	177
31	Solutionâ€Processed 3D RGO–MoS ₂ /Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultraâ€Broadband Photodetection. Advanced Materials, 2018, 30, e1801729.	21.0	175
32	Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Advanced Materials, 2014, 26, 8203-8209.	21.0	168
33	Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nature Electronics, 2020, 3, 43-50.	26.0	167
34	The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs. IEEE Transactions on Electron Devices, 2012, 59, 1393-1401.	3.0	166
35	High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios. Small, 2015, 11, 936-942.	10.0	166
36	Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. ACS Nano, 2018, 12, 12416-12423.	14.6	157

#	Article	IF	Citations
37	Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nature Nanotechnology, 2019, 14, 217-222.	31.5	153
38	High-performance graphene photodetector using interfacial gating. Optica, 2016, 3, 1066.	9.3	152
39	Enhanced Photoresponsivity of a GaAs Nanowire Metal-Semiconductor-Metal Photodetector by Adjusting the Fermi Level. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33188-33193.	8.0	151
40	Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy. Nano Letters, 2015, 15, 3571-3577.	9.1	146
41	Inchâ€Size Single Crystal of a Leadâ€Free Organic–Inorganic Hybrid Perovskite for Highâ€Performance Photodetector. Advanced Functional Materials, 2018, 28, 1705467.	14.9	146
42	When Nanowires Meet Ultrahigh Ferroelectric Field–High-Performance Full-Depleted Nanowire Photodetectors. Nano Letters, 2016, 16, 2548-2555.	9.1	135
43	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. Nano Letters, 2016, 16, 6416-6424.	9.1	134
44	Epitaxial Ultrathin Organic Crystals on Graphene for Highâ€Efficiency Phototransistors. Advanced Materials, 2016, 28, 5200-5205.	21.0	134
45	Perovskite–Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Nearâ€Infrared Telecommunication Band. Advanced Materials, 2017, 29, 1604431.	21.0	132
46	Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Advanced Materials, 2020, 32, e1902039.	21.0	127
47	Highâ€Sensitivity Floatingâ€Gate Phototransistors Based on WS ₂ and MoS ₂ . Advanced Functional Materials, 2016, 26, 6084-6090.	14.9	124
48	Negative Photoconductance in van der Waals Heterostructure-Based Floating Gate Phototransistor. ACS Nano, 2018, 12, 9513-9520.	14.6	124
49	Ultrasensitive negative capacitance phototransistors. Nature Communications, 2020, 11, 101.	12.8	124
50	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials, 2019, 29, 1900314.	14.9	121
51	Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances, 2021, 7, .	10.3	121
52	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced Science, 2021, 8, e2100569.	11.2	118
53	Diamondâ€Based Allâ€Carbon Photodetectors for Solarâ€Blind Imaging. Advanced Optical Materials, 2018, 6, 1800068.	7.3	117
54	MoTe ₂ p–n Homojunctions Defined by Ferroelectric Polarization. Advanced Materials, 2020, 32, e1907937.	21.0	115

#	Article	IF	Citations
55	Nearâ€Infrared Plasmonic 2D Semimetals for Applications in Communication and Biology. Advanced Functional Materials, 2016, 26, 1793-1802.	14.9	114
56	$128\ \tilde{A}-128$ long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 2014, 39, 5184.	3.3	110
57	A Broadband Fluorographene Photodetector. Advanced Materials, 2017, 29, 1700463.	21.0	110
58	Highâ€Performance Ferroelectric Polymer Sideâ€Gated CdS Nanowire Ultraviolet Photodetectors. Advanced Functional Materials, 2016, 26, 7690-7696.	14.9	107
59	Sensitive and Ultrabroadband Phototransistor Based on Twoâ€Dimensional Bi ₂ O ₂ Se Nanosheets. Advanced Functional Materials, 2019, 29, 1905806.	14.9	106
60	Transparent, Highâ∈Performance Thinâ∈Film Transistors with an InGaZnO/Alignedâ∈SnO ₂ â∈Nanowire Composite and their Application in Photodetectors. Advanced Materials, 2014, 26, 7399-7404.	21.0	104
61	Photothermal Effect Induced Negative Photoconductivity and High Responsivity in Flexible Black Phosphorus Transistors. ACS Nano, 2017, 11, 6048-6056.	14.6	104
62	Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24148-24154.	8.0	103
63	High-Performance Near-Infrared Photodetectors Based on p-Type SnX (X = S, Se) Nanowires Grown <i>via</i> Chemical Vapor Deposition. ACS Nano, 2018, 12, 7239-7245.	14.6	101
64	A hybrid surface passivation on HgCdTe long wave infrared detector with <i>in-situ</i> CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 2011, 99, .	3.3	99
65	PtTe ₂ â€Based Typeâ€II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small, 2019, 15, e1903362.	10.0	98
66	Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. ACS Nano, 2019, 13, 11353-11362.	14.6	97
67	Van der Waals two-color infrared photodetector. Light: Science and Applications, 2022, 11, 6.	16.6	97
68	Amorphous Gallium Oxideâ€Based Gateâ€Tunable Highâ€Performance Thin Film Phototransistor for Solarâ€Blind Imaging. Advanced Electronic Materials, 2019, 5, 1900389.	5.1	95
69	Logic gates based on neuristors made from two-dimensional materials. Nature Electronics, 2021, 4, 399-404.	26.0	95
70	Fabrication of 1D Te/2D ReS ₂ Mixed-Dimensional van der Waals <i>p-n</i> Heterojunction for High-Performance Phototransistor. ACS Nano, 2021, 15, 3241-3250.	14.6	91
71	Toward Sensitive Roomâ€Temperature Broadband Detection from Infrared to Terahertz with Antennaâ€Integrated Black Phosphorus Photoconductor. Advanced Functional Materials, 2017, 27, 1604414.	14.9	88
72	Highâ€Performance Waferâ€Scale MoS ₂ Transistors toward Practical Application. Small, 2018, 14, e1803465.	10.0	88

#	Article	IF	CITATIONS
73	Flexible Quasiâ€2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Advanced Materials, 2020, 32, e1907527.	21.0	88
74	Controlled Doping of Waferâ€Scale PtSe ₂ Films for Device Application. Advanced Functional Materials, 2019, 29, 1805614.	14.9	87
75	Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors. Journal of Applied Physics, 2009, 105, .	2.5	86
76	Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe ₂ channels. 2D Materials, 2017, 4, 025036.	4.4	85
77	Ferroelectric Localized Field–Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small, 2018, 14, e1800492.	10.0	85
78	Sensing Infrared Photons at Room Temperature: From Bulk Materials to Atomic Layers. Small, 2019, 15, e1904396.	10.0	83
79	A novel plasmonic resonance sensor based on an infrared perfect absorber. Journal Physics D: Applied Physics, 2012, 45, 205102.	2.8	82
80	Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. ACS Applied Materials & Devices, 2019, 11, 12161-12169.	8.0	80
81	Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nature Communications, 2021, 12, 4030.	12.8	79
82	Controllable Growth of Lead-Free All-Inorganic Perovskite Nanowire Array with Fast and Stable Near-Infrared Photodetection. Journal of Physical Chemistry C, 2019, 123, 17566-17573.	3.1	78
83	WSe ₂ Photovoltaic Device Based on Intramolecular p–n Junction. Small, 2019, 15, e1805545.	10.0	78
84	Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. Npj 2D Materials and Applications, 2017, 1 , .	7.9	77
85	Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nature Communications, 2022, 13 , .	12.8	77
86	Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors. Journal of Applied Physics, 2009, 105, .	2.5	76
87	Optoelectronic Properties of Few-Layer MoS ₂ FET Gated by Ferroelectric Relaxor Polymer. ACS Applied Materials & Diteriaces, 2016, 8, 32083-32088.	8.0	76
88	Integration of Highâ€ <i>k</i> Oxide on MoS ₂ by Using Ozone Pretreatment for Highâ€Performance MoS ₂ Topâ€Gated Transistor with Thicknessâ€Dependent Carrier Scattering Investigation. Small, 2015, 11, 5932-5938.	10.0	74
89	WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy, 2018, 49, 103-108.	16.0	73
90	Visible to near-infrared photodetectors based on MoS ₂ vertical Schottky junctions. Nanotechnology, 2017, 28, 484002.	2.6	73

#	Article	IF	CITATIONS
91	A Noble Metal Dichalcogenide for Highâ€Performance Fieldâ€Effect Transistors and Broadband Photodetectors. Advanced Functional Materials, 2020, 30, 1907945.	14.9	72
92	Tailored Engineering of an Unusual (C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃) ₂ Angewandte Chemie, 2017, 129, 12318-12322.	sub>Pb <su 2.0</su 	علم (/sub) Br
93	Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Letters, 2020, 20, 2907-2915.	9.1	69
94	Airâ€Stable Lowâ€Symmetry Narrowâ€Bandgap 2D Sulfide Niobium for Polarization Photodetection. Advanced Materials, 2020, 32, e2005037.	21.0	68
95	Stable and sensitive tin-lead perovskite photodetectors enabled by azobenzene derivative for near-infrared acousto-optic conversion communications. Nano Energy, 2021, 86, 106113.	16.0	68
96	Distinct Photocurrent Response of Individual GaAs Nanowires Induced by n-Type Doping. ACS Nano, 2012, 6, 6005-6013.	14.6	66
97	Lightâ€Driven WSe ₂ â€ZnO Junction Fieldâ€Effect Transistors for Highâ€Performance Photodetection. Advanced Science, 2020, 7, 1901637.	11.2	66
98	Exploring a Polar Twoâ€dimensional Multiâ€layered Hybrid Perovskite of (C ₅ H ₁₁ NH ₃)CH ₃ (CH ₃ NH ₃)Pb _{for Ultrafastâ€Responding Photodetection. Laser and Photonics Reviews, 2018, 12, 1800060.}	2≪saub>l<	sunbo-7
99	A Dualâ€Gate MoS ₂ Photodetector Based on Interface Coupling Effect. Small, 2020, 16, e1904369.	10.0	65
100	Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz. Advanced Functional Materials, 2021, 31, 2009554.	14.9	65
101	Dependence of Ion-Implant-Induced LBIC Novel Characteristic on Excitation Intensity for Long-Wavelength HgCdTe-Based Photovoltaic Infrared Detector Pixel Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-7.	2.9	64
102	Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-13.	5.1	63
103	Scalable Integration of Indium Zinc Oxide/Photosensitiveâ€Nanowire Composite Thinâ€Film Transistors for Transparent Multicolor Photodetectors Array. Advanced Materials, 2014, 26, 2919-2924.	21.0	62
104	Ultrasensitive Hybrid MoS ₂ –ZnCdSe Quantum Dot Photodetectors with High Gain. ACS Applied Materials & Dot Photodetectors with High Gain. ACS Appl	8.0	62
105	Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nature Materials, 2023, 22, 450-458.	27.5	62
106	Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors. Nano Letters, 2019, 19, 5920-5929.	9.1	61
107	Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nature Electronics, 2022, 5, 275-280.	26.0	61
108	Self-heating simulation of GaN-based metal-oxide-semiconductor high-electron-mobility transistors including hot electron and quantum effects. Journal of Applied Physics, 2006, 100, 074501.	2.5	59

#	Article	IF	CITATIONS
109	Controllable Doping in 2D Layered Materials. Advanced Materials, 2021, 33, e2104942.	21.0	59
110	Fast Uncooled Midâ€Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. Advanced Materials, 2022, 34, e2107772.	21.0	58
111	Nextâ€generation machine vision systems incorporating twoâ€dimensional materials: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	17.3	58
112	Ultrabroadband Photodetectors up to 10.6 $\hat{A}\mu m$ Based on 2D Fe $<$ sub $>$ 3 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ Nanosheets. Advanced Materials, 2020, 32, e2002237.	21.0	57
113	A versatile photodetector assisted by photovoltaic and bolometric effects. Light: Science and Applications, 2020, 9, 160.	16.6	56
114	Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Journal of Applied Physics, 2014, 115, .	2.5	55
115	Vertically Stacked and Self-Encapsulated van der Waals Heterojunction Diodes Using Two-Dimensional Layered Semiconductors. ACS Nano, 2017, 11, 10472-10479.	14.6	55
116	Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures. Applied Physics Letters, 2016, 108, .	3.3	54
117	Controllable Growth of Vertical Heterostructure GaTe _{<i>x</i>} Se _{1–<i>x</i>} /Si by Molecular Beam Epitaxy. ACS Nano, 2015, 9, 8592-8598.	14.6	53
118	Solventâ€Based Softâ€Patterning of Graphene Lateral Heterostructures for Broadband Highâ€Speed Metal–Semiconductor–Metal Photodetectors. Advanced Materials Technologies, 2017, 2, 1600241.	5.8	53
119	Down-Scalable and Ultra-fast Memristors with Ultra-high Density Three-Dimensional Arrays of Perovskite Quantum Wires. Nano Letters, 2021, 21, 5036-5044.	9.1	53
120	Timeâ€Tailoring van der Waals Heterostructures for Human Memory System Programming. Advanced Science, 2019, 6, 1901072.	11.2	52
121	Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm. Advanced Science, 2019, 6, 1901050.	11.2	52
122	Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasi‶D Sb _{S_{S_{S_{Nanowire. Advanced Functional Materials, 2021, 31, 2006601.}}}}	14.9	52
123	Ferroelectric polymer tuned two dimensional layered MoTe ₂ photodetector. RSC Advances, 2016, 6, 87416-87421.	3.6	51
124	Ambipolar Graphene–Quantum Dot Phototransistors with CMOS Compatibility. Advanced Optical Materials, 2018, 6, 1800985.	7.3	50
125	Symmetric Ultrafast Writing and Erasing Speeds in Quasiâ€Nonvolatile Memory via van der Waals Heterostructures. Advanced Materials, 2019, 31, e1808035.	21.0	50
126	Etching Techniques in 2D Materials. Advanced Materials Technologies, 2019, 4, 1900064.	5.8	50

#	Article	IF	Citations
127	HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Science Advances, 2022, 8, eabn1811.	10.3	50
128	Simulation of InGaN/GaN multiple quantum well light-emitting diodes with quantum dot model for electrical and optical effects. Optical and Quantum Electronics, 2007, 38, 1077-1089.	3.3	49
129	Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Optics Express, 2013, 21, 1606.	3.4	48
130	Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes. IEEE Transactions on Electron Devices, 2015, 62, 1926-1931.	3.0	48
131	Nb ₂ SiTe ₄ : A Stable Narrow-Gap Two-Dimensional Material with Ambipolar Transport and Mid-Infrared Response. ACS Nano, 2019, 13, 10705-10710.	14.6	48
132	Trends in Performance Limits of the HOT Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 501.	2.5	48
133	High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale, 2016, 8, 16065-16072.	5.6	47
134	Hybrid WSe ₂ –In ₂ O ₃ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34489-34496.	8.0	47
135	Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling. Journal of Electronic Materials, 2010, 39, 981-985.	2.2	46
136	Surface leakage current in 125  μm long-wavelength HgCdTe infrared photodiode arrays. Optics Letter 2016, 41, 828.	s, _{3.3}	46
137	Characterization of atomic defects on the photoluminescence in twoâ€dimensional materials using transmission electron microscope. InformaÄnÃ-Materiály, 2019, 1, 85-97.	17. 3	46
138	Highly Polarized Photoelectrical Response in vdW ZrS ₃ Nanoribbons. Advanced Electronic Materials, 2019, 5, 1900419.	5.1	45
139	Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Applied Materials Today, 2019, 15, 203-211.	4.3	45
140	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano, 2019, 13, 3492-3499.	14.6	45
141	Simulation and optimization of GaN-based metal-oxide-semiconductor high-electron-mobility-transistor using field-dependent drift velocity model. Journal of Applied Physics, 2007, 102, .	2.5	44
142	Influencing Sources for Dark Current Transport and Avalanche Mechanisms in Planar and Mesa HgCdTe p-i-n Electron-Avalanche Photodiodes. IEEE Transactions on Electron Devices, 2018, 65, 572-576.	3.0	44
143	Multicolor Broadband and Fast Photodetector Based on InGaAs–Insulator–Graphene Hybrid Heterostructure. Advanced Electronic Materials, 2020, 6, 1901007.	5.1	44
144	Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer. Journal of Applied Physics, 2012, 111, .	2.5	43

#	Article	IF	CITATIONS
145	Room-Temperature Single-Photon Detector Based on Single Nanowire. Nano Letters, 2018, 18, 5439-5445.	9.1	42
146	Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Research, 2015, 8, 3332-3341.	10.4	41
147	Sideâ€Gated In ₂ O ₃ Nanowire Ferroelectric FETs for Highâ€Performance Nonvolatile Memory Applications. Advanced Science, 2016, 3, 1600078.	11.2	41
148	Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer. Advanced Functional Materials, 2020, 30, 2006156.	14.9	41
149	Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents. Light: Science and Applications, 2020, 9, 167.	16.6	40
150	Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. Science China Materials, 2020, 63, 1548-1559.	6.3	40
151	A Colloidalâ€Quantumâ€Dot Infrared Photodiode with High Photoconductive Gain. Small, 2018, 14, e1803158.	10.0	39
152	Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation. Applied Physics Letters, 2012, 101, .	3.3	37
153	Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor. Advanced Optical Materials, 2019, 7, 1901115.	7.3	37
154	Parameter determination from resistance-voltage curve for long-wavelength HgCdTe photodiode. Journal of Applied Physics, 2006, 100, 084503.	2.5	36
155	Photoresponse study of visible blind GaN/AlGaN p-i-n ultraviolet photodetector. Optical and Quantum Electronics, 2011, 42, 755-764.	3.3	36
156	Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Applied Physics Letters, $2011, 99, .$	3.3	36
157	Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency. Applied Physics Letters, 2012, 100, .	3.3	36
158	Novel Typeâ€II InAs/AlSb Core–Shell Nanowires and Their Enhanced Negative Photocurrent for Efficient Photodetection. Advanced Functional Materials, 2018, 28, 1705382.	14.9	36
159	Independent Band Modulation in 2D van der Waals Heterostructures via a Novel Device Architecture. Advanced Science, 2018, 5, 1800237.	11.2	36
160	Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14, 1840-1862.	10.4	36
161	Demonstration and dynamic analysis of trapping of hot electrons at gate edge model for current collapse and gate lag in GaN-based high-electron-mobility transistor including self-heating effect. Applied Physics Letters, 2006, 89, 243501.	3.3	35
162	Graphene-based terahertz tunable plasmonic directional coupler. Applied Physics Letters, 2014, 105, .	3.3	35

#	Article	IF	Citations
163	Ultrahigh photoresponsivity MoS ₂ photodetector with tunable photocurrent generation mechanism. Nanotechnology, 2018, 29, 485204.	2.6	35
164	High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets. Applied Physics Letters, 2017, 110, .	3.3	34
165	Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes. Journal Physics D: Applied Physics, 2011, 44, 405102.	2.8	33
166	Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure. Journal of Applied Physics, 2014, 115, .	2.5	33
167	Ferroelectric Enhanced Performance of a GeSn/Ge Dual-Nanowire Photodetector. Nano Letters, 2020, 20, 3872-3879.	9.1	33
168	SWCNTâ€MoS ₂ â€6WCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
169	Complementary Logic with Voltage Zero‣oss and Nanoâ€Watt Power via Configurable MoS ₂ /WSe ₂ Gate. Advanced Functional Materials, 2018, 28, 1805171.	14.9	32
170	The plasmonic resonant absorption in GaN double-channel high electron mobility transistors. Applied Physics Letters, 2011, 99, 063502.	3.3	30
171	Fractal H-shaped plasmonic nanocavity. Nanotechnology, 2013, 24, 205702.	2.6	30
172	Dark current simulation of InP/In0.53Ga0.47As/InP p-i-n photodiode. Optical and Quantum Electronics, 2008, 40, 1261-1266.	3.3	29
173	Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne. Advanced Science, 2017, 4, 1700472.	11.2	29
174	Gateâ€Tunable Photodiodes Based on Mixedâ€Dimensional Te/MoTe ₂ Van der Waals Heterojunctions. Advanced Electronic Materials, 2021, 7, 2001066.	5.1	29
175	High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor. , 2017, , .		28
176	High responsivity and flexible deep-UV phototransistor based on Ta-doped \hat{l}^2 -Ga2O3. Npj Flexible Electronics, 2022, 6, .	10.7	28
177	Recent progress on integrating two-dimensional materials with ferroelectrics for memory devices and photodetectors. Chinese Physics B, 2017, 26, 037106.	1.4	27
178	Ultrahighâ€Detectivity Photodetectors with Van der Waals Epitaxial CdTe Single rystalline Films. Small, 2019, 15, e1900236.	10.0	27
179	Room-Temperature Blackbody-Sensitive and Fast Infrared Photodetectors Based on 2D Tellurium/Graphene Van der Waals Heterojunction. ACS Photonics, 2022, 9, 1775-1782.	6.6	27
180	Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Optical and Quantum Electronics, 2013, 45, 713-720.	3.3	26

#	Article	IF	Citations
181	Performance Optimization of InSb Infrared Focal-Plane Arrays with Diffractive Microlenses. Journal of Electronic Materials, 2014, 43, 2795-2801.	2.2	26
182	Intrinsic p-type W-based transition metal dichalcogenide by substitutional Ta-doping. Applied Physics Letters, 2017, 111, .	3.3	26
183	Depth Profiling of Electronic Transport Parameters in n-on-p Boron-Ion-Implanted Vacancy-Doped HgCdTe. Journal of Electronic Materials, 2013, 42, 3108-3113.	2.2	25
184	Extrinsic Photoconduction Induced Shortâ€Wavelength Infrared Photodetectors Based on Geâ€Based Chalcogenides. Small, 2021, 17, e2006765.	10.0	25
185	Optoelectronic Synapses Based on Photoâ€Induced Doping in MoS ₂ /hâ€BN Fieldâ€Effect Transistors. Advanced Optical Materials, 2021, 9, 2100937.	7.3	25
186	Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors. Journal of Applied Physics, 2014, 116, 184503.	2.5	24
187	Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. Journal of Materials Chemistry C, 2020, 8, 6388-6395.	5.5	24
188	Substitutionally Doped MoSe ₂ for Highâ€Performance Electronics and Optoelectronics. Small, 2021, 17, e2102855.	10.0	24
189	Macroscopic assembled graphene nanofilms based room temperature ultrafast midâ€infrared photodetectors. InformaĀnĀ-Materiály, 2022, 4, .	17.3	24
190	Multifunctional MoS ₂ Transistors with Electrolyte Gel Gating. Small, 2020, 16, e2000420.	10.0	23
191	Emerging Singleâ€Photon Detectors Based on Lowâ€Dimensional Materials. Small, 2022, 18, e2103963.	10.0	23
192	Modeling of dark characteristics for long-wavelength HgCdTe photodiode. Optical and Quantum Electronics, 2007, 38, 1107-1113.	3.3	22
193	Simulation and design consideration of photoresponse for HgCdTe infrared photodiodes. Optical and Quantum Electronics, 2008, 40, 1255-1260.	3.3	22
194	Optimization of Microlenses for InSb Infrared Focal-Plane Arrays. Journal of Electronic Materials, 2011, 40, 1647-1650.	2.2	22
195	MoS ₂ /HfO ₂ /Siliconâ€Onâ€Insulator Dualâ€Photogating Transistor with Ambipolar Photoresponsivity for Highâ€Resolution Light Wavelength Detection. Advanced Functional Materials, 2019, 29, 1906242.	14.9	22
196	Edgeâ€Epitaxial Growth of InSe Nanowires toward Highâ€Performance Photodetectors. Small, 2020, 16, e1905902.	10.0	22
197	Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Optics Express, 2020, 28, 33556.	3.4	22
198	Silicon: quantum dot photovoltage triodes. Nature Communications, 2021, 12, 6696.	12.8	22

#	Article	IF	Citations
199	High performance charge-transfer induced homojunction photodetector based on ultrathin ZnO nanosheet. Applied Physics Letters, 2019, 114, .	3.3	21
200	Surface-States-Modulated High-Performance InAs Nanowire Phototransistor. Journal of Physical Chemistry Letters, 2020, 11, 6413-6419.	4.6	21
201	Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Science China Materials, 2021, 64, 1230-1237.	6.3	21
202	Pristine PN junction toward atomic layer devices. Light: Science and Applications, 2022, 11, .	16.6	21
203	Simulation of laser beam induced current for HgCdTe photodiodes with leakage current. Optical and Quantum Electronics, 2009, 41, 805-810.	3.3	20
204	The ambipolar evolution of a high-performance WSe ₂ transistor assisted by a ferroelectric polymer. Nanotechnology, 2018, 29, 105202.	2.6	20
205	The role of ultrathin AlN barrier in the reduction in the hot electron and self-heating effects for GaN-based double-heterojunction high electron mobility transistors. Journal of Applied Physics, 2010, 108, .	2.5	19
206	Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	19
207	Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors With Guard Ring Designs. IEEE Transactions on Electron Devices, 2020, 67, 542-546.	3.0	19
208	Gate Stack Engineering in MoS ₂ Fieldâ€Effect Transistor for Reduced Channel Doping and Hysteresis Effect. Advanced Electronic Materials, 2021, 7, 2000395.	5.1	19
209	Ternary 2D Layered Material FePSe ₃ and Nearâ€Infrared Photodetector. Advanced Electronic Materials, 2021, 7, 2100207.	5.1	19
210	Quantum-mechanical effects and gate leakage current of nanoscale n-type FinFETs: A 2d simulation study. Microelectronics Journal, 2006, 37, 613-619.	2.0	18
211	Vapor growth of CdS nanowires/WS ₂ nanosheet heterostructures with sensitive photodetections. Nanotechnology, 2019, 30, 345603.	2.6	18
212	Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design. IEEE Transactions on Electron Devices, 2020, 67, 2001-2007.	3.0	18
213	Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays. Optics Letters, 2017, 42, 1325.	3.3	18
214	Low-Roughness Plasma Etching of HgCdTe Masked with Patterned Silicon Dioxide. Journal of Electronic Materials, 2011, 40, 1642-1646.	2.2	17
215	The resonant tunability, enhancement, and damping of plasma waves in the two-dimensional electron gas plasmonic crystals at terahertz frequencies. Applied Physics Letters, 2013, 102, .	3.3	17
216	High mobility amorphous InGaZnO thin film transistor with single wall carbon nanotubes enhanced-current path. Applied Physics Letters, 2013, 103, 223108.	3.3	17

#	Article	IF	CITATIONS
217	Narrowing Bandgap of HfS ₂ by Te Substitution for Shortâ€Wavelength Infrared Photodetection. Advanced Optical Materials, 2021, 9, 2002248.	7.3	17
218	Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition. Nanotechnology, 2015, 26, 105201.	2.6	16
219	Direct observation and manipulation of hot electrons at room temperature. National Science Review, 2021, 8, nwaa295.	9.5	16
220	Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced polarity reversal. Applied Physics Letters, 2009, 95, 093506.	3.3	15
221	An improvement on short-wavelength photoresponse for a heterostructure HgCdTe two-color infrared detector. Semiconductor Science and Technology, 2010, 25, 045028.	2.0	15
222	Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope. Applied Physics Letters, 2014, 105, 191106.	3.3	15
223	Graphene Dirac point tuned by ferroelectric polarization field. Nanotechnology, 2018, 29, 134002.	2.6	15
224	Global Photocurrent Generation in Phototransistors Based on Singleâ€Walled Carbon Nanotubes toward Highly Sensitive Infrared Detection. Advanced Optical Materials, 2019, 7, 1900597.	7.3	15
225	Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics. Nano Letters, 2021, 21, 7761-7768.	9.1	15
226	Temperature dependence on photosensitive area extension in mercury cadmium telluride photodiodes using laser beam induced current. Optical Engineering, 2012, 51, 036401.	1.0	14
227	Temperature dependence characteristics of dark current for arsenic doped LWIR HgCdTe detectors. Infrared Physics and Technology, 2013, 61, 157-161.	2.9	14
228	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. ACS Applied Electronic Materials, 2019, 1, 1825-1831.	4.3	14
229	Analysis of Interface Scattering in AlGaN/GaN/InGaN/GaN Double-Heterojunction High-Electron-Mobility Transistors. Journal of Electronic Materials, 2012, 41, 2130-2138.	2.2	13
230	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. Physical Review Letters, 2021, 127, 217401.	7.8	13
231	Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector. Optical and Quantum Electronics, 2009, 41, 699-704.	3.3	12
232	Study on GaN-based light emitting diode with InGaN/GaN/InGaN multi-layer barrier. Optical and Quantum Electronics, 2012, 44, 75-81.	3.3	12
233	The localized near-field enhancement of metallic periodic bowtie structure: An oscillating dipoles picture. Physica B: Condensed Matter, 2012, 407, 2223-2228.	2.7	12
234	Optimization for mid-wavelength InSb infrared focal plane arrays under front-side illumination. Optical and Quantum Electronics, 2013, 45, 673-679.	3.3	12

#	Article	IF	Citations
235	Spectrum Analysis of 2-D Plasmon in GaN-Based High Electron Mobility Transistors. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8400507-8400507.	2.9	12
236	Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs1â^'xSbx nanowires. Nano Research, 2021, 14, 3961-3968.	10.4	12
237	Spatial description theory of narrow-band single-carrier avalanche photodetectors. Optics Express, 2021, 29, 16432.	3.4	12
238	Ambipolar and Robust WSe 2 Fieldâ€Effect Transistors Utilizing Selfâ€Assembled Edge Oxides. Advanced Materials Interfaces, 2020, 7, 1901628.	3.7	11
239	Optically and electrically modulated printed carbon nanotube synaptic transistors with a single input terminal and multi-functional output characteristics. Journal of Materials Chemistry C, 2020, 8, 6914-6922.	5.5	11
240	A Study of Sidewall Effects in HgCdTe Photoconductors Passivated with MBE-Grown CdTe. Journal of Electronic Materials, 2010, 39, 1019-1022.	2.2	10
241	The mechanism of the photoresponse blueshifts for the n-type conversion region of n+-on-p Hg0.722Cd0.278Te infrared photodiode. Journal of Applied Physics, 2010, 107, 044513.	2.5	10
242	Effects of absorption layer characteristic on spectral photoresponse of mid-wavelength InSb photodiodes. Optical and Quantum Electronics, 2011, 42, 801-808.	3.3	10
243	Characterization of leakage current mechanisms in long wavelength infrared HgCdTe photodiodes from a study of current–voltage characteristics under low illumination. Journal of Applied Physics, 2015, 118, 224503.	2.5	10
244	Distinct photoresponse in graphene induced by laser irradiation. Applied Physics Letters, 2015, 106, .	3.3	10
245	A gate-free MoS ₂ phototransistor assisted by ferroelectrics. Journal of Semiconductors, 2019, 40, 092002.	3.7	10
246	Two-dimensional series connected photovoltaic cells defined by ferroelectric domains. Applied Physics Letters, 2020, 116, .	3.3	10
247	Interface engineering of ferroelectric-gated MoS2 phototransistor. Science China Information Sciences, 2021, 64, 1.	4.3	10
248	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8232-8232.	21.0	9
249	Numerical Simulation of Refractive-Microlensed HgCdTe Infrared Focal Plane Arrays Operating in Optical Systems. Journal of Electronic Materials, 2014, 43, 2879-2887.	2.2	9
250	Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. Optical and Quantum Electronics, 2013, 45, 597-604.	3.3	8
251	Photodetectors: Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538.	21.0	8
252	Current transport mechanisms in mercury cadmium telluride diode. Journal of Applied Physics, 2016, 120, .	2.5	8

#	Article	IF	Citations
253	Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	8
254	Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semiconductor Science and Technology, 2018, 33, 114012.	2.0	8
255	Modulated Metal–Insulator Transition Behaviors in Vanadium Dioxide Nanowires with an Artificial Oxidized Domain. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900383.	2.4	8
256	A study on ionic gated MoS2 phototransistors. Science China Information Sciences, 2019, 62, 1.	4.3	8
257	Infrared Gesture Recognition System Based on Near-Sensor Computing. IEEE Electron Device Letters, 2021, 42, 1053-1056.	3.9	8
258	Optoelectronics: Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure (Small 9/2018). Small, 2018, 14, 1870038.	10.0	7
259	Optimized Si-Based Blocked Impurity Band Detector Under Alternative Operational Mode. IEEE Transactions on Electron Devices, 2019, 66, 3891-3895.	3.0	7
260	Fabrication of near infrared metallodielectric photonic crystal using metal-coated dielectric spheres. Solid State Communications, 2008, 145, 582-584.	1.9	6
261	Enhancement-mode CdS nanobelts field effect transistors and phototransistors with HfO2 passivation. Applied Physics Letters, 2019, 114 , .	3.3	6
262	Skin effect photon-trapping enhancement in infrared photodiodes. Optics Express, 2021, 29, 22823.	3.4	6
263	Extended Infrared responses in Er/O-Hyperdoped Si at Room Temperature. Optics Letters, 2021, 46, 5165-5168.	3.3	6
264	Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors. Applied Physics Letters, 2021, 119, .	3.3	6
265	Investigations on a Multiple Mask Technique to Depress Processing-Induced Damage of ICP-Etched HgCdTe Trenches. Journal of Electronic Materials, 2013, 42, 3164-3167.	2.2	5
266	Investigation of Radiation Collection by InSb Infrared Focal-Plane Arrays with Micro-optic Structures. Journal of Electronic Materials, 2013, 42, 3181-3185.	2.2	5
267	Bi ₂ O ₂ Se/Au-Based Schottky Phototransistor With Fast Response and Ultrahigh Responsivity. IEEE Electron Device Letters, 2020, 41, 1464-1467.	3.9	5
268	Simultaneous control of intensity, phase, and polarization in real time under a weak oscillation theory. Optics Letters, 2021, 46, 1361.	3.3	5
269	Progress and challenges in blocked impurity band infrared detectors for space-based astronomy. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	5
270	The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots. Optical and Quantum Electronics, 2013, 45, 687-692.	3.3	4

#	Article	IF	Citations
271	The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device. Optics Express, 2013, 21, 10821.	3.4	4
272	Benchmark characterization of the thermoelectric properties of individual single-crystalline CdS nanowires by a H-type sensor. RSC Advances, 2017, 7, 25298-25304.	3.6	4
273	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small, 2015, 11, 2346-2346.	10.0	3
274	Introduction to the special issue on numerical simulation of optoelectronic devices NUSOD'14. Optical and Quantum Electronics, 2015, 47, 1291-1292.	3.3	3
275	Multimode Signal Processor Unit Based on the Ambipolar WSe ₂ –Cr Schottky Junction. ACS Applied Materials & Interfaces, 2019, 11, 38895-38901.	8.0	3
276	Reversible engineering of topological insulator surface state conductivity through optical excitation. Nanotechnology, 2021, 32, 17LT01.	2.6	3
277	Broadband Photodetectors: Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz (Adv. Funct. Mater. 14/2021). Advanced Functional Materials, 2021, 31, 2170093.	14.9	3
278	P-N Junction Photodiodes., 2017,, 307-336.		3
279	Near-infrared heterojunction field modulated phototransistors with distinct photodetection/photostorage switching features for artificial visuals. Journal of Materials Chemistry C, 2022, 10, 9198-9207.	5.5	3
280	High-operating temperature far-infrared Si:Ga blocked-impurity-band detectors. Applied Physics Letters, 2022, 120, .	3.3	3
281	The guidance for bowtie antennas design in near-field enhancement applications. , 2012, , .		2
282	Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. , 2012, , .		2
283	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). Small, 2015, 11, 890-890.	10.0	2
284	Photodetectors: Solventâ∈Based Softâ∈Patterning of Graphene Lateral Heterostructures for Broadband Highâ∈Speed Metalâ∈"Semiconductorâ∈"Metal Photodetectors (Adv. Mater. Technol. 2/2017). Advanced Materials Technologies, 2017, 2, .	5.8	2
285	Ultrabroad-Spectrum Photodetectors: Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm (Adv. Sci. 15/2019). Advanced Science, 2019, 6, 1970089.	11.2	2
286	Atomic Layered 2d/3d Heterostructure for Sensitive Photodetection. , 2019, , .		2
287	Toward Scalable Fabrication of Atomic Wires in Silicon by Nanopatterning Self-Assembled Molecular Monolayers. ACS Applied Electronic Materials, 2020, 2, 275-281.	4.3	2
288	Highâ€Performance Broadband Tungsten Disulfide Photodetector Decorated with Indium Arsenide Nanoislands. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000297.	1.8	2

#	Article	IF	Citations
289	"Clean―doping to advance 2D material phototransistors. Light: Science and Applications, 2022, 11, .	16.6	2
290	Terahertz plasmon resonances in GaN and graphene. , 2013, , .		1
291	Narrow-Gap Semiconductors and Low-Dimensional Structures for Optoelectronic Applications. Scientific World Journal, The, 2014, 2014, 1-2.	2.1	1
292	Low-Dimensional Semiconductor Structures for Optoelectronic Applications. Advances in Condensed Matter Physics, 2015, 2015, 1-2.	1.1	1
293	Study on GaN-based light-emitting diodes with graded-thickness quantum barriers. , 2015, , .		1
294	Photodetectors: A Broadband Fluorographene Photodetector (Adv. Mater. 22/2017). Advanced Materials, 2017, 29, .	21.0	1
295	More than Graphene. Small, 2017, 13, 1702559.	10.0	1
296	Emission Kinetics from PbSe Quantum Dots in Glass Matrix at High Excitation Levels. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800012.	2.4	1
297	Study of InGaN/GaN/InGaN multi-layer barrier in GaN-based light emitting diode. , 2011, , .		0
298	EFFECTS OF Ge MOLE FRACTION ON ELECTRICAL CHARACTERISTICS OF STRAINED SiGe CHANNEL p -MOSFET., 2011,,.		0
299	The hybridization of plasmons in GaN-based two-dimensional channels. , 2012, , .		0
300	A bisection-function technique to characterize heat transport in high-power GaN-based light-emitting-diodes package. , 2012, , .		0
301	The tunable plasmonic resonant absorption in grating-gate GaN-based HEMTs for THz detection. , 2012, , .		0
302	Plasmon resonances and rectifying of terahertz radiation in GaN and InGaAs-based field-effect transistors. , 2012, , .		0
303	A novel plasmonic nanofilter based on complementary H-fractal shape components., 2013,,.		0
304	Study of junction performance in mid-wavelength HgCdTe photodiodes by laser beam-induced current microscope. , 2014, , .		0
305	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD'13. Optical and Quantum Electronics, 2014, 46, 1187-1187.	3.3	0
306	Room-temperature, high-gain, broad-spectrum InAs nanowire infrared photodetectors., 2015,,.		0

#	Article	IF	Citations
307	An efficiency and response enhanced metamaterial single photon detector., 2016,,.		О
308	Recent progress on dark current characterization of very long-wavelength HgCdTe infrared photodetectors and HgCdTe APDs in SITP. Proceedings of SPIE, 2016, , .	0.8	0
309	Uncooled infrared photodetectors based on one-dimensional nanowires and two-dimensional materials. , 2017, , .		0
310	Numerical simulation of HgCdTe nBn long-wavelength infrared detector. , 2018, , .		0
311	Surface Plasmon Polaritons Scattering by Strong Magnetic field in Two-dimensional Material. , 2018, , .		0
312	Memory Devices: Symmetric Ultrafast Writing and Erasing Speeds in Quasiâ€Nonvolatile Memory via van der Waals Heterostructures (Adv. Mater. 11/2019). Advanced Materials, 2019, 31, 1970081.	21.0	0
313	TMDâ€Based Phototransistors: Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor (Advanced Optical Materials 23/2019). Advanced Optical Materials, 2019, 7, 1970088.	7.3	0
314	Corrections to "Optimized Si-Based Blocked Impurity Band Detector Under Alternative Operational Mode―[Sep 19 3891-3895]. IEEE Transactions on Electron Devices, 2021, 68, 447-447.	3.0	0
315	Probability Theory of Single-Carrier Avalanche in HgCdTe APDs as a Stochastic Process. , 2021, , .		0
316	Recent progress on localized-field enhanced few-layer MoS2 photodetector., 2015,,.		0
317	Dark current characterization of Au and Hg-vacancy hybrid doped p-type epitaxy long-wavelength HgCdTe infrared photodetectors. , 2018, , .		O