Marcel Hibert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334636/publications.pdf

Version: 2024-02-01

27 1,259 19
papers citations h-index

27 27 27 1434
all docs docs citations times ranked citing authors

27

g-index

#	Article	IF	CITATIONS
1	Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. Journal of Medicinal Chemistry, 1992, 35, 3448-3462.	2.9	435
2	Identification and pharmacological properties of E339–3D6, the first nonpeptidic apelin receptor agonist. FASEB Journal, 2010, 24, 1506-1517.	0.2	95
3	Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12. Journal of Biological Chemistry, 2008, 283, 23189-23199.	1.6	85
4	A novel, conformationâ€specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB Journal, 2007, 21, 2124-2134.	0.2	81
5	Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovascular Research, 2020, 116, 686-697.	1.8	54
6	Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V ₂ GPCR: Application To Ligand Screening and Oligomerization Assays Journal of Medicinal Chemistry, 2012, 55, 8588-8602.	2.9	52
7	Time-Resolved FRET Binding Assay to Investigate Hetero-Oligomer Binding Properties: Proof of Concept with Dopamine D ₁ /D ₃ Heterodimer. ACS Chemical Biology, 2015, 10, 466-474.	1.6	39
8	Solid-Phase Preparation of a Pilot Library Derived from the 2,3,4,5-Tetrahydro-1H-benzo[b]azepin-5-amine Scaffold. ACS Combinatorial Science, 2007, 9, 487-500.	3.3	33
9	Fluorescent Derivatives of AC-42 To Probe Bitopic Orthosteric/Allosteric Binding Mechanisms on Muscarinic M1 Receptors. Journal of Medicinal Chemistry, 2012, 55, 2125-2143.	2.9	33
10	LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. Journal of Medicinal Chemistry, 2018, 61, 8670-8692.	2.9	33
11	An Antedrug of the CXCL12 Neutraligand Blocks Experimental Allergic Asthma without Systemic Effect in Mice. Journal of Biological Chemistry, 2013, 288, 11865-11876.	1.6	32
12	A Nonpeptide Oxytocin Receptor Agonist for a Durable Relief of Inflammatory Pain. Scientific Reports, 2020, 10, 3017.	1.6	31
13	Structure–Activity Relationship Studies toward the Discovery of Selective Apelin Receptor Agonists. Journal of Medicinal Chemistry, 2014, 57, 2908-2919.	2.9	27
14	On the Use of Nonfluorescent Dye Labeled Ligands in FRET-Based Receptor Binding Studies. Journal of Medicinal Chemistry, 2005, 48, 7847-7859.	2.9	26
15	Prodrugs of a CXC Chemokine-12 (CXCL12) Neutraligand Prevent Inflammatory Reactions in an Asthma Model in Vivo. ACS Medicinal Chemistry Letters, 2012, 3, 10-14.	1.3	26
16	Combinatorial Aid for Underprivileged Scaffolds: Solution and Solid-phase Strategies for a Rapid and Efficient Access To Novel Aza-diketopiperazines (Aza-DKP). ACS Combinatorial Science, 2012, 14, 323-334.	3.8	26
17	Discovery of a Locally and Orally Active CXCL12 Neutraligand (LIT-927) with Anti-inflammatory Effect in a Murine Model of Allergic Airway Hypereosinophilia. Journal of Medicinal Chemistry, 2018, 61, 7671-7686.	2.9	26
18	A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Scientific Reports, 2015, 5, 14746.	1.6	22

#	Article	IF	CITATION
19	Subtlety of the Structureâ^'Affinity and Structureâ^'Efficacy Relationships around a Nonpeptide Oxytocin Receptor Agonist. Journal of Medicinal Chemistry, 2010, 53, 1546-1562.	2.9	19
20	Selective Nonpeptidic Fluorescent Ligands for Oxytocin Receptor: Design, Synthesis, and Application to Time-Resolved FRET Binding Assay. Journal of Medicinal Chemistry, 2015, 58, 2547-2552.	2.9	19
21	Diastereoselective synthesis of novel aza-diketopiperazines <i>via</i> a domino cyclohydrocarbonylation/addition process. Chemical Communications, 2014, 50, 9657-9660.	2.2	15
22	Identification of Nonpeptide Oxytocin Receptor Ligands by Receptor‣igand Fingerprint Similarity Search. Molecular Informatics, 2011, 30, 521-526.	1.4	14
23	From the Promiscuous Asenapine to Potent Fluorescent Ligands Acting at a Series of Aminergic G-Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2018, 61, 174-188.	2.9	13
24	A step-economical multicomponent synthesis of 3D-shaped aza-diketopiperazines and their drug-like chemical space analysis. Organic and Biomolecular Chemistry, 2016, 14, 8859-8863.	1.5	9
25	Comparative Study of the Synthesis and Structural and Physicochemical Properties of Diketopiperazines vs Aza-diketopiperazines. Journal of Organic Chemistry, 2017, 82, 3239-3244.	1.7	7
26	Versatile Synthetic Approach for Selective Diversification of Bicyclic Aza-Diketopiperazines. ACS Omega, 2018, 3, 15182-15192.	1.6	4
27	Why and how to find neutraligands targeting chemokines?. Drug Discovery Today: Technologies, 2012, 9, e245-e251.	4.0	3